
 

Impacts of students’ difficulties in constructing geometric concepts on
their proof’s understanding and proving processes

Document Version:
Publisher's PDF, also known as Version of record

Citation for published version:
Haj-Yahya, A, Hershkowitz, R & Dreyfus, T 2016, Impacts of students’ difficulties in constructing geometric
concepts on their proof’s understanding and proving processes. in Proceedings of the 40th Conference of
the International Group for the Psychology of Mathematics Education : PME 40. vol. 2, pp. 345-352,
Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics
Education : PME 40, Szeged, Hungary, 3/8/16.

Total number of authors:
3

Published In:
Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education :
PME 40

License:
Other
General rights
@ 2020 This manuscript version is made available under the above license via The Weizmann Institute of
Science Open Access Collection is retained by the author(s) and / or other copyright owners and it is a condition
of accessing these publications that users recognize and abide by the legal requirements associated with these
rights.

How does open access to this work benefit you?
Let us know @ library@weizmann.ac.il

Take down policy
The Weizmann Institute of Science has made every reasonable effort to ensure that Weizmann Institute of
Science content complies with copyright restrictions. If you believe that the public display of this file breaches
copyright please contact library@weizmann.ac.il providing details, and we will remove access to the work
immediately and investigate your claim.

(article begins on next page)





 

 

 

Proceedings of the 40th Conference of the 

International Group for the Psychology of Mathematics Education 

 

 

PME40, Szeged, Hungary, 3–7 August, 2016 

  



 

 

 

 

  



 

 

 

 
 
 
 

Proceedings of the  

40th Conference of the International  

Group for the Psychology of Mathematics Education 

 
 

Editors 

Csaba Csíkos  

Attila Rausch 

Judit Szitányi 

 
 
 

 

 

 

 

 

 
 

PME40, Szeged, Hungary, 3–7 August, 2016 

 

Volume 2

RESEARCH 
REPORTS



Cite as: 

Csíkos, C., Rausch, A., & Szitányi, J. (Eds.). Proceedings of the 40th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 2. Szeged, 

Hungary: PME. 

Website: http://pme40.hu 

The proceedings are also available via http://www.igpme.org 

Publisher: 

International Group for the Psychology of Mathematics Education 

Copyrights © 2016 left to the authors 

All rights reserved 

ISSN 0771-100X 

ISBN 978-1-365-45852-1

Logo: Lóránt Ragó 

Composition of Proceedings: Edit Börcsökné Soós 

Printed in Hungary 

Innovariant Nyomdaipari Kft., Algyő 

www.innovariant.hu 

http://www.igpme.org/


 

PME40 – 2016 2–i 

TABLE OF CONTENTS 

VOLUME 2 — RESEARCH REPORTS (A – HUA) 

 

 

Abu Elwan, Reda  ...............................................................................................    3–10 

MATHEMATICS PROBLEM POSING SKILLS IN SUPPORTING 

PROBLEM SOLVING SKILLS OF PROSPECTIVE TEACHERS 

Alcock, Lara; Hernandez-Martinez, Paul; Godwin Patel, Arun  ..................  11–18 

STUDY HABITS IN UNDERGRADUATE MATHEMATICS:  

A SOCIAL NETWORK ANALYSIS 

Antonini, Samuele; Baccaglini-Frank, Anna ...................................................  19–26 

MAINTAINING DRAGGING AND THE PIVOT INVARIANT IN 

PROCESSES OF CONJECTURE GENERATION 

Attridge, Nina; Aberdein, Andrew; Inglis, Matthew ......................................  27–34 

DOES STUDYING LOGIC IMPROVE LOGICAL REASONING? 

Aydogdu Iskenderoglu, Tuba ............................................................................  35–42 

MULTIPLICATION AND DIVISION PROBLEMS POSED BY PRE-

SERVICE ELEMENTARY MATHEMATICS TEACHERS ABOUT 

FRACTION TOPIC 

Baccaglini-Frank, Anna; Antonini, Samuele ...................................................  43–50 

FROM CONJECTURE GENERATION BY MAINTAINING 

DRAGGING TO PROOF 

Baki, Müjgan; Baki, Adnan; Çelik, Derya; Güler, Mustafa;  

Sönmez, Neslihan ................................................................................................  51–58  

IMPROVING PROSPECTIVE MATHEMATICS TEACHERS’ 

KNOWLEDGE OF STUDENT THROUGH LESSON ANALYSIS 

Barcelos Amaral, Rúbia; Hollebrands, Karen  ...............................................  59–66 

CONTEXTUAL-BASED SIMILARITY TASKS IN TEXTBOOKS 

FROM BRAZIL AND THE UNITED STATES 

Behrens, Daniela; Bikner-Ahsbahs, Angelika  ................................................  67–74 

THE DRAGGING GESTURE – FROM ACTING TO 

CONCEPTUALIZING 



 

2–ii PME40 – 2016 

Bempeni, Maria; Kaldrimidou, Maria; Vamvakoussi, Xenia  ......................  75–82 

FEATURES OF THE DEEP APPROACH TO MATHEMATICS 

LEARNING: EVIDENCE FROM EXCEPTIONAL STUDENTS 

Berger, Margot  ..................................................................................................  83–90 

READING AND LEARNING FROM MATHEMATICS 

TEXTBOOKS: AN ANALYTIC FRAMEWORK 

Beswick, Kim; Chick, Helen ..............................................................................  91–98 

RESPONSES TO “THE SCARY QUESTION”: HOW TEACHING 

CHALLENGES IMPACT THE USE OF KNOWLEDGE AND ITS 

DEVELOPMENT 

Bikner-Ahsbahs, Angelika; Best, Mareike .....................................................  99–106 

TEACHING FUNCTIONS IN THE SECONDARY SCHOOL 

Biton, Yaniv; Fellus, Osnat; Hershkovitz, Sara  .........................................  107–114 

BORDER CROSSING: BRINGING TOGETHER PRE-SERVICE 

TEACHERS’ TECHNOLOGICAL, PEDAGOGICAL, AND CONTENT 

KNOWLEDGE THROUGH THE USE OF DIGITAL TEXTBOOKS IN 

MATHEMATICS 

Bochnik, Katrin; Ufer, Stefan  ......................................................................  115–122 

MEASURING LANGUAGE-RELATED OPPORTUNITIES TO 

LEARN IN PRIMARY MATHEMATICS CLASSROOMS 

Camacho-Machin, Matias; Moreno, Mar; Afonso, María Candelaria .....  123–130 

PROSPECTIVE HIGH SCHOOL TEACHERS’ PROBLEM SOLVING 

ACTIVITIES THAT FOSTER THE USE OF DYNAMIC GEOMETRY 

SOFTWARE 

Cañadas, María C.; Morales, Rodolfo  .........................................................  131–138 

FUNCTIONAL RELATIONSHIPS IDENTIFIED BY FIRST 

GRADERS 

Chapman, Olive  .............................................................................................  139–146 

AN EXEMPLARY MATHEMATICS TEACHER’S WAYS OF 

HOLDING PROBLEM-SOLVING KNOWLEDGE FOR TEACHING 

Choy, Ban Heng  .............................................................................................  147–154 

SNAPSHOTS OF A TEACHER’S IN-THE-MOMENT NOTICING 

DURING A LESSON ON GRADIENT 



 

PME40 – 2016 2–iii 

Chua, Boon Liang  ..........................................................................................  155–162 

EXAMINING MATHEMATICS TEACHERS' JUSTIFICATION AND 

ASSESSMENT OF STUDENTS' JUSTIFICATIONS 

Coles, Alf  ........................................................................................................  163–170 

FACILITATING DISCUSSION OF VIDEO WITH TEACHERS OF 

MATHEMATICS: THE PARADOX OF JUDGMENT 

Cooper, Thomas J.; Carter, Merilyn G.; Lowe, James A.  ........................  171–178 

USING THE BIG IDEAS OF MATHEMATICS TO CLOSE THE GAP 

Cortina, José Luis; Visnovska, Jana ............................................................. 179–186 

RECIPROCAL RELATIONS OF RELATIVE SIZE IN THE 

INSTRUCTIONAL CONTEXT OF FRACTIONS AS MEASURES 

Cusi, Annalisa; Morselli, Francesca  ............................................................  187–194 

THE TEACHER’S ROLE IN PROMOTING STUDENTS’ 

RATIONALITY IN THE USE OF ALGEBRA AS A THINKING 

TOOL 

Cusi, Annalisa; Morselli, Francesca; Sabena, Cristina  .............................. 195–202 

ENHANCING FORMATIVE ASSESSMENT STRATEGIES IN 

MATHEMATICS THROUGH CLASSROOM CONNECTED 

TECHNOLOGY 

De Bock, Dirk; Neyens, Deborah; Van Dooren, Wim  ...............................  203–210 

STUDENTS’ ABILITY TO CONNECT FUNCTION PROPERTIES TO 

FUNCTIONS IN DIFFERENT REPRESENTATIONAL MODES 

Di Martino, Pietro; Funghi, Silvia  ...............................................................  211–218 

“THINK ABOUT YOUR MATH TEACHERS” A NARRATIVE 

BRIDGE BETWEEN FUTURE PRIMARY TEACHERS’ IDENTITY 

AND THEIR SCHOOL EXPERIENCE 

Dreher, Anika; Lindmeier, Anke; Heinze, Aiso  .........................................  219–226 

CONCEPTUALIZING PROFESSIONAL CONTENT KNOWLEDGE 

OF SECONDARY TEACHERS TAKING INTO ACCOUNT THE GAP 

BETWEEN ACADEMIC AND SCHOOL MATHEMATICS 

Ellis, Jess; Deshler, Jessica M.; Speer, Natasha  .........................................  227–234 

HOW DO MATHEMATICS DEPARTMENTS EVALUATE THEIR 

GRADUATE TEACHING ASSISTANT PROFESSIONAL 

DEVELOPMENT PROGRAMS? 



 

2–iv PME40 – 2016 

Faggiano, Eleonora; Montone, Antonella; Mariotti, Maria Alessandra ..  235–242 

CREATING A SYNERGY BETWEEN MANIPULATIVES AND 

VIRTUAL ARTEFACTS TO CONCEPUTALIZE AXIAL 

SYMMETRY AT PRIMARY SCHOOL 

Fernández, Ceneida; Brown, Laurinda; Coles, Alf ....................................  243–250 

THINKING RELATED TO ENACTIVISM AND NOTICING 

PARADIGM IN MATHEMATICS TEACHER EDUCATION 

Ferrara, Francesca; Ferrari, Giulia  ............................................................  251–258 

TRAVERSING MATHEMATICAL PLACES 

Friesen, Marita; Kuntze, Sebastian ..............................................................  259–266 

TEACHER STUDENTS ANALYSE TEXTS, COMICS AND VIDEO-

BASED CLASSROOM VIGNETTES REGARDING THE USE OF 

REPRESENTATIONS - DOES FORMAT MATTER? 

Gade, Sharada; Blomqvist, Charlotta ..........................................................  267–274 

SHARED OBJECT AND STAKEHOLDERSHIP IN TEACHER-

RESEARCHER EXPANSIVE LEARNING ACTIVITY 

Giberti, Chiara; Zivelonghi, Alessia; Bolondi, Giorgio  .............................  275–282 

GENDER DIFFERENCES AND DIDACTIC CONTRACT: 

ANALYSIS OF TWO INVALSI TASKS ON POWERS PROPERTIES 

Gilat, Talya; Amit, Miriam  ...........................................................................  283-290 

USE OF A MIXED-METHOD DESIGN TO STUDY CREATIVITY 

DEVELOPMENT THROUGH MODEL-ELICITING ACTIVITIES 

Godino, Juan D.; Giacomone, Belén; Blanco, Teresa F.; Wilhelmi,  

Miguel R.; Contreras, Ángel  ........................................................................  291–298 

ONTO-SEMIOTIC CONFIGURATIONS UNDERLYING 

DIAGRAMMATIC REASONING 

Goizueta, Manuel; Planas, Núria  .................................................................  299–306 

SCHOOL MATHEMATICS KNOWLEDGE AND STUDENTS’ 

MATHEMATICAL ACTIVITY 

Gómez, David Maximiliano; Dartnell, Pablo ..............................................  307–314 

CHILDREN’S PATTERNS OF REASONING IN INTUITIVE 

MENTAL RATIO COMPARISON 

  



 

PME40 – 2016 2–v 

Groves, Susie; Doig, Brian  ............................................................................  315–322 

THE ROLE OF THE KNOWLEDGEABLE OTHER IN POST-

LESSON DISCUSSIONS IN LESSON STUDY 

Gun, Ozge; Bulut, Safure ..............................................................................  323–328 

MODELING THE RELATIONSHIPS AMONG SOME 

ATTITUDINAL VARIABLES TOWARD MATHEMATICS 

Guo, Kan; Song, Shuang; Cao, Yiming  .......................................................  329–336 

HOW CHINESE STUDENTS’ PRE-SCHOOL NUMERACY SKILL 

MEDIATE THE EFFECT OF PARENTS’ EDUCATIONAL LEVEL 

ON THEIR LATER MATHEMATICS ACHIEVEMENTS 

Hähkiöniemi, Markus  ...................................................................................  337–344 

STUDENT TEACHERS’ QUESTIONING BEHAVIOUR WHICH 

ELICIT CONCEPTUAL EXPLANATION FROM STUDENTS 

Haj Yahya, Aehsan; Hershkowitz, Rina; Dreyfus, Tommy  ......................  345–352 

IMPACTS OF STUDENTS' DIFFICULTIES IN CONSTRUCTING 

GEOMETRIC CONCEPTS ON THEIR PROOF'S UNDERSTANDING 

AND PROVING PROCESSES 

Hannula, Markku; Williams, Gaye  .............................................................  353–360 

SILENT GAZING DURING GEOMETRY PROBLEM SOLVING, 

INSIGHTS FROM EYE TRACKING 

Hansen, Alice; Mazziotti, Claudia; Grawemeyer, Beate  ...........................  361–368 

ADDRESSING STUDENTS' DIFFICULTIES IN EQUIVALENT 

FRACTIONS 

Hendrikse, Petra .............................................................................................  369–376 

THE RICHNESS OF POSSILITIES IN ADAPTING A TASK 

Hernandes Gomes, Gisela; González-Martín, Alejandro S.  .....................  377–384 

AN ANALYSIS OF HOW TEACHERS’ DIFFERENT 

BACKGROUNDS AFFECT THEIR PERSONAL RELATIONSHIPS 

WITH CALCULUS CONTENT IN ENGINEERING COURSES 

Hershkowitz, Rina; Tabach, Michal; Dreyfus, Tommy  ............................  385–392 

CREATIVITY WITHIN SHIFTS OF KNOWLEDGE IN THE 

MATHEMATICS CLASSROOM 



 

2–vi PME40 – 2016 

Heyd-Metzuyanim, Einat; Smith, Margaret; Bill, Victoria;  

Resnick, Lauren B.  ........................................................................................  393–400 

CHANGE IN TEACHERS’ PRACTICES TOWARDS EXPLORATIVE 

INSTRUCTION 

Hsieh, Feng-Jui; Wang, Ting-Ying; Hsieh, Chia-Jui; Chu, Chi-Tai  ........  401–408 

DEVELOPMENT OF A REAL TEACHING SITUATION-BASED 

MEASURE OF MATHEMATICS TEACHING COMPETENCE IN 

TAIWAN 

Huang, Chih-Hsien .........................................................................................  409–416 

ENGINEERING STUDENTS’ USE OF INTUITION TO DECIDE ON 

THE VALIDITY OF MATHEMATICAL STATEMENTS 

Huang, Hsin-Mei E.; Hsieh, Chia-Chun; Su, Ying-Hsuan .........................  417–424 

THE EFFECTS OF ESTIMATION INTERVENTIONS ON 

CHILDREN’S MEASUREMENT ESTIMATION PERFORMANCE 

Index of Authors  ..............................................................................................  427–428



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Volume 2

RESEARCH 
REPORTS

A - HUA 



 

 

 

 

 



 

2016. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.). Proceedings of the 40th Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 3–10. Szeged, Hungary: PME. 2–3 

MATHEMATICS PROBLEM POSING SKILLS IN SUPPORTING 

PROBLEM SOLVING SKILLS OF PROSPECTIVE TEACHERS 

Reda Abu Elwan 

Sultan Qaboos University, Oman 

The activity of posing and solving problems can enrich teachers' mathematical experiences because 

it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views 

of what it means to do mathematics with learners.  Contemporary reform efforts not only place a 

heavy emphasis on problem solving but also on problem posing. The suggestions in both standards 

(NCTM, 1991, 1995) imply that problem posing in an integral part of problem solving should not be 

emphasized separately from problem solving.. The purpose of this study was to examine the 

effectiveness of carrying out problem posing skills on prospective mathematics teachers problem 

solving performance and, especially to find out whether there were differences between those who 

used problem posing strategies and those who did not. The results of this study showed that the 

performance of problem solving for prospective mathematics teachers improved overall when using 

their problem posing skills.  

INTRODUCTION  

One of the major goals in mathematics teaching is to encourage our students to be good 

problem solvers. To achieve that goal teachers have to teach mathematical problem solving 

strategies with more practice. Mathematics educators tend to neglect the other side of the coin 

in mathematical problem solving in mathematics teaching programs, that is problem posing 

(Gonzales, 1994), in spite of its importance in developing our students' mathematical 

thinking. New trends in mathematics education (NCTM, 2000) recommend a change from 

asking students to solve problems, to developing problem through changing their questions, 

adding new data, eliminating some data, changing variables or construction a new problem 

based on the original idea.  

In the author's discussions with teachers, the author observed that their abilities in solving 

non-routine problems were very weak. But they had a positive attitude to pose questions from 

a given problem. The author tried to give more attention in mathematical problem solving 

when posing a topic in ''Methods of Teaching mathematics'' for prospective teachers in the 

College of Education.  

OBJECTIVES OF THE STUDY  

1) To identify the effectiveness of using problem-posing skills on performance of 

prospective mathematics teacher for problem solving.  

2) To identify problem posing skills needed to be included with Polya's four steps to 

improve mathematics for prospective teachers in problem solving performance.  

3) To develop educational activities for mathematical problem solving and posing as a 

part of mathematics education program for prospective teachers. 

BACKGROUND 

The first recommendation in '' An Agenda for Action'' produced by the NCTM in the US, 

recommended problem solving be the focus of school mathematics in the 1980s. School 

Mathematics should contain problem solving as the main activities in all mathematics aspects; 

also teachers should offer their students rich problems, often based in the real world, which 
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would challenge and excite them, because problem solving is an effective way to introduce 

and explore new areas in mathematics. Through problem solving, the students can develop 

much of the mathematics for themselves.  

Student teachers are prepared to teach mathematics with a problem solving approach, to help 

their students in solving mathematical problems. Their educational program to do that doesn’t 

reflect their abilities to solve problems. Abilities to use different problem posing strategies, 

may affect their problem solving performance.  

Relationships between problem solving performance and problem posing still need to be 

explored as Silver and Cai (1993) mentioned '' there is a need for further research that 

examines the complex relationship between problem posing and problem solving.'' There is 

also interest in exploring the relationship of posing to other aspects of mathematical knowing 

and mathematical performance.  

In silver's (1994) researches, he found different results of that relationship. Silver and Cai 

(1993) found a strong positive relationship between posing and solving performance. While 

Silver and Mamona (1989) found no overt link between the problem posing of middle school 

mathematics teachers and their problem solving abilities there is no clear, simple link 

established between competence in posing and solving problems( Silver, 1994). It is possible 

to improve student teachers' performance in problem solving, by using problem posing 

strategies. Kilpatrick discussed that and suggested that by drawing students' attention to the 

reformulating process and given practices in it, the students can improve problem solving 

performance (1987). 

Given a mathematical problem to a student, means the student is put in a new thinking 

situation; thinking of the given information in the problem statement, thinking of a best 

strategy to solve it using his own questions that lead him to a solution and thinking of more 

information related to the given information.  

The given information given explicitly in a problem statement is almost never adequate for 

solving the problem. The problem solver has to supply additional information consisting of 

premises about the problem context (Kilpatrick, 1987). For example, to solve a word problem 

about the distance between two cities, students need to understand that distance cannot be 

negative numbers. 

The idea of improving mathematical problem solving performance has been discussed in the 

light of Polya's four steps for problem solving. Through problem posing in Polya's steps, 

problems can themselves be the source of new problems. The solver can intentionally change 

some or all of the problem condition to see what new problem results, and after a problem 

has been solved the solver can ''look back'' to see how the solution might be affected by 

various modification in the problem.  

In ''making a plan'' to solve a problem, Kilpatrick (1987) showed that students may take Polya's 

heuristic to see whether, by modifying the condtion in the problem, a new, more accessible 

problem might result that could be used as a stepping stone to solve the original one.  

Polya was looking towards problem solving as a major theme of doing mathematics, and 

''teaching students to think'' was of primary importance. The other aspect of problem solving 

that is seldom included in textbooks is problem posing. Polya did not write specifically on 

problem posing, but much of the spirit and format of problem posing is included in his 

illustrations of ''looking back'' (Wilson, Fernandez & Hadaway, 1993). ''Looking back'' may 
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be the most important part of problem solving. It is the set of activities that provides the 

primary opportunity for students to learn from the problem. Polya identified this phase with 

admonitions to examine the solution by such activities as checking the result, checking the 

argument, deriving the result differently, using the method for some other problem, 

reinterpreting the problem or stating a new problem to be solved.  

Teacher's skills on using Polya's four steps in problem solving should be consistent with their 

abilities to use suitable problem posing strategies to generate more questions and problem for 

students.  

MATHEMATICAL PROBLEM POSINGS STRATEGIES  

Mathematics teachers might use one or more strategies to formulate new problems or 

encourage their students in mathematics classes to be good problem posers as well as good 

problem solvers. Strategies could be used depending on the most suitable conditions 

(mathematics content, students, levels, learning outcomes and mathematical thinking, types). 

Problem posing situations are classified as free, semi-structured or structured situations.  

Free Problem Posing Situations  

Situations from daily life (in or outside school) can help a student to generate some questions 

leading him/her to construct a problem. Students are asked to pose a problem to encourage 

them to ''make up a simple or difficult problem'' or '' construct a problem suitable for a 

mathematics competition (or a test)'' or '' make up a problem you like.'' It is more useful if the 

teacher tries to relate the real life situations to the mathematics content being taught and to 

ask student to pose new problems. This will be more effective in developing students' 

mathematical thinking. Problem posing situations might take these types: everyday life 

situation, free problem posing, problem they like, problems for a mathematics competition, 

problems written for a friend and problems generated for fun.  

Semi-Structured Problem Posing Situations  

Students are given on open-ended situation and are invited to explore it using knowledge, 

skills, concepts and relationships from their previous mathematical experiences and this can 

take the following forms: Open-ended problems (i.e. mathematical investigation). Problems 

similar to given problems. Problem with similar situations. Problems related to specific 

theorems. problems derived from given pictures.word problems. this strategy was developed 

with prospective teachers as the following (Abu-Elwan,1999):  

1) A semi-structured situation from a student's daily life was presented to all students.  

2) Students were asked to complete the situations using their perspective to be able to pose 

problem from that formed situation.  

Students can generate problems by omitting the questions from given situations.  

Structured Problem Posing Situation  

Any mathematical problem consists of known (given) and unknown (required) data. The 

teacher can simply change the known and pose a new problem, or keep the data and change 

the required. Brown and Walter (1990, 1993) designed an instructional problem formulating 

approach based on the posing of new problems from already solved problem, but they have 

also recommended varying the conditions or goals of given problem. This reformulation 

approach appears to be the most effective method for introducing structured problem posing 

activities in mathematic classrooms.  
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In order to create teaching/learning situations that provide a good problem posing situations, 

Lowrie (1999) recommended the mathematics teacher to: 

1) encourage students to pose problems for friends who are at or near their own level until 

they become more competent in generating problems;  

2) ensure that students work cooperatively in solving the problems so that the problem 

generator gains feedback on the appropriateness of the problem they have designed; 

3) ask individuals to indicate the type of understanding and strategies the problem solver will 

need to use in order to solve the problem successfully before a friend generate a solution; 

4) encourage problem solving teams to discuss, with one another, the extent to which they 

found problems to be difficult, confusing, motivating or challenging; 

5) provide opportunities for less able students to work cooperatively with a peer who 

challenged the individual to engage in mathematics at a higher level than they were 

accustomed; 

6) challenge students to move beyond traditional word problems by designing problems that 

are open ended and associated with real life experiences ; and  

7) encourage students to use technology (calculators, CDs, computers) in developing their 

mathematical thinking skills, so they can use this technology to generate new 

mathematical situations.  

RESEARCH QUESTIONS  

This study attempts to answer the following questions: 

1) How effective is the teaching of problem posing strategies able to enhance student 

teachers' performance in problem solving?  

2) Is there any differences in mathematical problem solving skills between student teachers 

who study problem posing strategies and those who just study problem solving strategies?  

Hypotheses  

The study included three hypotheses: 

1) There is a statistically significant difference (p<0.01) between student-teachers' mean 

scores of the experimental group and the control group in the mathematical problem 

solving part of the achievement text in favor of the experimental group.  

2) There is a statistically significant differences (p<0.01) between student-teachers' mean 

scores of the experimental group and the control group in mathematical problem posing 

part of the achievement test in favor of the experimental group.  

3) There is a statistically significant differences (p<0.01) between student-teachers' mean 

scores of the experimental group and the control group in mathematical problem (solving-

posing) test in favor of the experimental group.  

METHOD  

Subjects  

Fifty prospective teachers participated in the study. All of them were in Grade Three in the 

College of Education, (Sultan Qaboos University) and their major subjects were mathematics 

and computer science. They were enrolled in the ''Methods of Teaching Mathematics II'' 

Course. They were divided in two groups. Group E as an experimental group and Group C as 

a control group: each group consists of 25 student teachers. 
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Instruments  

An achievement test on ''Mathematical Problem Posing-Solving'' had been developed to 

determine the uses of problem posing skills to enhance student teachers' performance in 

mathematical problem solving. The main topics and ideas of the achievement test are relevant 

in the prospective teachers' everyday life and are reinforced through common activities like 

providing shopping and vacationing problems developed based on the three problem solving 

strategies: Look for a pattern, Make a list, Work backward. The test consists of eight open-

ended problems, each one of these problems contains: A statement of the problem, A question 

asking the students to solve it, Another question asking students to pose an extension to the 

original problem, then to solve it.  

Four referees were asked to give their opinions regarding the validity of the test. Based on 

their suggestions, all modification were developed. The reliability of the test was established 

using a group of 20 mathematics teachers. A reliability coefficient mean value of 0.69 was 

secured. The achievement test in its final form was then used in the experimental design.   

The Experimental Design  

First: Student-teachers in Group E and C were involved in a quasi-experimental design as 

follows: 

Student-teachers in Group C (control) studied a problem solving strategy based on Polya's 

four steps; several problems has been presented to student-teachers in this group, they were 

requested to solve the problems using suitable problem solving strategies.  

The problems had been chosen from: 

 School mathematics textbooks (middle and secondary stages)  

 Problem solving experiences in mathematics as a source book 

 The internet web: www3.actden.com/math-den  

Second: student-teachers in group E (experimental) studied problem solving strategies based 

on Polya's four steps (polya' 1973). Problems had been chosen from the previous sources like 

group C. But students in group E, studied it under other treatment for Polya's four-steps. 

Student-teachers explored the intent of each step in the process and attained a basic 

understanding of the process (Figure 1).  

The students are introduced to solve the problems by traversing each of Polya's steps in the 

problem solving process.  

They are required to write a description of each step as follows.  

1) Understanding the problem:  

Ask yourself question such as: ''what is the problem all about?'' 

''What am I given and not given?'' ''What do I need to find?''  

2) Make a plan:  

What strategy of which you know (look for pattern, making table or work backward) you will 

use.  

3) Carrying out the plan:  

Perform the necessary computations and describe the steps that you take. 

4) Evaluate solutions: 

Check if there might be other solutions or other strategies which will yield the same 

solution.  
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Figure 1: Framework for cycle of activities (solving-posing) 

Student teachers must indicate all questions, attempts, frustration or any restriction they may 

have placed on a problem. Within the context of solving a given set of problems, probing 

questions are posed such as: Are all the given data relevant to the solution? Do any 

assumptions have to be made? Are there different ways interpreting the given information or 

conditions? As the questions are posed, students reach a good understanding of each problem. 

The most important step is to encourage students to ''generate an extension of the given 

problem'' or ''posing a related problem'' as is suggested by Gonzales (1994). She suggested a 

fifth step which is: 

5) Posing a related problem:  

Use the given problem and modify it to obtain a variation of the given problem. A student 

poses a related problem by change the values of the given data and by changing the 

context of the original problem. That doesn’t mean he has to modify or change the solving 

strategy used in the original problem.  

Student teachers may use any of the following techniques in writing new related problem: 

Change the values of the given data, Change the context, and Change the number of 

conditions that relate to the problem.  

Third: The Group C students have studied ''problem solving activities'' during the period 

September to October 2000 (5-weeks) while Group E had studied ''problem solving-posing 

activities'' during the period September to October 2000 (7-weeks), the extra two weeks was 

because of the techniques used in problem posing during and after solving the problem given.  

Fourth: An achievement test on ''Mathematical problem solving-posing test'' was presented 

to student teachers in Groups C and E in the same time as a post-test.  
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Results and Discussion: 

To determine the effectiveness of problem posing strategies on prospective mathematics 

teachers' problem solving performance, the t-test was used as a measure of comparison 

between the mean scores on the mathematical problem (solving-posing) test for both the 

experimental group E and the control group (C).  

 

The SPSS V19.0 had been used and the results are given in Table1.  

Variable Experimental 

(n=25) 

Control 

(n=25) 

Mean  

Difference 

t-value p< 

M SD M SD 

Problem solving 4.16 .75 3.64 1 .52 2.09 0.01 

Problem posing 2.32 .69 1.76 .66 .56 2.93 0.01 

Problem 

(solving-post) 
8.16 1.43 6.72 1.62 1.44 3.33 

0.01 

 

Table 1 Means, Standard Deviations and the Value of t Scores in Mathematical problem (Solving-

Posing) Test. 

Maximum score in ''problem-solving part'' of the test= 5 marks  

Maximum score in ''problem-posing part'' of the test = 3 marks  

Maximum score in ''problem (solving-posing) test'' = 10 marks  

It is evident from Table 1 that the level of problem solving performance has significantly 

improved for student teachers of the experimental group compared do the performance of 

other student teachers of the control group in problem solving, with means of 4.16 and 3.64 

respectively. The resulting t value of 2.09 is significant at p<0.01. This improvement in the 

level of problem solving performance for the experimental group is consistent with the 

significant increase in problem posing performance for student teacher in the control group, 

with means of 2.32 and 1.76 respectively. The resulting t value of 2.93 is significant at p<0.01. 

Student teachers of the experimental group were able to exhibit a significantly higher level or 

problem-solving performance as compared to that exhibited with student-teachers of control 

group.  

Consistent with the previous result, student teachers of the experimental group were able to 

exhibit a significantly higher level of problem-posing performance as compared to that 

exhibited with student-teachers of control group.  

Overall, the level of problem (solving-posing) performance has significantly improved for 

student teachers of the experimental group comparing with performance of student teachers 

of control group in the test of problem (solving-posing) with means of 8.16 and 6.72 

respectively.  

The resulting t value of 3.33 is significant at p<0.01. This study aimed at examining the 

effectiveness of problem posing strategies on prospective mathematics teachers problem 

solving performance.  

The study sought to develop Polya's four-steps method to include more questions in ''make a 

plan'' and ''carrying out the plan'' or make an extension to the original problem to enhance 

student teachers performance in problem solving. Participants of experimental group have 

studied problem solving using Polya's four-steps as it is developed by problem posing 

strategies.  
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Results from this study supported the hypothesis and a significant improvement in student 

teachers problem solving performance was observed, as well as there is a significant 

improvement in student teachers problem posing performance in the achievement test.  

An alternative explanation for the present finding is that student-teachers have opportunities 

to discuss each step in their solving a presented problem with more emphasis on the uses of 

problem posing strategies used to develop new problem, that support the same findings 

(Gonzales, 1994; Leung, 1993).  

More researches need to be performed on the relationship between problem solving 

performance and problem posing abilities for students in all stages.  
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STUDY HABITS IN UNDERGRADUATE MATHEMATICS:  

A SOCIAL NETWORK ANALYSIS 

Lara Alcock, Paul Hernandez-Martinez and Arun Godwin Patel 

Mathematics Education Centre, Loughborough University, UK 

 

This paper presents an exploratory social network analysis of the study behaviours of 

undergraduate mathematics students.  Focusing on the second-year students within a 

large lecture class, it presents data on their self-reported percentage lecture 

attendance, number of hours spent studying alone and with others outside lecture time, 

and occasional and frequent conversations about mathematics with other students.  It 

then presents analytical results on relationships between individuals’ centrality within 

the network and amount of study time. 

INTRODUCTION 

Many factors affect students’ engagement with undergraduate mathematics.  Some of 

these factors are cognitive: we might expect students with better prior performance or 

logical reasoning skills to perform better in assessments (Alcock, Bailey, Inglis & 

Docherty, 2014).  Some factors involve individual behavioural characteristics: we 

might expect students who are more conscientious (Alcock, Attridge, Kenny & Inglis, 

2014) or who have better study skills (Credé & Kuncel, 2008) to engage more 

consistently and effectively with learning resources and mathematical ideas.   

Some important factors, however, are not individual but social.  Undergraduates do not 

study in isolation: their peers form an important part of the learning environment, and 

students are likely to share knowledge and influence one another’s study habits.  

Mathematics educators are concerned about the role of such interactions in learning, 

as evidenced by research on mathematical discourse (Ryve, 2011) and by 

commentaries about the ‘social turn’ in mathematics education (Lerman, 2000) and the 

socio-political environment in which learning occurs (Gutiérrez, 2013).  But published 

work in this area has been primarily theoretical (e.g. Cobb, Stephan, McClain & 

Gravemeijer, 2011; Morgan, 2006); where empirical studies are reported, these often 

involve detailed qualitative reports of short sequences of interactions in single 

classrooms (Ryve, 2011). Social interactions are not usually documented on a large 

scale or used quantitatively to predict educational outcomes.   

But it is perfectly possible to study questions about social interactions at a larger scale, 

and social network analysis (SNA) provides one way to do this (Borgatti, Everett & 

Johnson, 2013; Carolan, 2013). The basic approach is simple: participants are asked to 

state with whom they interact around one or more issues, and (perhaps) how often or 

with what intensity they interact with those people.  They might also be asked 

straightforward questions about their individual habits or characteristics. This 

information is then used to build a social network model and to investigate questions 

at the whole cohort level (describing features such as the density of the network or 
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changes over time), at the dyad level (using individual characteristics to predict who 

interacts with whom), or at the individual level (using individual characteristics plus 

amount or quality of interaction to predict an outcome measure such as performance).  

In the study reported here, we used SNA to conduct an exploratory investigation of the 

interactions between students in a large undergraduate mathematics class.  This paper 

reports early and primarily descriptive findings; at the conference we also expect to 

report in more detail on a broader range of analytical questions. 

THEORETICAL BACKGROUND 

SNA studies typically use one of two basic approaches: egocentric studies use 

representative sampling to select people who will report on their individual social 

networks; whole-cohort studies use data from every person – as far as is practical – in 

some well-defined group in order to construct a social network model for that group 

(Carolan, 2013).  Studies of both types have been conducted in education.  For instance, 

Coburn, Choi and Mata (2010) collected data from elementary school teachers 

involved in a mathematics reform effort, and documented a shift over time from small, 

homogenous, grade-level-focused networks to larger, more diverse networks 

influenced by a desire to interact with those with expertise; Thomas (2000) collected 

data on social interactions between first-year students at a liberal arts college, and 

found that those who were better connected were less likely to drop out. 

The SNA approach is arguably of particular relevance in higher education, because the 

greater requirement for independent study renders student-student interactions more 

important than they might be for younger pupils. For instance, at the UK university in 

which the present study took place, mathematics students spend approximately 18 

hours per week in lectures and tutorials, and lecture classes can involve over 200 

students.  This means that around half of the students’ learning is supposed to occur 

during independent study time, and that most students have little individual contact 

with lecturers. Students’ peers therefore become a natural resource for information 

about both mathematical ideas and practical matters; students could influence one 

another substantially, especially if they study together regularly. 

At present we know very little about student-student interactions outside lectures, or 

about how mathematics students use their independent study time more broadly. 

Research in undergraduate mathematics education has typically focused on 

instructional inputs: on what the teacher does in the classroom (Ellis, Kelton & 

Rasmussen, 2014; Johnson, Caughman, Fredericks & Gibson, 2013), or on the design 

of tasks to engage students in sophisticated mathematical reasoning (Larsen, 2013; 

Zandieh & Rasmussen, 2010), or on students’ uptake of provided learning resources 

(Inglis, Palipana, Trenholm & Ward, 2011).  Some of this work has an important social 

dimension – task designers often want students to work together to reinvent 

mathematical ideas.  But attainment in the broader sense will also likely depend upon 

the nature and effectiveness of independent study conducted outside the classroom. 
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The work reported here forms part of a wider study addressing questions about which 

students study together and about whether being better connected is associated with 

better academic performance.  This paper reports early results on three questions: 

1. What proportions of lectures do students attend, how much time do they dedicate 

to independent study, and how much of this time do they spend collaborating 

with other students? 

2. How interconnected is the mathematical interaction network, and what is the 

distribution of connectedness of individual students? 

3. Do better-connected students study for more hours? 

METHOD 

Data for this study was collected in a real analysis lecture course that was compulsory 

for all students in the first year of a mathematics programme and either compulsory or 

optional for many students in the second years of programmes combining mathematics 

with other subjects. The lecturer displayed partially-populated notes on a visualiser, 

students had paper copies, and lectures mixed traditional lecturing with short activities 

for students to complete in collaboration with their neighbours.  All students attended 

the same lectures (there were no “sections”), and all were exposed to different lecturing 

styles in other courses.  Lecture attendance was not monitored; typical attendance in 

the Analysis course was 160-170 out of 214 registered students.   

To maximise the number of students present to take the survey – an important 

consideration for whole-cohort SNA studies (Borgatti, Everett & Johnson, 2013) – two 

steps were taken.  First, data collection took place in week 9 of the 11-week term, on 

the day of one of three small, summative in-class tests (students who are often absent 

do normally attend on test days). Second, three weeks earlier, on the day of the previous 

test, the researchers were introduced, the plan for the study was explained, and students 

were shown the form they would be asked to complete and offered the opportunity to 

ask questions about the project.   

Participants were asked to complete a two-part survey.  Part 1 asked them to report 

their approximate percentage lecture attendance, approximate number of hours per 

week spent on independent study, and approximate number of those hours spent 

working with other students. Part 2 asked them to list other students in the class with 

whom they spoke about mathematics frequently (once per week or more) and 

occasionally (less than once per week).  Asking participants about one another in this 

way raises ethical issues that do not arise for surveys in which participants report only 

on their own habits (Carolan, 2013).  Thus the informed consent form attached to the 

survey made clear that if a student did not sign or return the form, any data provided 

about them by others would not be used1. 

                                           
1 Also, the only person to handle the original data was a lecturer not involved in teaching these 

students; the remaining team members worked only with the anonymised data. 
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To produce a relatively small dataset for this short paper, we restrict our attention to 

the second-year students; 77 of the 214 registered students were in this category, and 

45 signed and returned their forms. These students had shared numerous lectures and 

tutorials in the previous year, so they form a somewhat coherent subset of the whole 

cohort, and they are more likely to have stable pre-existing study relationships.  Data 

presented below come from both parts of the survey.  Data from the social network 

part provided a total of 126 listed connections from one second year student to another2. 

These links required further processing because people have imperfect memories so it 

can easily be the case that one person reports an interaction that another has forgotten, 

or that one person reports frequent interaction where another reports only occasional 

interaction.  In this case the researcher has a choice: work with directed links (allowing 

different weights to be attached to the link from A to B and that from B to A) or to 

assume that interactions are more likely to be forgotten than invented and to simplify 

by symmetrising, taking the highest level of reported link to be the accurate report 

(Carolan, 2013).  In this report we take the second, simplifying approach. 

RESULTS 

In line with our research questions, we present the results in three sections: attendance 

and independent study time, network features and individual connectedness, and 

relationships between connectedness and study time. 

Attendance and independent study time  

Self-reported lecture attendance and independent study time varied widely.  Reported 

lecture attendance ranged from 20% to 100%, with a median of 85% and a mean of 

81%.  Reported weekly hours of independent study ranged from 2 hours to 44 hours 

with a median of 10 hours and a mean of 13 hours.  Because all students had roughly 

18 hours of scheduled lecture and tutorial time, this means that the typical student 

claimed to study for approximately 25-28 hours per week.  It is worth noting that this 

is less than would typically be recommended by their instructors. 

Within independent study time, distribution of work alone versus work with others also 

varied widely. The graph in Figure 1 shows reported weekly hours studying 

collaboratively with others against reported total weekly hours of independent study. 

Naturally, students who study for more hours in total have more capacity to spend time 

studying with others, but there was no clear relationship beyond that: percentage of 

independent study time spent in collaborative study was not systematically related to 

total study time (r = -.010, p = .516). 

                                           
2 Of the 49 second-year participants, 3 reported no links, 7 reported a total of 12 links to other 

second-year students who did not sign the consent forms (and thus were not used) and 1 listed a 

link to a first-year student (which is not reported here but will be considered in future analyses). 
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Figure 1: Hours studying collaboratively against total independent study hours. 

Network features and individual connectedness 

The network data was used to produce the graph in Figure 2; each node represents a 

student, thick lines represent reported frequent interactions and thin lines represent 

reported occasional interactions; isolates within this dataset are shown in the top left. 

 

Figure 2: Students (nodes), frequent mathematical interactions (thick lines) and 

occasional interactions (thin lines). 

One feature of this graph is that most students who participated are connected to one 

another, if only distantly.  Another is that the nature of the connections varies widely.  

Some students are central in highly interconnected parts of the network, some are 

peripheral to these denser areas, and some study either alone or in a much smaller 

group3.  This phenomenon can be captured quantitatively using various measures of 

                                           
3 We remind the reader that these are reported links from participants only: although they provide a 

strong sense of variability in the network, unreported links could give a different picture and, if the 

paper is accepted, we will discuss this potential problem at the conference. 
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centrality (Carolan, 2013), the simplest of which is degree in the graph theory sense: 

the degree of a node or vertex is the number of links it has to other nodes.  Table 1 

displays the distribution of degrees across the 45 participants. 

Table 1: The number of participants with each degree (number of connections). 

Degree 0 1 2 3 4 5 6 7 

Number of Participants 8 3 7 9 13 3 1 1 

 

Connectedness and study time 

The remaining question we address in this paper is whether better connected students 

study for more hours.  It is plausible that they would: perhaps being part of regular 

mathematical conversations supports engagement with study.  It is also plausible that 

they would not: people who tend to talk more might be more generally sociable and 

spend more time on alternative activities.  Our data showed that reporting more 

connections is associated with more hours of collaborative work: degree is correlated 

with hours spent in collaborative independent study (r = .450, p = .002), meaning that 

those who spend more time talking about mathematics with others also study with more 

different people.  But degree was not, in our data, linked to doing more or less 

independent study overall (r = .053, p = .731).  The graph in Figure 3 illustrates this.  

 

Figure 3: Degree against total independent study hours. 
 

DISCUSSION 

This paper has documented undergraduate mathematics students’ self-reported 

independent study time and collaboration with others.  This work provides a first 

picture of the participants’ habits, but also raises many questions about the reasons for 

students’ choices and their effects on subsequent academic attainment.  We are 

exploring these issues and expect to report on the larger dataset at the conference. 
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For now, we believe that research of this nature has potential implications for study 

guidance, because – despite the existence of study guidebooks (e.g. Alcock, 2013) – 

there is little published evidence on how mathematics students can profitably spend 

their independent study time.  Is it better to study with other students or alone?  Is it a 

good idea to converse frequently with a small number of others, because 

communication improves as people become more familiar with one another’s thinking?  

Or is it better to have occasional conversations with many, because this provides access 

to a broader range of knowledge and understanding?  Further, if research makes it 

possible to provide guidance about what works best on average, do exceptions exist?  

Can any student attain high levels of success by studying entirely in isolation, or is this 

likely only for students with particular individual characteristics or particular levels of 

prior attainment?  A broad base of research addressing such questions would make it 

possible to structure student activities so as to support productive interactions, and to 

provide students with advice that is both evidenced and nuanced. 

We also believe that research of this nature has potential for developing knowledge in 

mathematics education.  The field has lately evolved to a state that is effectively 

dichotomised: researchers interested in social issues typically use qualitative methods 

(see e.g. Ryve, 2011); quantitative studies are routinely conducted by those with 

backgrounds in psychology but are comparatively rare in mathematics education 

journals (Alcock, Gilmore & Inglis, 2013).  This no doubt occurs partly for reasons of 

personal interest: some mathematics educators are strongly motivated by the desire to 

promote productive mathematical discussions in their own classrooms (e.g. Larsen, 

2013); others are strongly motivated by concerns about social justice, and are alert to 

inequities that might be promoted through mathematical discourse (e.g. Gutiérrez, 

2013).  But there is no reason why social interactions must be studied only in detail, 

and quantitative methods are routinely used to investigate numerous phenomena in the 

broader field of social studies (Neuman, 2014).  We believe that diversity in 

methodological approaches is desirable, and that SNA might provide a focus around 

which researchers working primarily on social interactions and those working 

primarily with quantitative methods could begin productive conversations.  
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In this paper, we analyze processes of conjecture generation in the context of open 

problems proposed in a dynamic geometry environment, when a particular dragging 

modality, maintaining dragging, is used. This involves dragging points while 

maintaining certain properties, controlling the movement of the figures. Our results 

suggest that the pragmatic need of physically controlling the simultaneous movements 

of the different parts of figures can foster the production of two chains of successive 

properties, hinged together by an invariant that we will call pivot invariant. Moreover, 

we show how the production of these chains is tied to the production of conjectures 

and to the processes of argumentation through which they are generated. 

CONCEPTUAL FRAMEWORK AND RATIONALE 

Dynamic Geometry Environments (DGEs) have acquired great interest for researchers 

in mathematics education and for teachers over the past years (e.g., Laborde & Strässer, 

1990; Noss & Hoyles, 1996; Arzarello et al., 2002). In DGEs the figures can actually 

be seen and acted upon and their properties can be explored through dragging. This 

makes DGEs ideal for fostering, observing and analyzing processes of conjecture 

generation. In fact, the study of processes of conjecture generation, of argumentation 

and of proof in DGEs has come to be one of the leading themes of research in 

mathematics education (e.g., De Villiers, 1998; Hadas, Hershkowitz, & Schwarz, 2000; 

Arzarello et al., 2002; Mariotti, 2006). 

The aim of the research we are presenting here is to yield a theoretical contribution for 

analyzing processes involved in conjecture generation and in argumentation within 

DGEs.  

Dragging assumes a central role in the interaction with DGE figures, and various 

researchers have explored dragging modalities used by students during their 

explorations. In particular, Arzarello et al. (2002) and Olivero (2002) described 

different modalities used by the students according their goals, when generating 

conjectures in a DGE. Basing her work on such research, Baccaglini-Frank has 

identified and analysed students’ use of four dragging modalities: free dragging, 

maintaining dragging, dragging with the trace mark active, dragging test (Baccaglini-

Frank, 2010; Baccaglini-Frank & Mariotti, 2010). In this paper, we consider 

maintaining dragging, that consists in dragging some point intentionally maintaining 

invariant a certain property of the figure. This type of dragging is used especially in 

tasks that involve figuring out under which conditions certain properties are verified. 

In these cases, during the processes of conjecture generation a key role is played by the 
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solvers’ perception of invariants (Baccaglini-Frank, Mariotti & Antonini, 2009; 

Baccaglini-Frank, 2012; Leung, Baccaglini-Frank & Mariotti, 2013), described by 

Neisser (1989) as “aspects of stimulus information that persist despite movements”. 

The perception of invariants involves the sensory experience of the solver in a DGE 

and it is distinct from the geometrical interpretation of the objects and of their mutual 

relations conceived within the theory of Euclidean geometry, a process that in the 

literature is referred to as discernment (Leung et al., 2013; Leung, 2008).  

With the aim of clarifying cognitive processes in a DGE, Lopez Real and Leung (2006) 

distinguish between the realm of DGEs and the realm of Euclidean Geometry: 

A Dynamic Geometry Environment (DGE) is a computer microworld with Euclidean 

geometry as the embedded infrastructure. In this computational environment, a person can 

evoke geometrical figures and interact with them […]. It is a virtual mathematical reality 

where abstract concepts and constructions can be visually reified. In particular, the 

traditional deductive logic and linguistic-based representation of geometrical knowledge 

can be re-interpreted, or even redefined, in a DGE as dynamic and process-based 

interactive ‘motion pictures’ in real time. […] There appears to be a tension (rooted in the 

Euclidean view of what geometry is) pulling DGE research towards the direction of 

bridging an experimental–theoretical gap that seems to exist between the computational 

microworld and the formal abstract conceptual world.  

(Lopez Real & Leung, 2006, pp. 665-666) 

In the realm of the theory of Euclidean geometry, geometrical properties are part of a 

network of logical relations, each validated by a mathematical proof. 

On the other hand, in the realm of a DGE, points can be moved and the figures are 

modified as a consequence of such induced movement. The movement of a point can 

be direct (when the point itself is being dragged) or indirect (if the movement is a 

consequence of the dragging of another point): in this second case, the movement of 

the dragged point causes the movement of other points (because all the elements of the 

figure have to maintain the logical relationships imposed by the construction steps). 

The invariants are perceived in space but also in time and properties can be perceived 

simultaneously or in distinct temporal instances. 

CONTROLLING THE DGE FIGURE  

To ease the reading of this paper we introduce the theoretical notions referring to one 

of the tasks assigned during the study. 

Task:  Construct: a point P and a line r through P, the perpendicular line to r through 

P, C on the perpendicular line, a point A symmetric to C with respect to P, a point D 

on the side of r containing A, the circle with center C and radius CP, point B as the 

second intersection between the circle and the line through P and D. Make conjectures 

about the possible types of quadrilateral ABCD can become, describing all the ways 

you can obtain a particular type of quadrilateral. 
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The figure resulting from the construction (Fig. 1) can be acted upon by dragging points 

(in our example we can think about dragging D), and some properties can be 

recognized as invariants for any movement of the dragged point (e.g., “CP = PA”).  

 

Figure 1: a possible result of the construction in the task above. 

As the solver acts on the figure with the aim of generating a conjecture, s/he can decide 

to intentionally induce an invariant by dragging a point (e.g., “ABCD parallelogram” 

by dragging D), performing maintaining dragging.  

The use of maintaining dragging involves dragging a point maintaining certain 

properties as invariants. Moving a point so that a DGE figure maintains a certain 

property requires a high level of control over the movement of different parts of the 

figure. The solver has to manage the relationships between the movements of the 

different parts of the figure (a similar case of coordinating movements has been studied 

in relation to cognitive processes involved in the use of pantographs, see Martignone 

& Antonini, 2009). The solver usually exercises indirect control over the invariant to 

maintain: its movement depends on the movement of the dragged point, that the solver 

controls directly, and sometimes the movements of the different parts of the figure are 

difficult to coordinate. The reader can experience the difficulty by trying to drag D (as 

in Fig. 1) maintaining the property “ABCD parallelogram”. 

To maintain an interesting configuration (A) the solver needs to control the figure more 

directly, so s/he passes from property A to a property A1, which is easier and more 

direct to control, and such that its presence guarantees the presence of A. The nature 

of this process is abductive, similar to that described in Arzarello et al. (2002), were 

for abduction the following type of inference is intended: (fact) a fact A is observed; 

(rule) if C were true, then A would certainly be true; (hypothesis) so, it is reasonable 

to assume C is true (Pierce, 1960). In our case, given A1, a property A2 is generated 

such that A2  A1. The spark initiating this abductive process is the need of better 

controlling the movements of the figure. Iterating the process may lead to an abductive 

chain of properties A1, A2, …An, such that each property ensures better control over 

the desired configuration A. This chain can later, in the proving phase, be flipped into 

a chain of deductive implications (An …A2  A1). So the spark initiating the 

successive inferences finds its origin in the pragmatic need of controlling the figure, 

and in particular in the need to coordinate the movement of the dragged point with that 

of the other parts of the figure in order to maintain invariant a desired property.  
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We stress how the search for a logical relation within the theory of Euclidean geometry 

sparks from an experience within the realm of the DGE. The solver will seek for 

fragments of theory with the goal of ameliorating his/her haptic control over the figure. 

These same fragments of theory can later be used for constructing an argumentation 

and finally a proof for the conjecture s/he will have reached. 

The pivot invariant 

During a first phase of the exploration leading to a conjecture, the chain An … A2 

 A1  A is developed as the solver searches for invariants to control more easily 

during maintaining dragging. When maintaining dragging is used, in a second phase, a 

new invariant B1 can be perceived simultaneously, as An is maintained. For the solver 

this new property B1 has a very different status than the properties Ai. First of all, B1 

can be controlled directly. Secondly, the relation between the properties B1 and An is 

frequently perceived as causal (hence the arrow “” and not the implication symbol 

“” in Figure 2) in the realm of DGE: the presence of B1 guarantees (visually, for 

now) the simultaneous presence of An. Later, this causal relation can be interpreted 

logically as the implication B1  An. The process of conjecture generation may 

continue, leading to a second invariant B2 simultaneously perceived during dragging, a 

third one B3, etc., up to the generation of Bm . These geometrical properties form a new 

chain of relationships perceived as causal relations in the realm of the DGE (Figure 2). 

The invariant An acts as a pivot between the two chains of invariants and plays a 

fundamental role in the development of a conditional link between the properties that 

become the premise (Bm) and the conclusion (A) of the conjecture generated. We call 

An the pivot invariant. 

 

Figure 2: the two chains of invariants linked by the pivot invariant, discovered during 

the exploration that proceeds in time from right to left. 

THE PIVOT INVARIANT AT WORK: ANALYSIS OF A CASE 

To show how the notion of pivot invariant can bring insight to students’ conjecturing 

activity in a DGE we now present excerpts from an interview conducted with two 

students, Ste and Giu, both in the second year of high school (15 and 16 years old, 

respectively) in a northern Italian Liceo Scientifico. They had used Cabri II Plus the 

year before and they had been introduced to the four types of dragging introduced 
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earlier in this paper (free dragging, maintaining dragging, dragging with the trace mark 

active, dragging test) during two previous lessons (for a complete description of the 

study see Baccaglini-Frank, 2010, or Baccaglini-Frank & Mariotti, 2010). The excerpts 

we present are from the part of the interview on the problem presented as an example 

in the previous section of this paper. The students’ exploration lasted approximately 

20 minutes, from the construction of the figure to the writing of their first conjecture 

on the possibility of obtaining a parallelogram. We analyze the excerpt in which the 

students identify the parallelogram as a possible configuration and decide to try to 

maintain it (the name of the student holding the mouse is in bold). 

Giu: …So to get a parallelogram, what it looked like in the beginning… 

Ste:  So BP = PD by definition, that we know for sure. 

Giu: Yes, yes, because they intersect at their midpoints, they are the diagonals. 

Ste and Giu write a first conjecture: “ABCD is a parallelogram when BP = PD (that is 

when P is the midpoint of BD)”. As Ste writes, Giu thinks aloud and proposes a proof 

for the conjecture. 

Giu: Why? Because when this here is a diagonal [BD] of the parallel… of the 

quadrilateral, this here is another diagonal [CA] of the parall…of the 

quadrilateral. 

Ste: But I need to add [referring to the written conjecture] in a parenthesis that 

CP is equal to PA. 

Giu: CP = PA by definition, BP is equal to PD because we said so…and so they 

are diagonals that intersect at their midpoints, so it is a parallelogram. 

The students have produced the following chain of deductions: BP = PD (A2)  

diagonals intersect at their midpoints (A1)  ABCD is a parallelogram (A). 

At this point the students start searching for ways of acting upon the figure to maintain 

property A during dragging. They seem to be seeking for ways to better control the 

movement of the different parts of the figure, that they still seem to find difficult to 

control through A2. Suddenly Giu constructs the circle CPD (a circle with center in P 

and radius PD, see the Fig. 3) and says: 

Giu: But see, you can do it like this. You can see that like this is comes out only 

when…no, you see…[he drags D so that CPD passes through the 

intersection, defined as B, between the line PD and the circle CCP] […] You 

try and see so that this thing [concurrence of CPD, CCP and t]…is 

maintained. (Figure 3) 

Ste takes back the mouse and the students’ attention shifts to the passage of CPD through 

B, the intersection between the line t (through P and D) and CCP (Figure 3).  
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Figure 3: The students perform maintaining dragging inducing CPD to pass through 

the intersection of CCP with line t, defined as B in the original construction. 

This is a new property A3 that the students try to induce as an invariant. This property 

has been inferred through an abduction: 

(facts) BP = PD (A2), B is the second intersection of t with CCP. 

(rule) If B lies on CPD, then BP = PD. 

(hypothesis) B lies on CPD (A3). 

Dragging D it seems to be easier for the students to control A3 than A2. This is a 

fundamental moment in the process of conjecture generation: the invariant A3 is 

discerned through an abduction in order to better control the figure and it is used for 

performing maintaining dragging in search for new invariants that might be causing A3 

(and the chain of invariants A3  A2  A1  A) to be visually verified. Elements of 

different natures concur in the discernment of this invariant: some are theoretical (e.g., 

the “rule” in the abduction is a theorem of Euclidean geometry) and others related to 

the phenomenology of the DGE (also see Leung et al., 2013).  

As Giu continues to explore “when” A3 is visually verified, he asks Ste to take back 

the mouse to concentrate on the movement of D when the trace is activated on it. 

Giu: You maintain these things [B on CPD]…it looks like a curve. 

Ste: It’s really hard! 

Giu: Yes, I know…I can only imagine. It looks like a circle…with center in A. 

Ste: It has to necessarily have radius AD! Anyway you would need AP to equal 

AD [he holds the mouse but stops dragging].  

Ste is concentrated on maintaining the invariant A3 while Giu tries to geometrically 

describe the trace mark. The students discern two invariants during dragging: D  CAP 

(B1), and PA = AD (B2). Once the students construct CAP, perform a dragging test 

dragging D along it, and notice that ABCD does seem to remain a parallelogram in this 

case, they write their final conjecture: “ABCD is a parallelogram if PA = AD”  (B2  

A).  



Antonini, Baccaglini-Frank 

PME40 – 2016 2–25 

The invariants Ai are interpreted as logical consequences of the invariants Bj, and they 

are explicitly linked to them through the invariant A3, which is a pivot-invariant. While 

the invariants Ai arise mostly thanks to the students’ theoretical knowledge of 

Euclidean geometry, the invariants B1, …, Bm appear thanks to support offered within 

the phenomenological domain of the DGE, where invariants can be perceived through 

simultaneous perception accompanied by different levels of pragmatic control over the 

varying parts of the figure. The theoretical and pragmatic domain are hinged together 

by the pivot invariant that comes to life with hybrid characteristics. 

CONCLUSIONS 

The analysis provided in this paper clarifies a specific process of conjecture generation 

in a DGE. In particular, the pragmatic need of physically controlling the figures 

explains how, in certain cases, the search for logical relations in the theory of Euclidean 

geometry can be fostered, together with the production of a chain of abductions leading 

to the conjecture. This new way of explaining how students come to substitute an 

invariant to maintain with a new property generalizes and ameliorates earlier 

descriptions of the process (see Baccaglini-Frank, 2010; Baccaglini-Frank & Mariotti, 

2010): the process is now explained through the necessity of better controlling the 

figure, which leads to the production of two abductive chains. 

The study points to at least two new directions of research. One is theoretical: the two 

chains of inferences may not necessarily be produced one after the other. In general, 

the two chains might be intertwined, leading to a greater complexity that needs to be 

further investigated. The second direction is practical and involves teachers. We 

believe that the theoretical notion of pivot invariant could be useful for a teacher who 

decides to promote students’ conjecture generation in a DGE. Indeed, s/he could use it 

to gain deeper insight into students’ processes of conjecture generation, and thus to 

better guide students’ processes of conjecturing, argumentation, and proof.  
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DOES STUDYING LOGIC IMPROVE LOGICAL REASONING? 

Nina Attridge, Andrew Aberdein, Matthew Inglis 

Loughborough University, Florida Institute of Technology, Loughborough University 

 

There has long been debate over whether studying mathematics improves one’s logical 

reasoning skills. In fact, it is even unclear whether studying logic improves one’s 

logical reasoning skills. A previous study found no improvement in conditional 

reasoning behaviour in students taking a semester long course in logic. However, the 

reasoning task employed in that study has since been criticised, and may not be a valid 

measure of reasoning. Here, we investigated the development of abstract conditional 

reasoning skills in students taking a course in formal logic, using a more sophisticated 

measure. Students who had previous experience of logic improved significantly, while 

students with no previous experience did not improve. Our results suggest that it is 

possible to teach logical thinking, given a certain degree of exposure. 

INTRODUCTION  

Since the time of Plato (375B.C./2003) it has been assumed that people can be taught 

to think more logically, and in particular, that mathematics is a useful tool for doing 

so. This is known as the Theory of Formal Discipline (TFD) and is exemplified by the 

philosopher John Locke’s suggestion that mathematics ought to be taught to “all those 

who have time and opportunity, not so much to make them mathematicians as to make 

them reasonable creatures” (Locke, 1706/1971, p.20). While there is some evidence 

that studying mathematics does indeed improve logical thinking skills, there is little 

evidence that studying logic itself improves one’s logical thinking. The aim of the 

current study was to investigate the development of logical reasoning skills in 

undergraduate students taking a course in introductory formal logic. Before describing 

our study, we begin by reviewing the evidence that studying mathematics improves 

reasoning skills, then review previous investigations of whether studying logic can 

improve reasoning skills, along with the flaws in these investigations that we aimed to 

remedy.  

The TFD was first tested systematically by Thorndike (1924), who measured children’s 

general reasoning skills before and after one year of schooling. He reported that the 

subjects students studied had only a minimal influence on changes to their test scores. 

French, chemistry and trigonometry were associated with the largest, yet small, 

improvements, while other areas of mathematics (arithmetic, geometry and algebra) 

were associated with improvements close to zero.  

However, Lehman and Nisbett (1990) found evidence that studying mathematics at 

university level was associated with improved conditional reasoning skills. Reasoning 

about conditional ‘if…then’ statements is a central component of logical reasoning 

(Inglis & Simpson, 2008), and fundamental to mathematics (Polya, 1954). Lehman and 

Nisbett tested US undergraduates in their first and fourth years of study on statistical 
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and methodological reasoning, conditional reasoning and verbal reasoning. Across 

their whole sample, which was formed of students from several majors, they found a 

correlation between number of mathematics courses taken and change in conditional 

reasoning behaviour (r = .31). The correlation was even stronger within the natural 

science majors (r = .66). This is a promising finding which suggests that conditional 

reasoning is an aspect of logical thinking that can be developed through mathematics 

education. 

Conditional reasoning development was also investigated by Inglis and Simpson 

(2009), who compared scores in mathematics and non-mathematics undergraduates on 

entry to a UK university. They gave the undergraduates an abstract Conditional 

Inference Task which involved judging the validity of conclusions drawn from abstract 

conditional statements (e.g. If the letter is D then the number is 3; the number is not 3; 

conclusion: the letter is not D). Mathematics undergraduates performed significantly 

better than the comparison undergraduates, even after controlling for between-group 

differences in an intelligence measure. However, over the course of a year, the 

mathematics students improved by only 1.8%, which was not significant.  

In a similar study, Attridge & Inglis (2013) investigated the development of conditional 

reasoning skills in mathematics and non-mathematics A-level students (A-levels are 

two-year post-compulsory courses in the UK, the results of which are used by 

universities to select incoming undergraduates). There was no difference between 

groups in conditional reasoning at the beginning of A-levels, but after one year the 

mathematics students’ reasoning had significantly improved whereas the non-

mathematics students’ reasoning had not.  

While there is evidence that studying mathematics at A-level (Attridge & Inglis, 2013) 

and undergraduate level (Lehman & Nisbett, 1990) is associated with improved 

conditional reasoning skills, there is less evidence that studying logic itself is 

associated with improvements in logical thinking. Next we review two studies that 

investigated this question and came to different conclusions. 

Cheng, Holyoak, Nisbett and Oliver (1986) investigated the development of 

conditional reasoning skills in undergraduates taking a semester-long course in logic. 

The students completed four Wason Selection Tasks (with a mixture of conditional and 

biconditional statements and abstract and thematic content, see Figure 1 for an 

example) at the beginning and end of the course, which contained 40 hours of teaching, 

including the definition of the conditional. It seems reasonable to expect that after such 

training students should be fairly competent at dealing with conditional statements; it 

is difficult to imagine a more promising way to improve a student’s logical thinking 

competency. Nonetheless, there was a non-significant decrease in errors of only 3%.  

However, the lack of improvement that Cheng et al (1986) observed could be due to 

the measure they used. Since their study was conducted it has been suggested that 

Selection Tasks may not actually measure conditional reasoning skills, particularly 
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Figure 1. An example Wason Selection Task similar to those used by Cheng, 

Holyoak, Nisbett and Oliver (1986). 

when the task is presented with a real-world context (Sperber, Cara & Girotto, 1995; 

Sperber & Girotto, 2002). Sperber et al. suggested that Selection Task performance is 

highly influenced by contextual judgments that pre-empt any reasoning. Their account, 

which implies that Selection Tasks do not actually measure reasoning processes, was 

supported across six studies (Sperber et al., 1995; Sperber & Girotto, 2002). Sperber 

and his colleagues showed that success rates in the task can be dramatically 

manipulated by altering the relevance of the content. Success in descriptive versions 

of the task can be increased to over 50%, in line with the success rates usually found 

with obligation-based contextual versions (Sperber et al., 1995).  

Given that their measure may not actually reflect reasoning processes, Cheng et al’s 

(1986) results are difficult to interpret. It may be that their participants did improve in 

logical reasoning, and this simply wasn’t reflected in their measure. This interpretation 

is consistent with a similar study on teaching reasoning, in which White (1936) 

investigated the effect of logic training on 12-year-old boys’ reasoning ability. One 

class spent an hour per week for three months being taught logic, including deduction, 

induction and syllogisms, while another class were not taught any logic. At the end of 

the three months the students were given a reasoning test that included, among other 

things, syllogism validity judgments. The class that had been taught logic scored 

significantly higher on the reasoning test than the control class. The authors concluded, 

conversely to Cheng et al. (1986), that logical thinking can be taught.  

The difference in findings between White (1936) and Cheng et al (1986) may be due 

to the difference in the reasoning measure used, or it may be due to the difference in 

age between the participants in the two studies. Perhaps 12-year-olds’ reasoning skills 

are more malleable than undergraduates’ reasoning skills. To distinguish between these 

possibilities, we investigated reasoning development in undergraduates studying 

As part of your job as quality control inspector at a shirt factory, you have the task 

of checking fabric and washing instruction labels to make sure they are correctly 

paired. Fabric and washing instruction labels are sewn back to back. Your task is to 

make sure that all silk labels have the 'dry clean only' label on the other side.

You must only turn over those labels you need to check to make sure 

the labels are correct.

Machine 

wash in 

warm water

Silk Cotton
Dry clean 

only
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introductory formal logic, using a more sophisticated measure than a Selection Task. 

Undergraduate students completed an abstract conditional inference task (based on 

Attridge and Inglis’ (2013) finding that studying mathematics was associated with 

improvement on an abstract conditional inference task) before and after being 

introduced to truth-functional logic. 

METHOD  

Design 

The study followed a one-group pre-test/post-test design where the intervention was a 

course in logic and the pre-test and post-test was an abstract conditional reasoning task.  

Participants 

Participants (60 males, 19 females) were undergraduate students taking a course on 

logic at a medium-sized private research university in the South-Eastern United States. 

Students came from various majors, including computer science, software engineering, 

mechanical engineering, aerospace engineering, physics, and business. At Time 1, 79 

participants completed the test and of these, 58 also completed it at Time 2. 

Materials 

To measure logical reasoning, we administered the abstract conditional inference task 

(Evans, Clibbens & Rood, 1995). In this task, participants are given a conditional rule 

(e.g. If the letter is M then the number is 5) along with a premise about that rule (e.g. 

The letter is M), followed by a conclusion derived from the rule and premise (e.g. The 

number is 5). The participant then deduces whether the inference to the conclusion is 

necessarily valid or invalid. The task contains 16 items of four inference types: Modus 

Ponens (MP; if p then q, p, therefore q), Denial of the Antecedent (DA; if p then q, not-

p, therefore not-q), Affirmation of the Consequent (AC; if p then q, q, therefore p) and 

Modus Tollens (MT; if p then q, not-q, therefore not-p). The lexical content of the rules 

(letters and numbers) was generated randomly and the order of the problems was 

randomised by participant. The instructions were adapted from Evans et al.  

Logic course 

The course consisted of 37.5 hours of lectures over 15 weeks, covering traditional 

logic, symbolic logic and informal logic. The assessment consisted of 14 pop quizzes, 

two mid-term exams and a final exam. The participants were taught in three groups. 

Procedure 

Participants completed the tests in class at the beginning of the course in early January 

2014, and again at the end of the course in late April 2014. Tests were completed using 

pen and paper under exam-style conditions. 

RESULTS 

Participants were split into two groups depending on whether or not they had previous 

experience with logic. This was determined on the basis of each participant’s degree 
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programme, and whether that programme usually involved a course with some degree 

of logic content prior to the one in question here. As such, this is only a proxy for prior 

logic experience. The prior logic group comprised students majoring in Computer 

Science, Software Engineering, or Electrical Engineering, all of whom should have 

taken Digital Logic or Discrete Mathematics before they take Logic. This allowed us 

to investigate the role of previous exposure to logic in any development found. One 

participant was removed on the basis of being an outlier in terms of change over time 

(scoring 16/16 at Time 1 and 5/16 at Time 2). The remaining 57 participants’ data were 

subjected to a 2 (Time: pre-test, post-test)  4 (Inference: MP, DA, AC, MT)  2 (Prior 

Logic: yes, no) mixed ANOVA.  

This revealed a main effect of inference, F(3,165) = 41.31, p < .001, ηp
2 = .429, where 

accuracy was higher on MP inferences than on all other inferences, all ps < .001, a 

main effect of Time F(1,55) = 6.78, p = .012, ηp
2 = .110, with higher accuracy at Time 

2 (M = 2.70, SD = 0.79) than at Time 1 (M = 2.54, SD = 0.63), and no main effect of 

Prior Logic, F(1,55) = 1.77, p = .188, ηp
2 = .031. However, there was a significant 

interaction between Time and Prior Logic, F(1,55) = 4.32, p = .042, ηp
2 = .073 (see 

Figure 2). An independent samples t-test showed no difference in Time 1 scores 

between participants with (M = 2.54, SD = 0.61) and without (M = 2.48, SD = 0.58) 

prior logic experience, t(55) = .37, p = .716, d = 0.1. However, paired samples t-tests 

showed that in the students presumed to have studied logic previously, scores 

significantly improved between Time 1 (M = 2.54, SD = 0.61) and Time 2 (M = 2.91, 

SD = 0.87), t(32) = 3.27, p = .003, d = 0.49, while in the students who had not studied 

logic previously, scores did not significantly improve between Time 1 (M = 2.48, SD 

= 0.58) and Time 2 (M = 2.52, SD = 0.63), t(23) = .41, p = .682, d = .07. Despite this, 

the difference between groups at Time 2 was only marginally significant, t(55) = 1.97, 

p = .054, d = 0.53. All other interactions were non-significant. 

 

 Average Time 1 Time 2 Absolute 

change 

Percentage 

change 

MP 3.85(0.35) 3.77 (0.63) 3.93 (0.26) +0.16 (0.65) +4.24 

DA 2.26 (0.98) 2.12 (1.46) 2.40 (1.47) +0.28 (1.36) +13.21 

AC 1.98 (1.43) 1.91 (1.61) 2.05 (1.57) +0.14 (1.38) +7.33 

MT 2.42 (0.87) 2.25 (1.30) 2.60 (1.22) +0.35 (1.84) +15.56 

Table 1. Mean Conditional Inference Scores split by Time and Inference. Standard 

deviations in parentheses. 
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Figure 2. Interaction between Time and Prior Logic on Conditional Inference Scores. 

Error bars reflect 1 standard error of the mean. 

DISCUSSION 

We investigated the development of conditional reasoning skills in undergraduates 

taking a course in logic. Overall, our results suggest that studying formal logic 

improves students’ ability to deal with conditional statements, but only if they have 

had some experience with logic previously. While conditional inference scores did 

improve over time for the whole sample, when we examined the role of previous 

experience with logic, it became apparent that only those who had studied logic 

previously actually showed any gains in reasoning skills during the course. For those 

students who had not studied logic before, there was not a significant improvement in 

conditional inference scores over time. Interestingly, the students who had taken a logic 

course previously did not outperform those who had not at Time 1. This suggests that 

the amount of logic training the students had received previously was not sufficient to 

give them an advantage on our conditional inference task, but that it was sufficient to 

make the logic course in question more effective. 

Our findings suggest that it is possible to teach logical thinking, but that a certain level 

of exposure may be necessary before students’ skills begin to develop. We do not have 

data on the number of hours of previous study that participants had, but the fact that 

students without prior experience did not improve during the 37.5 hours of lectures 

involved in the current course suggests that a greater number of hours is required for 

development. Future research should systematically investigate the number of hours of 

exposure necessary for students’ logical reasoning skills to improve. 

It is interesting to note that the improvement we saw in conditional reasoning did not 

differ between the four inference types (MP, DA, AC and MT). Attridge and Inglis 

(2013) found that studying A level mathematics was associated with improved 

performance with the invalid inferences (DA and AC), and with worse performance on 

the MT inferences. In the present study, students improved to a similar extent on all of 
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the inferences, which, perhaps unsurprisingly, suggests that teaching students logic is 

a more effective way to improve their logical thinking than teaching them mathematics. 

Nevertheless, if we compare the effect sizes for the increase in the number of correct 

responses, over all inference types, in each of these studies, the A level mathematics 

students’ improvement (d = .49) was of a similar magnitude to that of the logic students 

who had some prior exposure to logic (d = .49) and larger than in the full logic class 

sample (d = .34). This was despite the mathematics students having no previous 

experience with logic and not receiving any explicit logic tuition during their A level. 

On the other hand, the mathematics course lasted for a full academic year, as opposed 

to one semester for the logic course. Although the two courses are not comparable in 

terms of length or student age and experience, the fact that learning mathematics 

appears to develop one’s logical reasoning skills to a similar extent to studying formal 

logic is very promising for proponents of the TFD. 

Our results contradict those of Cheng et al (1986) who found that a semester long 

course in logic was not associated with any improvements in students’ reasoning 

performance. We suggested that the measure Cheng et al used, four selection tasks, 

was not an appropriate measure of reasoning, and that this may be why they failed to 

find an effect of tuition. Our results support this interpretation: using a more 

sophisticated measure of conditional reasoning we found that a similar intervention 

resulted in significant improvement.  

One limitation of our study is that we did not compare the logic students to a control 

group. This means that we cannot rule out the possibility that our participants would 

have improved even without taking the logic course. However, this alternative 

interpretation seems unlikely. First, the improvement was only seen in the subset of 

students with prior exposure to logic. If there were a general developmental trend in 

reasoning skills in the undergraduate population then we would expect to see this 

development across the whole sample. Second, Attridge (2013) did not observe any 

development in conditional reasoning skills in a sample of psychology undergraduates, 

and Inglis and Simpson (2009) did not observe any improvement in undergraduate 

mathematics students. Again, if the development we observed here were due to a 

general developmental trend, as opposed to the logic course, we would expect to have 

seen improvements in both of these groups.  

Another limitation is that we did not directly measure prior logic experience; we used 

each participant’s major as a proxy for whether or not they were likely to have taken a 

course with some logic content previously. This means that a few students in each 

group could have been miscategorised. Since we split participants by major, there is 

also the possibility that participants in the prior logic and non-prior logic groups may 

have varied on SAT scores or another unmeasured variable. However, there was an 

overall effect of time on conditional inference scores, averaging over both groups, so 

these issues should not be a major cause for concern. Rather, the effect of prior logic 

experience should be confirmed in future studies where potential confounding 
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variables are controlled for, and if it transpires that a factor such as SAT scores is 

responsible for the group difference, then this in itself would be an interesting finding. 

In conclusion, our findings suggest that, contrary to previous research, it is possible to 

improve students’ logical reasoning through instruction. Nevertheless, the level of 

improvement we found was comparable to that seen in A level mathematics students, 

who received no explicit logic tuition. This is promising for proponents of the TFD, 

which suggests that teaching mathematics is an effective method for developing 

students’ logical thinking skills.  
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PRE-SERVICE ELEMENTARY MATHEMATICS TEACHERS 

ABOUT FRACTION TOPIC 
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The purpose of this study is to analyze the fraction multiplication and division problems 

posed by pre-service elementary mathematics teachers. A total of 213 pre-service 

teachers enrolled in different years of Elementary Mathematics Teacher Education 

program at a state university in the eastern part of Turkey took part in the study. Two 

fraction operation (1 multiplication and 1 division) is used as the data collection tool 

in the study. With a view to finding out the types of problems posed by the pre-service 

teachers, the data were analyzed using qualitative descriptive analysis. The findings 

suggest that, pre-service teachers have difficulties in posing problems regarding 

multiplication and division. This indicates that a conceptual understanding has yet to 

be achieved. 

INTRODUCTION 

The rational numbers include, in addition to natural numbers, fractions and decimals. 

The fractions, in turn constitute a fundamental element of decimals, rational numbers, 

ratio and proportion, and measurement systems. In this context, rational numbers, and 

therefore fractions are crucial elements of our daily lives. Fractions are rich as a field 

of mathematics, complicated as a cognitive object, and among the more difficult 

mathematical concepts to be taught and to teach (Smith, 2002). That is why the concept 

of fractions and operations using fractions are in the lead of the topics the students have 

difficulty in mastering (Ma, 1999; Tirosh, 2000; Yim, 2010; Zembat, 2007). The 

difficulties encountered in the teaching of fractions were investigated in numerous 

studies (Haser & Ubuz, 2002). The studies reveal that students of all grades have a hard 

time with fractions as well as in solving and posing fraction problems (Kocaoğlu & 

Yenilmez, 2010).  

Problem posing 

Problem solving and posing skills are among the most fundamental topics in 

mathematics curriculums (Abramovich, 2014; Chen, Dooren, Chen & Verschaffel, 

2011). Problem solving is a process and from a mathematical perspective, it is about 

getting the sole correct answer (Kojima, Miwa & Matsui, 2015). For the students to be 

able to develop a problem solving skill, they should first have a problem posing skill 

in place (Turhan & Güven, 2014). Problem posing, is essentially a problem solving 

activity entailing the development of questions and new problems to be discovered or 

analyzed about a given case (Akay, Soybaş & Argün, 2006), and it requires creative 

thinking between multiple answers (Kojima, Miwa & Matsui, 2015). Many studies 

emphasize the significant contributions problem posing activities has on the 
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development of the students (Kılıç, 2013; Toluk-Uçar, 2009; Turhan & Güven, 2014). 

Problem posing enables teaching of mathematical reasoning, and instills the abilities 

to discover mathematical cases and to formally describe mathematical cases in speech 

and text. However, problem posing skills can be developed only where the teachers 

design appropriate learning and teaching processes (Akay, Soybaş & Argün, 2006).  

Fractions  

The subject of fractions lies at the core of many topics in mathematics (Behr et al., 

1992; Kieren, 1976). But it’s difficult for students to learn rational numbers and 

relevant concepts. Students have significant difficulties in topics such as ordering 

fractions, and addition, subtraction, multiplication, and problems with fractions (Soylu 

& Soylu, 2005). Teachers, as well as pre-service teachers are also found to experience 

such difficulties with rational numbers (Redmond, 2009; Tirosh, 2000; Toluk-Uçar, 

2009; Yim, 2010). These difficulties affect the problem posing process.  

Studies suggest that when asked to pose a problem involving divisions with fractions, 

teachers and pre-service teachers usually pose multiplication problems, or fail to 

correctly pose one at all (Tirosh, 2000). Ball (1990) reported that all the pre-service 

teachers that participated in the study successfully calculated the expression 1
3

4
:

1

2
, but 

most of them could not pose a verbal problems that describe this expression. Similar 

results were reported by Toluk-Uçar (2009). Işık (2011) focused on the conceptual 

analysis of the problems posed by pre-service elementary mathematics teachers, with 

respect to division with fractions. Işık (2011) indicated that pre-service teachers usually 

omitted the measurement purpose of the division, which suggested that the conceptual 

structure of division with fractions was not established properly in the problems.  

A few studies touch briefly on the common errors regarding multiplication with 

fractions. Toluk-Uçar (2009), in particular, noted that when asked to pose a verbal 

problem to reflect the operation 
3

4
𝑥

1

3
, pre-service primary teachers usually posed a 

problem reflecting the operation 
3

4
: 3. Moreover, Işık (2011) found that pre-service 

elementary mathematics teachers were usually successful in attaching meanings to 

operations and numbers in the problems posed for multiplication with fractions. He 

noted that pre-service teachers had more conceptual difficulties in problem posing for 

divisions with fractions, compared to multiplication with fractions (Işık, 2011). 

The studies about problem posing indicate that, pre-service teachers’ level of success 

in the problem posing skills is generally low (Işık, 2011; Toluk-Uçar, 2009; Zembat, 

2007). Instilling mathematics problem posing skills provide many benefits to teachers 

and pre-service teachers. For instance, in cases where the problems offered in 

textbooks are insufficient, or are inappropriate for the skills of the students, or do not 

reflect the interests and needs of the students, the teacher would be required to pose 

original problems regarding the topic, to further teaching (Korkmaz & Gür, 2006). 

Accordingly, the purpose of the present study is to provide a conceptual analysis of the 

problems posed with respect to multiplication and division with fractions, by pre-
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service elementary mathematics teachers in different years of a teacher training 

program, and investigates the variation of such problems with reference to the year of 

training. 

METHODOLOGY  

This study offers a cross-sectional study of developmental research methods, which 

are usually characterized by their aim to compare, define, categorize, and analyze the 

individuals, groups, organizations, methods, or materials, to gain insight into their 

differences, and to interpret the results of the analysis (Miller, 1998). Therefore the 

study group comprises 213 (47 are in first, 53 are in second, 57 are in third, and 56 are 

in fourth year of school) pre-service elementary mathematics teachers from various 

years of teacher training, at the Department of Elementary Mathematics Education in 

a state university, in Turkey.  

The data collection tool used in the study is 2 operations, 1 multiplication and 1 

division, as was the case with Işık’s study (2011). The first operation is 
1

2
𝑥

1

8
 and the 

second operation is 
1

2
:

1

10
. The multiplication and division operations involve the 

multiplication or division of two proper fractions one of which is a half. These 

operations are offered to each pre-service teacher in written form.  

The problems posed by the elementary pre-service teachers were analyzed using the 

qualitative descriptive analysis method, with reference to the problem types identified 

by Işık (2011). Each problem sentence posed by pre-service teachers was read and 

reviewed carefully, and a classification was sought by coding the sentences. 

Throughout the process, the problems were analyzed by the author, and two Ph.D. 

students. The analyses by the author and the researchers were found to be consistent at 

a rate of 91%. Thereafter, the analyses by the author and the researchers were compared 

and at the end the categorization of each and every problem posed by the respondents 

was finished. 

FINDINGS 

In this section, the categories of problems employed by the pre-service mathematics 

teachers for multiplication will be presented in separate tables for two expressions, 

along with percentage and frequency figures. 

The categories employed by pre-service elementary mathematics teachers in 

formulating a problem to verbalize the multiplication of a proper fraction that is equal 

to one half, with another –in this case, 1/8–, are shown in Table 1. 
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Grades  

 

Categories  

1st year 

(n=47) 

2nd year 

(n=53) 

3rd year 

(n=57) 

4th year 

(n=56) 

Total 

(n=213) 

% % % % % 

Finding out 1/8 of the half of a whole  38 30 28 23 30 

To calculate 1/8 of 1/2 of the whole  4 6 12 5 7 

Simple exercises  17 19 14 35 15 

To calculate 1/8 of the half of a 

plurality  

11 - 5 2 4 

Through division 15 36 37 21 28 

Incorrect statements  7 9 4 14 9 

Empty  5 - - - 1 

Total  100 100 100 100 100 

Table 1: The categories of the problems posed by pre-service teachers for “1/2 x 1/8” 

The largest group (38%) of first year pre-service teachers posed problems to find 1/8 

of the half of the whole. An example of this category of problems is: “An athlete ran 

1/8 of the half of the full track. What fraction of the full track did he run?” First years’ 

17% chose simple exercises, and another 15% posed problems which could be solved 

through divisions. Posing of problems to calculate 1/8 of the half of a plurality was the 

choice of 11%. Moreover, 6% of the responded supplied incorrect posing, and a further 

6% supplied none. Thirty six percentage of the sophomores posed problems based on 

division. For instance: “8 friends want to share half an apple. What fraction of an apple 

would each get?” Whereas 30% posed problems to find 1/8 of the half of the whole. 

Nine percentage of second year respondents posed problems containing incorrect 

statements and 19% posed simple exercises. Simple exercises are usually posed as 

“What would be the result if we multiplied 1/2 with 1/8?” In case of third year students, 

the problems based on divisions constitute the most frequent category (37%), followed 

by problems posed to calculate 1/8 of the half of the whole (28%), to calculate 1/8 of 

1/2 of a plurality (12%), and simple exercises (14%). Senior years opted for simple 

exercises (35%), calculation of 1/8 of the half of the whole (23%), and problems based 

on division (21%). At the same time 14% of seniors posed problems containing 

incorrect statements. For instance, “Kaya ate 1/2 of his cake. Then he ate a further 1/8. 

What portion of the cake did he eat?” 

The categories employed by the pre-service teachers vary by year. While freshmen 

devise problems to calculate 1/8 of the half of the whole, 2nd and 3rd year students had 

a preference for problems based on divisions. Fourth year students, on the other hand, 

mostly posed simple exercises. The question was skipped only by some freshmen, 

while no 2nd, 3rd, or 4th year student skipped the question. Furthermore, the problems 

requiring the application of proportions were posed only by juniors. 

The problems regarding the division of a proper fraction equal to one half by another 

proper fraction, posed by pre-service elementary mathematics teachers are summarized 

in Table 2. 
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Grades  

 

Categories  

1st year 

(n=47) 

2nd year 

(n=53) 

3rd year 

(n=57) 

4th year 

(n=56) 

Total 

(n=213) 

% % % % % 

Measurement  2 33 14 12 16 

Proportion - 8 7 4 5 

Simple exercises  6 15 9 22 12 

Through multiplication 4 17 9 25 14 

Confused multiplication-based 

operations 

28 8 26 30 23 

Incorrect statements 6 15 9 7 10 

Empty  54 4 26 - 20 

Total  100 100 100 100 100 

Table 2: The categories of the problems posed by pre-service teachers for “1/2 : 1/10” 

More than half (54%) of the first year pre-service elementary mathematics teachers 

skipped the question, while 28% posed problems in the category of confusion with 

multiplication. Take a look at the following example: “Ali’s mom saved half of the 

cake for him to eat later. As Ali is able to eat one tenth of the cake, what fraction of the 

cake is gone?” This problem requires multiplication, rather than division. Furthermore, 

6% of the freshmen posed problems with incorrect statements, whereas a further 6% 

posed simple exercises such as “What is the result of the division of one half by 1/10?” 

33% of the second year pre-service teachers posed problems in the measurement 

category; 17% in the through multiplication category; such as “Ayşe wants to eat 10 

times the half of the cake, and save the rest for her sister. What fraction of the cake 

should Ayşe eat?” which can be solved through multiplication; and 15% in the simple 

exercises category. Problems posed with incorrect statements were offered by 13%. An 

example of these problems is as follows: “What part of the whole would we get by 

dividing half a bread by 1/10?” Furthermore, 8% of sophomores posed problems based 

on proportions, such as “What is the proportion of the half of a given number, over the 

one tenth of the same number?” While the problems posed by a second 8% had 

confusions with multiplication. Twenty six percentage of the third year participants 

failed to pose a problem and skipped the question, while 26% had confusions with 

multiplication. Measurement-related problems were posed by 14%, whereas through 

multiplication problems were employed by 26%. Moreover, three groups comprising 

7% each exhibited application of proportions, incorrect statements, and simple 

exercises. Thirty percentage of the fourth year students among the pre-service teachers 

posed problems which indicated confusion with multiplication, while 25% employed 

through multiplication ones, and 20% posed simple exercises and 12% employed 

problems in the measurement category, as in the following example: “How many cakes 

would we have by dividing one half of the pie with one tenth of the pie?” While none 

of the seniors skipped the question, 7% posed problems with incorrect statements. 

More than half of the first year pre-service elementary mathematics teachers skipped 

this question, while only one quarter of juniors did so. The sophomores who left the 
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question unanswered were only a few. All seniors, on the other hand, provided a 

response. While problems with incorrect statements were most frequent with second 

year students, this group numbered much less in other years. The problems in the 

measurement category were most frequent with the second year students, while simple 

exercises were the most frequent choice by the fourth year students. Furthermore, the 

most frequently employed category for the fourth year students was confusion with 

multiplication, whereas sophomores did not employ this category much. The problems 

based on multiplication were also most commonplace with the fourth year students. 

DISCUSSION, CONCLUSION, AND RECOMMENDATIONS 

This study tries to analyze the problems posed with respect to multiplication and 

division operations with fractions, by pre-service elementary mathematics teachers in 

various years of training, and to shed light on how their skills and understanding in this 

area change. In this context, the pre-service teachers were asked to pose problems to 

reflect multiplication and division operations. The problems posed by the pre-service 

teachers were analyzed to lead to conceptual conclusions regarding multiplication and 

division with fractions. The study results indicate that, regardless of the year of 

enrollment, the pre-service teachers in the program are more successful in posing of 

problems regarding multiplication, compared to those regarding division. This finding 

is consistent with Işık’s (2011) study on 4th year pre-service elementary mathematics 

teachers. The rates of skipping the relevant questions, failing to pose problems, is much 

higher with division related questions, compared to those involving multiplication. 

Furthermore, the first year students had the highest rates of skipping questions, whereas 

the fourth year students often had confusions with multiplications, or did pose 

problems in the form of simple exercises.  

The most frequently employed category for the operation involving the multiplication 

of a fraction equal to one half, with a proper fraction (1/2 x 1/8), was the problems 

entailing the calculation of 1/8 of one half of a whole, followed by through division 

problems. The concept of “half” referring to the fraction 1/2 is a term from the daily 

life, and hence, the problems posed may contain this term. For this operation, 1st, 2nd, 

and 3rd year students posed mostly problems to calculate 1/8 of the half of a whole, 

while 4th year students preferred simple exercises.  

In case of multiplication operation, simple exercises were the most frequent choice of 

fourth year students, while the first year students are found to have the highest skipping 

rates. In striking contrast, the seniors almost never left a question without an answer. 

The experience the pre-service teachers gained with respect to fractions, throughout 

the program at the faculty of education may have something to do with the tendency 

of the seniors to pose a problem at all times. On the other hand, lacking such 

experience, the first year students may also be suffering from problems with the 

concept of fractions. As was the case with Işık’s (2011) study, pre-service teachers did, 

from time to time, pose problems where the result of the multiplication with proper 

fractions was larger than the multipliers. Yet, in the case of multiplication of two proper 
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fractions, the result must be smaller than individual multipliers. This tendency is 

probably reinforced by the weakness of the conceptual understanding of fractions. 

In the division of one half by a proper fraction (1/2:1/10), the confusion with 

multiplication was a frequent occurrence in problem posing. The first year students 

were again noted as the group with the highest skipping rates, while second year 

students most frequently employed measurement, third year students employed a 

similar number of instances where confusion with multiplication was prevalent, or 

skipped the question altogether. Seniors, on the other hand, had confusions with 

multiplication. 

The division with fractions refers to two distinct meanings: measurement, and 

allocation of equal shares. However, the pre-service teachers who took part in the study 

had a preference for allocation of equal shares, rather than the measurement function. 

Furthermore, the pre-service teachers posed problems requiring division by the number 

in the denominator of the divisor fraction. Such findings of the study offer parallels 

with the conclusions of other studies in the literature (Işık, 2011; Ma, 1999). 

It is evident that, regardless of the year in the program, pre-service teachers have 

difficulties in division and multiplication with fractions. Its reason may be related with 

the limited usage of fractions in daily life. Most problems observed are reflections of 

conceptual issues. Failure to remedy the conceptual weaknesses observed in this study 

might have significant repercussions on the education they will provide to their 

students. So that it is important to know these problems of pre-service teachers. In this 

context, education faculties have to take necessary measures to avoid these problems. 

Future studies may determine that which measures can take for these problems. 

Moreover, future studies may entail interviews with pre-service teachers, and 

investigate, in depth, the issues they face in formulating problems, and the causes 

which lead to more significant difficulties with divisions with fractions, compared to 

those faced in the context of multiplication. 
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In this paper we propose a hypothesis about how different uses of maintaining 

dragging, either as a physical tool in a dynamic geometry environment or as a 

psychological tool for generating conjectures can influence subsequent processes of 

proving. Through two examples we support the hypothesis that using maintaining 

dragging as a physical tool may foster cognitive rupture between the conjecturing 

phase and the proof, while using it as a psychological tool may foster cognitive unity 

between them. 

THEORETICAL PERSPECTIVE 

Mathematics educators have been encouraging the use of technology in the classroom, 

and, in particular, several studies on the teaching and learning of geometry (e.g., Noss 

& Hoyles, 1996; Mariotti, 2006) have shown that a Dynamic Geometry Environment 

(DGE) can foster the learners’ processes of conjecture generation and argumentation, 

especially in open problem situations, for which the dragging tool plays a crucial role 

(e.g. Arzarello et al., 2002; Baccaglini-Frank & Mariotti, 2010; Leung, Baccaglini-

Frank & Mariotti, 2013). In particular, research carried out by Arzarello et al. (2002) 

led to the description of some dragging modalities used by secondary school students 

when asked to solve open problems by producing conjectures in a DGE and then 

proving them. They describe the key moment of the process of conjecture generation 

as an abduction, related to the use of a particular form of dragging used to maintain a 

certain geometrical property while the figure changes as an effect of dragging one of 

its points. We now clarify the main theoretical notions used in the paper. 

Maintaining Dragging 

To shed light on the key moment described above, the first author conducted a study 

(Baccaglini-Frank, 2010a; Baccaglini-Frank & Mariotti, 2010, 2011), in which 

intentionally inducing an invariant by dragging a point was called maintaining 

dragging (an example will be shown below), and this was explicitly introduced to 

students between the ages of 15 and 17 in Italian high schools. The study led to a model 

describing cognitive processes involved in conjecture-generation when maintaining 

dragging is used by the solver. The findings presented in this paper stem from our 

interest about possible effects that use of maintaining dragging during conjecture 

generation might have on the subsequent proof of the conjecture, and were obtained 

through new analyses of the original data. 
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Abduction 

Peirce was the first to introduce abduction as the inference, which allows the 

construction of a claim starting from some data and a rule (Peirce, 1960). In 

mathematics education there has been renewed interest in the concept of abduction in 

the context of problem solving in DGEs (e.g., Arzarello et al., 2002; Antonini & 

Mariotti, 2010; Baccaglini-Frank, 2010b; Baccaglini-Frank & Mariotti, 2011). In this 

paper we will refer strictly to Piece’s definition of abduction of the general form, that 

is: (fact) a fact A is observed; (rule) if C were true, then A would certainly be true; 

(hypothesis) so, it is reasonable to assume C is true. 

Cognitive Unity 

We will explore relationships between conjecture generation and mathematical proof. 

Studies have shown that the use of DGEs can promote conjecture generation, but not 

necessarily the transition to proof (e.g., Yerushalmy, Chazan & Gordon, 1993). 

However, interesting results have been reached on a possible continuity between these 

processes, leading to the elaboration of the theoretical construct of cognitive unity. The 

original term (Garuti, Boero & Lemut, 1998) was later redefined, assuming that there 

may or may not be continuity between the conjecturing phase and the subsequent proof 

produced (Pedemonte, 2007). The construct of cognitive unity has yielded great 

potential as a tool of analysis of the relationships between processes of conjecture 

generation and proofs; cognitive unity can be assessed comparing the sequences of 

properties logically linked during the conjecturing phase to those elaborated in the 

proof. 

GENERATING CONJECTURES THROUGH MAINTAINING DRAGGING 

We will use an example to show how maintaining dragging can be used to generate 

conjectures in an open problem situation. The request is the following: 

Construct the quadrilateral ABCD (see Fig. 1) following these steps and make 

conjectures about the possible types of quadrilateral it can become describing all the 

ways you can obtain a particular type of quadrilateral. Construct: a point P and a line r 

through P, the perpendicular line to r through P, C on the perpendicular line, a point A 

symmetric to C with respect to P, a point D on the side of r containing A, the circle 

with centre C and radius CP, point B as the second intersection between the circle and 

the line through P and D. 

The figure can be acted upon by dragging points (let us think about dragging D), and 

some geometrical properties can be recognized as invariants no matter how the point 

is dragged (e.g., “CP = PA”) while others can become invariants induced through 

maintaining dragging (e.g., “DA = CB”, “CD || BA”, “ABCD parallelogram”). During 

this kind of dragging (e.g., maintaining “ABCD parallelogram” by dragging D), new 

invariants can be observed as the intentionally induced invariants are visually verified 

(e.g., “D lies on a circle CAP with centre in A and radius AP”).  
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Recognition of new invariants during dragging can be supported by the use of the trace 

mark, a functionality in most DGEs. The solver may perceive the newly observed 

invariants as conditionally linked to the intentionally induced invariant, and express 

this perception in the form of a conjecture (e.g., “If D belongs to CAP, then ABCD is a 

parallelogram”).  

 

Figure 1: a possible result of the construction in the situation described above. 

Our research has shown that many solvers who decide to use maintaining dragging 

perceive the invariants observed during dragging as causing the intentionally induced 

invariant to be visually verified, at a perceptual level, and interpret this as a conditional 

link, leading to a conjecture in the domain of Euclidean geometry (Baccaglini-Frank & 

Mariotti, 2010; Leung, Baccaglini-Frank & Mariotti, 2013). The process is described 

in further detail by Baccaglini-Frank and Mariotti (Baccaglini-Frank & Mariotti, 2011; 

Baccaglini-Frank, 2010a, 2010b).  

MAINTAINING DRAGGING AS A PSYCHOLOGICAL TOOL 

Analyses of the data from the original study have shown that students can also come 

to use maintaining dragging mentally, freeing it from the physical dragging support. 

Below is an example of how this happened (also see Baccaglini-Frank 2010a, 2010b 

from which these excerpts are taken). 

Two 15-year-old students in the second year of an Italian high school, Francesco and 

Gianni, are working on the problem in the example described above. Initially, in order 

to obtain the desired property (that we will indicate with Pd) “ABCD parallelogram” 

the students have chosen diagonals intersecting at their midpoints (P1) as the property 

to induce intentionally through maintaining dragging (the student holding the mouse is 

in bold). However their attempt fails. 

Gianni: and now what are we doing? Oh yes, for the parallelogram? 

Francesco: Yes [as he drags D with the trace activated] yes, we are trying to see when 

it remains a parallelogram. 

Gianni: yes, okay the usual circle comes out.  

Francesco: wait, because here…oh dear! where is it going? […] So, maybe it’s not 

necessarily the case that D is on a circle so that ABCD is the parallelogram. 

Because you see, if we then do a kind of circle starting from here, like this, 

it’s good it’s good it’s good it’s good [he drags along a circle he imagines], 
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and then here… see, if I go more or less along a circle that seemed good, 

instead it’s no good…so when is it any good?  

Francesco and Gianni give a geometric description of how the point D should be 

dragged that does not coincide with the trace mark they see on the screen as Francesco 

performs maintaining dragging. This leads the failure of the students’ use of 

maintaining dragging as a physical tool, so they abandon it. Gianni, who was not 

dragging, conceives a condition, in his mind. This is shown in the following excerpt.  

Gianni: Eh, since this is a chord, it’s a chord right? We have to, it means that this 

has to be an equal cord of another circle, in my opinion with center in A. 

because I think if you do, like, a circle with center. 

Francesco:  A, you say…  

Gianni: symmetric with respect to this one, you have to make it with center A. 

 […]  

Gianni:  with center A and radius AP. I, I think…  

Francesco:  Let’s move D. More or less…  

Gianni:  It looks right doesn’t it?  

Francesco:  Yes.  

Gianni: Maybe we found it! [Figure 2] 

 

Figure 2: Francesco drags D along the newly constructed circle CAP. 

Gianni observes that PB is a chord of the circle CCP and reasons abductively: 

(Facts) PB is the chord of a circle, and PB = PD (P2). 

(Rule) If PB is the chord of a circle symmetric to the one observed then  PB = PD. 

(Abductive hypothesis) PD is a chord of the symmetric circle CAP (P3). 

The abduction leads to a condition as the belonging of D to the circle CAP. The students 

then construct the circle CAP and proceed to link D to it in order to test that when D 

moves along CAP, ABCD is a parallelogram. They seem quite satisfied and formulate 

the following conjecture immediately after this dragging test: “If D belongs to the circle 

with center in A and radius AP, then ABCD is a parallelogram”.  
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What happened to maintaining dragging here? The students continue the exploration 

mentally as if they were dragging. Gianni seems to have interiorized the maintaining 

dragging tool to the point that it as become a psychological tool (Vygotsky, 1978, p. 

52 ff.) for him (Baccaglini-Frank, 2010a, 2010b). In this case, the conjecturing process 

relies entirely on his theoretical control over the figure. 

COMPARISON OF TWO PROOFS OF CONJECTURES GENERATED 

THROUGH DIFFERENT USES OF MAINTAINING DRAGGING 

We now compare two proofs of conjectures generated through the two different uses 

of maintaining dragging described above. Our hypothesis is that when the maintaining 

dragging tool is physically used, there is a “theoretical gap” left between the premise 

and the conclusion of the conjecture, that leads to a discontinuity between the 

conjecturing phase and the proof; on the other hand, if maintaining dragging is used as 

a psychological tool, the abduction performed by the solver brings out key theoretical 

ingredients for the proof (similarly to what is described in Arzarello et al., 2002), 

fostering cognitive unity. The two proofs below are respectively by Gianni and 

Francesco, the students in the excerpts above, and by Ste and Giu, two 16-year old 

students. 

Proof in the case of maintaining dragging used as a psychological tool 

Below we sketch out the proof constructed by Gianni and Francesco for the conjecture: 

“If D belongs to the circle with centre in A and radius AP, ABCD is a parallelogram.” 

During the conjecturing phase the following properties were used: ABCD 

parallelogram (Pd); diagonals that intersect at their midpoints (P1); PD = PB (P2); DP 

chord of a circle symmetric to CCP with centre in A and radius AP (P3); D  CAP (P4). 

During this phase the students look at the figure without dragging anything.  

The proof was reached in 2 minutes, though the following steps: the circles are 

symmetric so AD = AP = PC = BC; the isosceles triangles APD and CPB are 

congruent; so PD = PB; so ABCD has diagonals that intersect at their midpoints, so it 

is a parallelogram.  

 

Figure 3: Conjecture and proof generated by Francesco and Gianni. 
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Figure 3 shows how all the properties used in the conjecturing phase are also used in 

the proof: the shaded cells show properties used in both phases. In particular, it seems 

like the abduction generated in the conjecturing phase led to the geometrical properties 

– P1, P2, P3 – that allowed the students to theoretically fill the gap between the premise 

(P4) and the conclusion (Pd), flipping in particular the abduction between P2 and P3 into 

a deduction. A few properties – Q1, Q2, Q3 – are added in the proof only in order to 

theoretically establish the logical relationships between the properties P4, P3 and P2, 

used in the conjecturing phase. This is a case of cognitive unity between the 

conjecturing phase and the proof.  

Proof in the case of maintaining dragging used physically 

In order to shed light on relationships between the conjecturing phase and the proof for 

the second pair of students, we briefly describe how they reached a conjecture. Unlike 

Gianni and Francesco, Ste and Giu use maintaining dragging physically: they drag D 

and try to maintain the property “ABCD parallelogram” (Pd). Since they have trouble 

maintaining Pd, they induce a different property, that is B  CPD (P3). Doing this they 

eventually reach the conjecture: “ABCD is a parallelogram if PA = AD.” The 

properties they touch on during the conjecturing phase are: a parallelogram has 

diagonals that intersect at their midpoints (P1), BP = PD (P2) through a first abduction, 

B CPD (P3) through a second abduction, D  CAP (P4) using maintaining dragging, 

and PA = AD (P5), another invariant observed during maintaining dragging, which they 

use as premise in their conjecture. 

Ste and Giu conclude their proof in about 5 minutes and leave the figure static on the 

screen as they reason. The inferences they initially make are: CP = PA by construction 

(Q1), PA = AD (P5), CPB = APD (part of Q2) because vertically opposite angles. 

These inferences seem not to take into account properties that had been noticed during 

the exploration. The students are hesitant. Then Giu continues:  

Giu:  So this is equal to this [he seems to point to BP and PD]…so you prove that 

one triangle is a 180 rotation of the other and you prove these are parallel? 

I don’t know. […] 

Ste:  We need to prove that B belongs to this circle here…  

Giu seems to be pointing to BP and PD, stating they are equal (P2), however, he is 

interrupted by Ste, and in the end this property is not used in the proof. The students 

try (and in the end succeed) to prove that the triangles CPB and APD are isosceles and 

congruent (Q3): they claim the triangles have congruent sides of the same lengths (Q1) 

and equal base angles (CBP = CPB = APD = ADP) (Q2). Since CBP = ADP 

(part of Q2) and DA = CB (Q4), then two opposite sides of ABCD are not only 

congruent but also parallel (Q5), which proves that ABCD is a parallelogram (Pd).  

Surprisingly to us, in the final proof the students never use the property BP = PD (P2), 

which played a key role in the conjecturing phase, leading to a property that they found 

easier to maintain during dragging and that eventually led them to the property they 
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used as a premise. Giu seems to recall the importance of the property as he points to 

BP and PD at the beginning of the proving phase, but there seems to be too great a 

“theoretical gap” between P4 and P3, left by the physical use of maintaining dragging, 

for the students to be able to theoretically bridge the gap and make use of the properties 

identified in the conjecturing phase. Figure 4 summarizes the properties used in the 

conjecturing phase and in the proof by Giu and Ste. The shaded cells show the common 

properties, which end up being only the premise (P5) and the conclusion (Pd) of the 

conditional statement, now a proved theorem. The lack of cognitive unity between the 

conjecturing phase and the proof is quite evident. 

 

Figure 4: Conjecture and proof generated by Giu and Ste 

CONCLUSIONS 

Although we cannot draw any general conclusions because we still have very few data 

on processes of proving for this kind of open problem situation, the two examples 

offered seem to well support our hypothesis that different uses of maintaining dragging 

may foster cognitive unity or rupture between the conjecturing phase and the proof of 

a conjecture generated by students in open problem situations. We find particularly 

interesting that when maintaining dragging is internalized and becomes a 

psychological tool, and it is no longer used physically, the abductive reasoning that 

takes place in the conjecturing phase seems to lead to the discovery of geometrical 

elements and properties that otherwise are not noticed. These can be reinvested in the 

proving phase, since they can be re-elaborated into the deductive steps of a proof, as in 

the case of Gianni and Francesco. On the other hand, in the case of physical use of 

maintaining dragging these geometrical elements are “absorbed” by the tool: the 

conjecturing phase seems to not allow the solvers to “bridge the gap” between the 

premise and the conclusion of their conjecture.  

We believe that considerations emerging from this paper can help educators establish 

educational goals when geometry is taught with the support of DGEs, or at least 

provide them with food for thought. Important issues to further investigate are whether 

we want students to become proficient enough in the use of maintaining dragging for 

it to become a psychological tool for them. If so, we could explore how this might be 

accomplished in educational settings. 
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The purpose of this study is to describe the role of the lesson analysis based Teaching 

Practice course on the development of prospective mathematics teachers (PTs) in 

terms of student knowledge. The study will specifically address that how does this 

process improve these PTs’ knowledge of student? Two groups of PTs participated in 

the study, one that participated in a video- based course integrated under lesson 

analysis framework and one that attend the course offered in the conventional form. At 

the end of the courses, we compare two groups of PTs competence about the knowledge 

of the students using a video based analysis task. As a conclusion, the PTs who took 

part in the Teaching Practice which required video- based lesson analysis demonstrate 

more sophisticated levels of noticing to student ideas and teacher’s feedback. 

INTRODUCTION 

The goal of teaching is to support learning by the student. Getting to know the student, 

in turn, is crucial in terms of contributing to student learning. That is why knowledge 

of students is among the most important elements of pedagogical content knowledge. 

Knowledge of student refers to being aware of students’ prior knowledge of specific 

topics, understanding the learning difficulties and misconceptions of particular topics 

(Ball, Thames & Phelps, 2008; Shulman, 1986). Ball et al. (2008) emphasizes the 

teacher's ability to assess the level of comprehension among the students, to realize the 

difficulties they face, and to develop means to overcome such difficulties, for effective 

mathematics teaching. This statement contains a strong emphasis on the importance of 

focus on the comprehension, thought, and difficulties the student may have, with 

respect to the development of teaching competence. In a nutshell, one of the primary 

activities of mathematics teaching is about analysing the responses and thoughts of the 

students (Ball, Lubienski, & Mewborn, 2001).  

Teacher training programs are designed to formally build up the teaching proficiency 

of prospective teachers (PTs). Even though the PTs get the chance to improve their 

knowledge of students through various theoretical courses, such theoretical 

information usually does not suffice to provide them a clear picture of the student in 

an actual classroom. Driel and Berry (2010) note that student’s knowledge is among 

the most problematic issues PTs face during their teaching practices. This makes 

educators to seek new approaches to support the PTs' development in terms of student’s 

knowledge. Recent approaches include a preference for educational activities focusing 

on how the teaching knowledge is used by the teacher, and how it supports learning by 

the students (Mcdonald, Kazemi & Kavanagh, 2013). One such approach proceeds 

with a lesson analysis and is defined as learning teaching through instruction (Hiebert, 
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Morris, Berk, Jansen, 2007; Santagata & Guarino, 2011). According to Barnhart and 

van Es (2015), lesson analysis is about understanding and trying to interpret the 

student's thinking by examining the teacher-student and student-student interactions, 

with a view to finding out what is necessary to support such thinking. These analyses 

are crucial for the development of the teaching knowledge (Sun & van Es, 2015). Such 

practices enable PTs to notice the thoughts of the students, to reason regarding the 

learning by the students on the basis of the thoughts of students, and to gain experience 

which can be used in their in-class practices. 

There are only a limited number of studies which use such analyses to support the 

development of PTs in terms of teaching knowledge (Barnhart & van Es, 2015; 

Santagata & Yeh, 2014).  This study aims to reveal how the Teaching Practice course, 

which offers a chance to have a video-based analysis of and reflection on learning-

teaching activities, affect the development of PTs' knowledge of the student. In case 

the study implemented in Turkey, which is characterized by a distinctive system of 

education, leads to positive results, it will help provide new experimental evidence 

regarding the efficiency of the lesson analysis. Furthermore, the study investigate the 

development of the PTs' skills to lesson analysis, within knowledge of student. The 

study will specifically address the following research question. How does this process 

improve these prospective teachers’ knowledge of student? Therefore, the presentation 

is effectively a part of a more comprehensive project, and will offer product-focused 

insight into the change and development in PTs. 

THEORETICAL FRAMEWORK 

This study is based on noticing and lesson analysis theoretical frameworks. According 

to the noticing, three fundamental indicators of the teacher's awareness of classroom 

interactions are identifying what is crucial for learning-teaching activities in the 

classroom, establishing the link between the classroom interactions and their associated 

general learning-teaching principles, and finally using existing knowledge to reach 

inferences regarding the nature of classroom interactions (Jacobs, Lamb & Philipp, 

2010; van Es & Sherin, 2002). The lesson analysis, on the other hand, is a systematical 

perspective focusing on the teaching activities by the teacher and the learning by the 

student. In this context, an assessment of the effectiveness of teaching through lesson 

analysis requires the skills to determine the thoughts of the student, and to develop her 

interpretation skills (Sun & van ES, 2015). Furthermore, systematical analyses such as 

those provided by lesson analysis require noticing-related skills, and therefore, help 

develop noticing skills (Barnhart & van Es, 2015). 

METHOD 

This study was carried out "Teaching Practice" course offered to 4th year students in 

the secondary mathematics teaching program. The first group (NLTP) comprising 12 

PTs the course offered in the conventional form, whereas the second group (LTP) 

comprising 12 PTs who volunteered took the course integrated under the lesson 
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analysis framework. The first author personally offered the Teaching Practice course 

for both groups. 

Lesson Analysis Supported Teaching Practice (LTP) 

PTs were separated into 4 groups of 3. Each group spent 6 hours per week at the school. 

The whole procedure took 10 weeks. During the first three weeks the PTs were asked 

to observe the assigned teachers and prepare a reflection report taking into account the 

main theme in Table 1. In the remaining 7 weeks, they were expected to engage in 

lesson analysis on video regarding their own teaching practices. 

Theme Remarks     

Identification 
Identification of the cases where students have difficulty in 

learning and make mistakes. 

Interpretation and statement of 

the reason. 

Clarifying cases inhibiting comprehension of and 

misleading students. 

Providing recommendations.  

Coming up with recommendations to eliminate learning 

difficulties and mistakes by the students in case of 

repeating a topic. 

Table 1: Lesson analysis framework 

Throughout this process, the first researcher made video recordings of 4 hours of 

teaching practice by each PT in an actual classroom. Each video was provided to PTs 

on the same day, with the expectation that they would engage in lesson analysis and 

present a report. During routine weekly meetings at the university, a pre-selected video 

recorded during the week was discussed with PTs, with particular emphasis on the 

difficult points from the perspective of the student, reasons thereof, and proposed 

solutions.  

Teaching Practice without Lesson Analysis (NLTP) 

Formally speaking, the 10 weeks implementation period with this group is similar to 

that of the other group. Each PT had 4 hours of teaching practice during the semester. 

Throughout the semester, PTs were required to prepare reports to reflect the general 

structure of the lesson they and their friends had given. The routine weekly meetings 

at the university. Each PT was observed personally by the first author, for at least one 

hour of class, and was provided feedback. 

Data gathering tools 

The reports drawn up by PTs within the framework of the course, field notes by the 

researcher, and the records of the meetings are the major data sources of the study. 

Furthermore, in the end of the procedure, PTs in both groups were asked to provide an 

analysis regarding a 5 minutes video clip taken in an actual classroom. The PTs were 

asked to take notes of what they notice about the interaction at the classroom while 

watching the video, and to provide details of such notes once the video was over. The 

video is from an actual classroom where the ability to ‘Multiply a natural number with 

an algebraic expression’ is taught. The video clip shows the teacher failing to provide 
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appropriate feedback in response to a mistake by the student. The PTs are expected to 

notice the teacher's behaviour, and develop recommendations on how to behave. 

Data analysis 

The reports drawn up by PTs about the video task were read completely by the first 

researcher. In this context, the researcher focused on what the PTs noticed, how they 

interpreted these, and if they presented any recommendations or not, and then 

categorized the statements of the PTs in terms of their similarities and differences. The 

categorization was based on the framework for learning to notice students' 

mathematical thinking, developed by van Es (2002). When marking the levels of the 

PTs' statements, identification and interpretation of the teacher's behaviour regarding 

the mistake served as the key. The final form of the rubric (see Table 2) was used to 

review once again the reports by the PTs. 

Levels  Definition 

Level 1  Just the description of the teacher's behaviours. Failure to notice the 

mistake of the student and the teacher's intervention regarding the 

mistake. 

Level 2 Noticing the student's mistake. Settling with just the description of the 

teacher's behavior regarding the mistake.  

Level 3 Noticing the student's mistake. Limited interpretation about the nature 

of the teacher's intervention regarding the mistake. The interpretation 

containing relatively superficial statements which are not related to the 

students, such as 'the teacher's behaviour is very acceptable or 

inacceptable'.  

Level 4 Noticing the student's mistake. Interpretation about the nature of the 

teacher's intervention regarding the mistake. The interpretation 

containing statements focusing on the student, such as 'the teacher 

disregarded the student's error, and failed to elaborate on why the 

student made the mistake', and furthermore containing 

recommendations on how to intervene on such mistakes.  

Table 2: PTs' lesson analysis rubric concerning the teacher's behaviour 
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FINDINGS 

The analysis results for both groups are shown in Table 3. 

Group Level 1 Level 2 Level 3 Level 4 

NLTP 

Betül, Emel, Nur, 

Derya, Gürcan,  

Mine, Hamit, Ezgi, 

Ümit, Sena 

Erhan 

 

Funda 

 

 

LTP 
Mustafa, Tülay 

Ayşe, Sibel 

Nalan 

 

Rana 

 

Dilek, Nursel, 

Nazan, Elif, 

Bahar, Hatice 

Table 3: Lesson analysis levels of the prospective teachers in both groups 

A glance at Table 3 suggests that the PTs in the LTP performed much better in the 

video analysis, in comparison to those in the NLTP. 10 PTs in the NLTP ranked in 

level 1, whereas just 4 PTs in the LTP did so. This fact indicates that the majority of 

the PTs in the NLTP failed to take note of the student's mistake and the teacher's 

behavior in response. On the other hand, 8 PTs in the LTP noticed the teacher's 

behavior in response to the student's mistake, while only 2 of the PTs in the NLTP did 

so. None of the PTs in the NLTP ranked in level 4, whereas 6 PTs in the LTP ranked 

at that level. This effectively means that 6 PTs not only noticed the student's mistake 

and the teacher's response, but also commented on the acceptability of the teacher's 

behavior, as well as made recommendations on how she should have. 

6 students in the LTP ranked in level 4. These PTs noted in their reports the student's 

mistake and the teacher's reaction to the mistake and criticized the teacher for failing 

to provide feedback for the student's mistake, and to investigate the cause of the 

mistake. A section of the report by Bahar is quoted below. 

A student went to the blackboard. She proposed a different solution. She said that the first 

row of the algebraic tile represented x+6, while the column represented 3x. No statement 

was made on why the student committed the mistake. One could have asked the student 

“Why do you think so?”, “Do you get the same result if you go through this route?” etc. 

Yet, the teacher proceeded directly with the explanation. I believe the students had 

misconceptions regarding operations using algebraic tiles. Perhaps one could have 

discussed their reasons. The student who committed the mistake should have been 

questioned about what she was thinking. 

Bahar noticed that the teacher disregarded the student’s mistake. Her statements 

emphasized the need on part of the teacher to understand the student’s mistake, as well 

as to ask questions to make her realize the mistake as well.  

None of the PTs in the NLTP provided statements which is on par with level 4. Level 

2 and 3 had one PT from each group. Both levels include the PTs who noticed the 

student’s mistake. Level 3, in contrast to Level 2, however, requires the PTS to provide 

statements regarding the nature of the feedback the teacher provided in response to the 
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mistake. In this context, just two PTs in the NLTP can be named to have noticed the 

student’s mistake and the teacher's behavior in response. An excerpt of the response by 

Funda, who ranked in level 3, is provided below. 

The student who provided the first response to the teacher's question about the algebraic 

expression for this model said "there are 3 x's; that is 3x; and as there are 6 1s, we have 3x 

+ 6". The second student also wrote 3x + 6. The students had difficulty in noticing the 

second way. When the students experienced difficulty, the teacher asked them how they 

could achieve this by using multiplication. The mistake of a girl who provided an incorrect 

answer was explained by the teacher, who made sure that the mistake was corrected. 

In her notes, Funda stated that a girl made an mistake, but did not specify where and 

how she did so. Actually, here the teacher's statement is not related directly with the 

student's mistake, but instead is a general remark towards the whole class. The response 

by Funda, as it notices the student's error and the teacher's response, but provides only 

a limited and superficial interpretation of the teacher's behaviour. 

4 of the PTs in the LTP and 9 of the PTs in the NLTP ranked level 1 with their notes. 

The notes by Hamit(NLTP) are quoted below. 

The teacher asked for the algebraic expression for the model she formulated. Students 

reached the answer 3x + 6. Then, the teacher asked "Can we express it in another way?". 

One of the students gave the correct answer. She wrote it on the blackboard. ( 3. (x + 2) ). 

The teacher, in turn, explained the left side as 3, and the upper side as x + 2. 

A glance at Hamit's remarks indicates that he tries to summarize what is going on in 

the classroom. He did not delve on the mistakes of the students and the reaction of the 

teacher at all. The notes by Mustafa (LTP) in level 1 are quoted below. 

The teacher developed the model and asked the students to express in algebraic terms. 

Another student wrote 3x on the first column, and x+6 on the first row. Then the teacher 

wrote (x+2) on the first row, and asked "how many counts of this row do we have?" before 

proceeding to write (x+2).3 and explaining it. Here, the teacher's efforts to have the 

problem solved by the students, and her refrain from telling the result outright, did help. 

This helped increase the students' participation in the class even more; they tried to develop 

new ways, and the class became more enjoyable. However, an mistake in the use of 

algebraic tiles for explaining this gain made it difficult for the students to find the answer 

and establish a relationship. 

Mustafa's remarks reveal that he provided a general description of the events in the 

classroom, but failed to focus on the student’s mistake. Only in his last line mention 

the meaning of the algebraic tiles being difficult to grasp for the students, due to a lack 

of clarity. Mustafa's response matches level 1 better, as all it contains a description of 

the behaviors of the teacher and the students. However, one can also say that Mustafa's 

statements are more qualified compared to the statement provided as an example of 

level 1 statements by the NLTP group. 
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CONCLUSIONS 

The purpose of this study is to analyse the development of the lesson analysis skills by 

PTs, and to state the development's contribution to the knowledge of students. The PTs 

who took part in the "Teaching Practice" which required video-based lesson analysis 

had their skills to analyse a lesson had improved in terms of identifying learning 

difficulties. The video clip shown to PTs contained general remarks to the classroom, 

without the teacher providing any feedback to the mistake by the student. This was 

noticed by the majority of PTs in the LTP, while the NLTP did not realize it at all. This 

finding is consistent with Santagata and Guarino (2011) conclusion that video-based 

activities help PTs in getting the details of the students' thinking and identifying the 

teaching acts of the teacher to render such thinking visible. 

6 of the PTs in the LTP achieved level 4 in noticing the teacher's behaviour, whereas 

the PTs in the NLTP did not so. The PTs who ranked in this level in the LTP not only 

noticed the student’s mistake and the teacher's behaviour concerning the mistake, but 

also interpreted the teacher's behaviour in terms of its effectiveness and provided 

recommendations on what to do. Usually the PTs proposed for the teacher an 

investigation of the student's mistake, and interaction with the student to make the 

reason of mistake known. This suggest that the PTs in the LTP have the awareness of 

the need to focus on the students' thinking in the teaching process. The PTs in the 

NTLP, on the other hand, chose to confide themselves to a description of the classroom 

interaction shown in the video; just two of them noticed the student's mistake in the 

video. However, they fell short of focusing on the cause. This suggests that the PTs in 

the NLTP lack the awareness of the need to inquire about the student's mistake. As the 

teachers' awareness of the importance of the students' thoughts increase, their 

classroom practices will improve as well. Indeed, according to Levin, Hammer & 

Coffey (2009), PTs developing the awareness of the need to grasp the students' thinking 

will lead them to practices to investigate the students' thinking. The most important 

problem faced by novice teachers and PTs is teaching in a perspective isolated from 

the students (Barnhart & van Es, 2015). This is especially the case with the analyses 

provided by the PTs in the NLTP. Their analyses usually provided only a description 

of what the teacher did, and lacked a focus on what the students did. In conclusion, the 

PTs in the LTP focus, arguably, more on the difficulties faced and mistakes committed 

by the students.  

Some PTs in the NLTP failed to provide level 4 analyses. However, a glance at the 

analyses by such PTs indicates that even their analyses contain more comprehensive 

remarks. These PTs noticed the difficulty the students had, while failing to provide an 

interpretation of the teacher's behaviour in response, indicating a lack of practice to 

achieve such change. This can perhaps be achieved through a longer course. 
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Textbooks from Brazil and the United States were analyzed with a focus on similarity 

and contextual-based tasks. Students’ opportunities to learn similarity were examined 

by considering whether students were provided contextual-based tasks of high 

cognitive demands that included missing or superfluous information. Results from five 

textbooks are provided and, examples of context-based tasks are discussed. 

INTRODUCTION 

This paper reports on a portion of a project involving two countries, Brazil and the 

USA. Our goal is to analyze the presentation of geometry in textbooks from both 

countries. For this paper, we focus on the concept of similarity and the use of contextual 

problems. Similarity often provides opportunities for students to investigate real-world 

problems. Even though each country throughout the world has different textbooks, the 

results of our work can contribute to existing knowledge about this most used resource 

in the classroom (Valverde et al., 2002; Haggarty & Pepin, 2002).  

Many researchers have examined textbooks; this line of research is not new. Fan (2013) 

identified several aspects of textbooks that could be examined, and several researchers 

have investigated mathematics content in textbooks. For example, Haggarty & Pepin 

(2002), Schmidt et al. (1997) and Wijaya et al. (2015) discussed opportunities students 

have to learn particular content and focusing on the topic of angles. A deep analysis of 

the possibilities of textbook tasks to supFport students’ knowledge was conducted. We 

focus on the opportunity to learn and will present results from the analysis of the ways 

in which three textbooks from Brazil and two textbooks from the USA present the 

concept of similarity and use contextual problems.  

THEORETICAL FRAMEWORK 

The idea of opportunity to learn (OTL) is well established. Carroll (1963) described it 

as the amount of time students spend learning particular topics. Husén (1967) defined 

it as "one of the factors which may influence scores [...] whether or not the students 

have had an opportunity to study a particular topic or learn how to solve a particular 

type of problem" (p. 162). Since this period, several researchers have used OTL to 

analyze students’ learning experiences and learning resources such as textbooks (e.g., 

Floden, 2002; Haggarty & Pepin, 2002; McDonnell, 1995; Tornroos, 2005). 

McDonnell (1995) contextualized OTL as an education indicator, describing research  
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about curriculum, school and classes. For her, OTL is used to describe the complexity 

of the schooling process and "although designed as a technical concept to ensure valid 

cross-national comparisons, OTL has changed how researchers, educators, and 

policymakers think about the determinants of student learning" (p.305). Even its 

applicability as a policy instrument is limited.   

We adopted the description of OTL provided by Wijaya et. al (2015) that considers 

three aspects of OTL [that] are crucial to develop the competence of solving context-based 

tasks. The first aspect is giving students experience to work on tasks with real-world 

contexts and implicit mathematical procedures. The second aspect is giving students tasks 

with missing or superfluous information. The last aspect is offering students experience to 

work on tasks with high cognitive demands. (p.46) 

They also describe contextual problems as the types of problems that present a situation 

referring to the real world or a scenario that can be imagined by students. These 

contexts and scenarios may include personal, scientific, occupational, or public 

information. However, just because a problem involves context does not mean that the 

problem will be of high cognitive demand. Thus, it was also important to consider the 

type of thinking that was required of students to solve these context-based problems. 

As discussed in Boston and Smith (2009), different types of tasks require different 

kinds of thinking that can influence the opportunities students have to learn particular 

mathematical ideas. 

CONTEXT AND METHOD 

For this project, five textbooks were selected for analysis: three textbooks from Brazil 

and two textbooks from the USA. The textbooks from Brazil presented mathematical 

ideas in an integrated manner. That is, similarity was included in a textbook that also 

included topics such as algebra and statistics. At the high school level, textbooks in the 

USA tend to present mathematics in two different ways. Some textbooks have a single 

subject focus. For example, in 9th, 10th, and 11th grade students might use Algebra I, 

Geometry, and Algebra II textbooks. Similarity would be included in the Geometry 

textbook and the main focus of the text would be on geometry topics. Other textbooks 

in the USA present topics in an integrated manner, similar to Brazil and other 

international countries. Students in 9th, 10th, and 11th grade might use textbooks that are 

titled Integrated Mathematics I, Integrated Mathematics II, and Integrated Mathematics 

III. We selected textbooks from the USA that presented mathematical topics in an 

integrated manner. In these textbooks, similarity was included in an Integrated 

Mathematics II textbook. Students would typically use this textbook during the 9th or 

10th grade when they are 14 or 15 years old. In Brazil, similarity is presented in the 9th 

grade (14 years old).  

We started identifying the physical characteristics of the books (e.g., location, number 

of pages on similarity, similarity topics addressed and sequence of presentation, 

structure of a lesson, number of contextual tasks and their cognitive demands). After 
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that, we analyzed the OTL on the contextual-based tasks (approach of contextual- 

based tasks, real experiences, superfluous/missing information, cognitive demand). 

All the tasks about similarity were coded by the first author to identify the low or high 

level of cognitive demand. Afterwards, the reliability of the coding was checked 

through an additional coding by the second author who coded a random selection of 

about 41% of the tasks. After some adjustment, 92% agreement was reached.  

After that, we focused on contextually-based tasks. In Figure 1, we show an example 

of this type of task.  

 
Figure 1 

Our interest was in the contextual tasks like the one above. When considering a 

problem such as this, we reflect on the three components of OTL. In particular we want 

to know whether the context is real or can be imagined, whether there is missing or 

superfluous information, and to determine the cognitive demand of the task.  

RESULTS 

The physical characteristics of the textbooks 

When analyzing the textbooks, we began by considering the physical features of the 

book. This included the total number of pages and the number of pages focused on 

similarity (See Table 1). We noticed that even though there were more pages devoted 

to similarity in some of the books, the percentage of pages focused on similarity ranged 

between 7.7 and 10.4%. 

Table 1 

 Total number of 

pages in the 

textbook 

Number of pages 

focused on 

similarity 

Percentage of the book 

focused on similarity 

Book 1-BR 272 21 7,7% 

Book 2-BR 270 28 10,3% 

Book 3-BR 240 25 10,4% 

Book 1-USA 1322 104 7.8% 

Book 2-USA 941 76 8,1% 

To look more closely at the contextual tasks focused on similarity, we determined 

whether the tasks were of high or low cognitive demand (See Table 2).  
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Table 2 

 Total of tasksi 
Total of 

contextual tasks 

Low level in 

contextual tasks 

High level in 

contextual tasks 

Book 1-BR 80 11 (13,8%) 5 (45,5%) 6 (54,5%) 

Book 2-BR 140 12 (8,6%) 6 (50%) 6 (50%) 

Book 3-BR 70 20 (28,6%) 9 (45%) 11 (55%) 

Book 1-USA 360 58 (16,11%) 41 (70,7%) 17 (29,3%) 

Book 2-USA 538 79 (14,7%) 64 (81%) 25 (19%) 

Looking at table 2, we note that having more tasks does not suggest more high level 

tasks (proportionally). More tasks, however, offer options to the teacher, who can 

choose which tasks he or she wants to explore with students. 

Contextual similarity tasks  

Considering the OTL, we analyzed the contextual-based similarity tasks based on the 

three mentioned aspects (Wijaya et al., 2015). First is the opportunity to work on tasks 

involving the real-world. As Dietiker & Brakonieck (2014) suggest, one must 

consider, what is the real-world? Do the tasks require students to consider important 

aspects of reality? Do the tasks require students to take a critical perspective and use 

information about the real world that they know? 

To look at the contextual-based task focusing on the real world, we considered three 

types of problems: 1) problems most students can relate to and make sense of; 2) 

problems students with particular experiences can relate to; and 3) problems that have 

contexts that students are not likely to encounter in their everyday lives. 

A type 1 task is shown in Figure 1. Most students have experiences with maps and 

addresses. We can indicate another group of contextual tasks (type 2) for which the 

context may not be relevant to students. Tasks that focus on rural or urban issues, for 

example, can be relevant to one group of students but not to another. It is important for 

the teacher to consider to what extent the context of this problem is relevant to the 

students in the class.  

 
Figure 2 
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On the other hand, we found some tasks (type 3) about which we could ask: who has 

this reality? Or, is it possible to consider it as a reality? Consider the task of Figure 3ii     
i We considered a task with three items as three tasks.    
ii The tasks from Brazilian textbooks were translated to English. 

that depicts a flying saucer. We do not find any problem with the mathematical 

question. But is this a good example of context-based task? When our students solve 

this kind of problem, are they critical about the context?  

 
Figure 3 

We cannot change the textbook’s tasks. Teachers typically skip this type of problem. 

Our reflection on this paper is to think about how to use this kind of task as an 

opportunity for students to be critical. This is contextual and educative, teaching 

students not to accept everything without first thinking about it. Based on Dietiker & 

Brakonieck (2014), we can help students develop sophisticated ways to interpret 

problems and think geometrically if we encourage them to approach problems 

critically. 

Another example of this type task is an example of a flag shown in Figure 4. Students 

are asked to determine if the triangles in the flag are similar. We wonder, is this a good 

example of a context task? Why it is important to know if the triangles are similar? 

Is this a real problem?  

 
Figure 4 

The second aspect of OTL is considering tasks with missing or superfluous 

information. As we discussed in the theoretical framework, when we talk about 

superfluous information, we usually link this idea with problems that have more data 

than we need. This is important so students learn to choose the information that is really 

important to the problem. In a real life, we have to decide among all information 

available which pieces are important to solve the problem.  

Figure 3 

 

Figure 3 

 

Figure 3 

 

Figure 3 
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Here we are reflecting about something more. Again we propose some questions to be 

explored with students: What is considered superfluous? What kind of information 

do we not need? 

On the task shown in Figure 5 we could say the same about the information to solve 

the problem: the solution expected uses similarity, the measurements are sufficient to 

calculate the height of the building, etc.  

 
Figure 5 

But why would Mary tie a wire on top of the building and the other end five meters 

away from the building? If she can have a wire in the top, why she doesn't keep the 

wire close to the building and measure the distance from the top to the foot of the 

building? We are inviting reflection here about the concept of superfluity.  What is not 

necessary in this task is not the extra information. The math solution proposed is extra 

work to do in a real situation. It is important for students to critically analyze that the 

best solution in the real world is not always the solution of the textbook.  

The last aspect of OTL is "offering students experience to work on tasks with high 

cognitive demands" (Wijaya et al., 2015, p.46). When we read this, we think about the 

importance of offering students tasks that make them investigate, explore, think, and 

not simply repeat procedures. However, it is important that these tasks relate to what 

students are learning in class. The student needs to analyze the situation, see that it has 

more than one solution, etc. But is this aligned with what students are learning in 

class?  

 
Figure 6 

Figure 5 

 

Figure 5 

 

Figure 5 

 

Figure 5 
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How is similarity explored in this task? The relation with similarity is not explicit in 

the task. When the student is solving this problem, is he asking why it is proposed to 

learn similarity? Is the teacher exploring this?  

DISCUSSION 

We want to explore further the previous issues related to context presented in the 

previous examples. The principal function of contextual-based tasks is to prepare the 

students to solve real problems. What we could note in evaluating textbooks of Brazil 

and the USA is that most textbooks have few contextual problems. More than this, we 

can reflect about how students can become better solvers with problems that do not 

make students think about real-world problems (like flying saucer). Do we prepare 

them to be critical with the situation they are given? Based on Dietiker & Brakonieck 

(2014), it is reasonable to assume that critical discussion/reflection could help students 

develop sophisticated ways to interpret problems and think about geometry, becoming 

good solvers in real situations. 

As we said, we cannot change what is presented in the textbooks, but we can do more 

than just find the answer or skip the task; we can use this type of task to discuss critical 

aspects of contextual tasks with our students and assure the cognitive demand of the 

task is high. We can not only wait for a high cognitive-demand task given by the 

textbook to make the task a high-level task. As shown in the tables, the textbooks have 

few contextual problems of this level. As teachers, we can explore the tasks with 

critical questions and change them to be high, investigating the description of reality 

in the tasks.  

Most authors mentioned in this paper and many others writing about OTL theory 

classify tasks as high and low, but we believe that is necessary to do more than that. It 

is a good process, and to identify high level of cognitive demand is important to teach 

with tasks that contribute a lot with the learning, but as we show, it is not enough. Some 

of the tasks make the students think and reflect, but maybe not in the context of the 

study. 
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THE DRAGGING GESTURE – FROM ACTING TO 

CONCEPTUALIZING 

Daniela Behrens, Angelika Bikner-Ahsbahs 

University of Bremen, Germany 

 

Several studies emphasize students’ difficulties in dealing with decimal numbers. 

Taking up this problem, we examine the potential of a digital place value chart to 

constitute decimals as a structure in a design-based research study. In this paper, we 

focus on results of the analysis of how “dragging-movements” representing bundling 

and de-bundling in this digital place value chart supported the epistemic process of 

grade 5 students. 

INTRODUCTION 

In learning mathematics a core role is attributed to the use of representations that 

mediate the handling of mathematical objects (Duval, 2000, 61), as these are not 

directly perceivable and manageable. Especially for young children, mathematical 

objects should be represented by concrete material that allows concrete activities to get 

access to the underlying mathematical idea (cf. Söbbeke, 2005, quoted in Scherer & 

Moser Opitz, 2010, 75). To construct mathematical structures represented in an 

activity, it is likewise important to afterwards detach from the concrete material. 

Following recent research, gestures have “the potential to serve as a unique bridge 

between action and abstract thought” (Goldin-Meadow & Beilock, 2010, 664), because 

they “emerge from the perceptual and motor simulations that underlie embodied 

language and mental imagery” (Hostetter & Alibali, 2008, 502). However, little is 

known about how gestures transform concrete actions into epistemic processes. The 

project DeciPlace (Behrens, in press) addresses this question by investigating how 

dragging-actions on a digital place value chart on the iPad (designed by Ladel & 

Kortenkamp, 2013) may support students’ conceptualizing of decimal numbers. The 

topic of decimal numbers is used as an example because of its relevance and the 

difficulties students have with the underlying concept (cf. Behrens (in press); Steinle 

& Stacey, 2004),   

THEORETICAL FRAMEWORK 

The project is conducted as a design-based research project in which tasks are 

developed to support learners in the extension of the decimal place value system from 

natural numbers to decimal numbers. This is done by means of a digital place value 

chart on the iPad. In contrast to traditional place value charts, our digital one keeps the 

decimal number invariant when bundling and de-bundling takes place. This invariance 

is meant when we talk about the structure of a decimal number. In the chart, bundling 

and de-bundling are executed by dragging tokens from one field to another (see figure 

1), hence, dragging-movements play a crucial role in the process of acquiring the  
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structure of decimals with the aid of the digital place value chart. These dragging-

movements may be observed as concrete actions on the one hand and as gestures on 

the other. 

Krause (in press) has explored gestures learners used while solving mathematical 

problems. She identified that gestures can comprise various epistemic functions related 

to language and other semiotic resources. Her study only explores spontaneous 

gestures, it does not show how specific actions such as dragging-actions can be 

initiated and transformed into gestures to support the learning of a specific concept. 

However, Krause’s results can serve as a theoretical frame to investigate gestures 

which emerge from „dragging-actions“ initiated by the use of the digital place value 

chart on the iPad. 

Following Krause (in press) gestures contribute to perform and form epistemic actions 

in collective epistemic processes. To examine how the students collectively acquire the 

decimal number as a structure the epistemic process can be described by an epistemic 

action model, the GCSt-model, shaped by three epistemic actions (Bikner-Ahsbahs, 

2005): At the beginning of an epistemic process actions of gathering small and 

meaningful elements like examples, counter-examples, associations, results, patterns 

or elementary statements are performed. This prepares the consecutive epistemic action 

of connecting mathematical meanings by recognizing relations, by reasoning or by 

summarizing results. By recognizing regularities or exemplary results these 

connections can pass into seeing a structure. (Bikner-Ahsbahs, 2005, 202). 

Krause (in press) has used this GCSt-model to describe epistemic functions of gestures 

as ways for nurturing epistemic actions. As gestures we characterize all spontaneous 

movements of hands and arms that accompany speech without functionally operating 

on something (McNeill, 1992, 37; Kendon, 2004, 15). Because of their ambiguity, 

gestures are interpreted in relation to speech and precedent actions that indicate the 

context. Krause has shown that these gestures may “refer to the representation of an 

object on [three] different levels” (Krause, in press, 138): 

 On the first level considered as the level of the concrete “gesture refers to 

something actually represented in a fixed diagram” and thereby “works as an 

index to hint at something already represented” (ibid., 138).  

 On the level of the potential (level 2) “gesture is embedded in a fixed 

representation but does not merely refer to an already fixed concrete 

component” and “represents a ‘hypothetical something’ not there but 

potentially ‘thought into’ a present diagram” (ibid., 138). 

 Gestures on the third and free level of reference are performed in the gesture 

space “without being dependent on a present referential frame”, so that “the 

interpretation of the gesture is detached from the concrete” (ibid., 138). 

Following Krause “these gestures may reveal a more conceptual than 

contextual idea of a mathematical situation or object.” (ibid., 138). 
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Through these three referential levels, Krause (in press) is able to describe how specific 

gestures develop and detach from the concrete towards a use independent from 

concrete recourses such as inscriptions. Based on this theoretical background we can 

now be more precise in formulating the research questions to be answered in this paper:   

 With respect to the referential levels, how do dragging-gestures emerge from 

dragging-actions initiated by the digital place value chart?  

 With respect to epistemic processes, how can dragging-gestures support 

conceptualizing the decimal number as a structure? 

METHODOLOGICAL CONSIDERATIONS 

Data collection: 

These two research questions are investigated through teaching experiments with ten 

pairs of students (grade 5 & 6, age 10-12) being conducted in a cyclic process of design 

and analysis. Each student pair participated in two consecutive teaching experiments 

guided by the researcher. These teaching experiments lasted about 90 minutes each and 

were videotaped from three perspectives (frontal, lateral and from above) to capture all 

verbal utterances, actions, gestures, etc. The video data has been completely 

transcribed including verbal utterances and non-verbal activities as well as gestures. 

The digital place value chart: 

The specific tasks of the teaching experiments are particularly constructed for the use 

of the digital place value chart on the iPad. To create the representation of a number 

tokens can be inserted directly by tapping in the respective column of the chart. The 

fundamental characteristic of the digital place value chart concerns the possibility to 

automatically de-bundle (see figure 1) or bundle (if possible) within the chart by 

dragging tokens from one column to another, while keeping the represented number 

invariant. If bundling is not possible, the token slides back to its initial position. The 

represented number can be additionally displayed in standard notation above the chart 

(for a detailed description of the digital place value chart see Behrens (in press)).  

 

Figure 1: De-bundling a token from tenths to hundredths in the digital place value 

chart 

The tasks: 

Exploiting the automatic bundling and de-bundling within the chart, the first teaching 

experiment focuses on the structure of the decimal place value system. The task is to 
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find as many representations of specific numbers as possible through bundling and de-

bundling. The extension of the place value chart of natural numbers by tenths and 

hundredths is motivated by extending the quantity of representations, recognizing that 

particularly the base-ten property of the place value chart’s structure (cf. Ross, 1989) 

remains preserved. In the second teaching experiment the completely bundled 

representation in the place value chart is used to prepare the introduction of the standard 

notation of decimal numbers. In this case, the digital place value chart can support 

bundling activities by enabling trials and systematic tests concerning when and how 

bundling is possible. Furthermore, through the possibility to display the represented 

number the students have the chance to explore the relation between the representation 

in the place value chart and the adequate standard notation.  

Methods of data analysis: 

In this paper we focus on the analysis of the epistemic process of the first student-pair 

we examined. This analysis has been conducted in three steps:  

(1) In order to address dragging-movements, the data was first scoured for scenes of 

“dragging” either as an action on the iPad or as a hand moving gesture to the left or to 

the right distinguishing the three levels of reference (Krause, in press). Dragging as a 

gesture is identified when there is a horizontal movement to the right or to the left 

without lifting and declining the hand, mostly this was found to be accompanied by 

verbal utterances referring to “dragging”. Dragging-related gestures as pointing 

successively on two columns within the place value chart have been coded separately. 

Regarding the referential level of gesture we have to adapt this concept on the 

application of an iPad with a touchpad-surface such that gesturing on the concrete level 

of reference can also mean performing operations on the iPad.  

(2) In a second step, all scenes of “dragging” were analyzed by describing the epistemic 

process through the epistemic actions gathering, connecting and structure seeing (cf. 

GCSt-model, Bikner-Ahsbahs, 2005).  

(3) Finally, these two analyses of the “dragging-scenes” were matched to examine how 

dragging on the three referential levels supports building the structure of decimals.  

DATA ANALYSIS & RESULTS 

By analyzing the dragging movements within the epistemic process of the two students 

we detected three different modes of dragging: the (1) practical, (2) operational and (3) 

structural dragging.  

Practical dragging appears particularly when the digital place value chart is introduced 

and the students have not yet discovered how it works, so that they just drag tokens 

within the chart or utilize it without scrutinizing. Therefore, practical dragging is 

completely dependent on the concrete digital place value chart and it is performed on 

the concrete referential level. Within the epistemic process it can particularly be 

observed in phases of gathering. 
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In the first teaching experiment, the students were asked to find as many 

representations of a specific number in the place value chart as possible. By dragging 

tokens from hundreds to tens the students utilized the digital place value chart on the 

iPad to generate different representations of the number “101”.  

1 Bella: I’ll just try (drags a token from hundreds to tens within the digital place value 
chart on the iPad (in the tens’ column ten tokens emerge), see figure 2) 
Woah 

2 Hanna: Ten and One. 

 

Figure 2: De-bundling as dragging from hundreds to tens  

Interpreting the verbal utterance of Bella and her reaction of surprise and astonishment 

(line 1) on the de-bundling from hundreds to tens we can assume that she does not 

anticipate what will happen when dragging tokens from hundreds to tens, and 

especially not why this happens. Hanna’s denomination of the result (line 2) confirms 

our assumption and even indicates that at that time there is no need for the students to 

bring this observation into question, but to just write the result down on the worksheet. 

When the students have figured out how bundling and de-bundling within the digital 

place value chart works, they are able to foresee the outcome, so that they can use both 

transformations through dragging on purpose. That is what we call operational 

dragging. It requires and indicates phases of connecting that facilitates the 

accomplishment of dragging with the intended goal. 

In the second teaching experiment the students are asked to match different 

representations with the same value. The two students we examined pursue the strategy 

to enter each representation into the chart and then compare the displayed number. 

Since some representations require entering more than ten tokens for the same place 

value, at some point they start to utilize de-bundling to get the required quantity of 

tokens for each place value. 

In the following scene Hanna tries to enter the representation “2 ones and 60 tenths” 

into the digital place value chart utilizing the de-bundling strategy for the first time.  

3 Hanna: (taps two tokens into the ones‘ column and one token into the tenths’ column 
of the digital place value chart on the iPad, she then taps four tokens into 
the tens‘ column and drags one of the tokens into the tenths’ column (100 
tokens emerge within the tenths’ column), see figure 3) Oh, I didn’t want 
that many. (drags the three remaining tokens out of the tens’ column) 
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Figure 3: De-bundling as dragging from tens to tenths 

4 Bella: You can also drag it back (points on the tenths’ column of the digital place 
value chart on the iPad and then on the tens’ column) and then away.   

5 Hanna: (drags one token from the tenths’ to the tens’ column (100 tokens of the tenth 
merge together to one point within the tens’column), then taps one token 
into the ones’ column and drags it to the tenths’ column (10 tokens emerge 
within the tenths’ column) and repeats this strategy another five times, 
finally she deletes the one token in the tens’ and in the tenths’ column) 

In this example we notice that connecting in terms of exploring the relation between 

tens, ones and tenths takes place to establish operational dragging on the concrete level 

of reference (line 3 & 5). The direct feedback of the place value chart enables this by 

initiating a reflection on de-bundling from tens to tenths (line 3) and then correcting 

the connection by dragging tokens from ones to tenths (line 5). 

Operational dragging can also comprise dragging as a gesture executed either on the 

potential level of reference above the place value chart or on the free level of reference 

in the gesture space. In both cases it simulates the real dragging on purpose within the 

chart.  

When the students are asked to write down the standard notation of the decimal number 

represented by “8 ones and 10 tenths”, Bella suggests to enter this representation into 

the place value chart by the use of de-bundling. 

6 Bella: Don’t we wanna do it like this perhaps? (points at the tens’ column of the 
digital place value chart on the iPad) so here a token (moves the hand to 
the right above the ones‘ column, see figure 4) and then remove two 
(stretches the pointing finger two times) I think that would be faster. 

 

Figure 4: De-bundling as a dragging-gesture from tens to ones 

In this example the dragging gesture to the right (see figure 4) can be characterized as 

a mismatch, because the dragging is only present in the gesture and completely missing 

in speech. Nevertheless, it may simulate the action of dragging on the potential level 

of reference and is afterwards performed by the students directly on the iPad (level of 

the concrete). 
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At the end of the second teaching experiment, the students are asked to describe the 

rules of the digital place value chart and to reflect on a meta-level about the decimal 

place value system. In this situation, the students see the consistent base-ten-property 

of the decimal place value system (cf. Ross, 1989) explaining bundling more generally 

than only referring to the relation between specific place values:  

7 Bella: That te so ten than become (puts her left hand fingers upright onto the table) 
on the (raises all finger except the thumb) si on the le (puts her left hand 
fingers upright again) so o when we drag them more to the left (moves her 
hand leftwards on the table, see figure 5) always one (raises and lowers her 
hand on the table) 

 

Figure 5: Bundling as a dragging-gesture from the right to the left 

The halting verbal utterance explaining “bundling” is accompanied here by a dragging-

gesture from right to left on the table without pointing directly or indirectly to any 

concrete representation, so that it can be dedicated to the free level of reference (line 7 

& figure 5). In this phase of structure seeing, the base-ten property is generalized for 

bundling activities referring indirectly to the digital place value chart by the verbal 

description of “dragging” as well as by the dragging-gesture from the right to the left. 

This dragging-gesture can be characterized as structural dragging referring generally 

to bundling which is part of the place value system’s structure.   

As a conclusion we can state that the movement of dragging is preserved on all three 

referential levels of gestures and can be observed within the three epistemic actions. In 

particular, operational dragging is performed on all three levels. Therefore it could be 

characterized as a connecting mode which on the one hand refers back to practical 

dragging on the concrete level and on the other hand it could prepare structural 

dragging on the free level of reference. 

DISCUSSION & OUTLOOK 

In this study we have reconstructed three different modes of dragging that seemed to 

support students’ constituting of the decimal’s structure by working on particular tasks 

with a digital place value chart on the iPad. These modes have been detected in the 

epistemic process of a pair of students. This was done by matching the analysis of the 

epistemic actions, when dragging-movements were performed, with the analysis of the 

referential levels on which dragging took place. As a result we were able to distinguish 

and characterize practical, operational, and structural dragging by the ways they 

contributed to the students’ constituting of decimal numbers as a structure. In the 

project DeciPlace, additional data will be used to explore the conditions under which 
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these dragging modes emerge, how they exactly are connected, how they shape 

epistemic processes as a whole and in what way they lead to building a stable concept 

of decimal fractions, even for low achieving students.  
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FEATURES OF THE DEEP APPROACH TO MATHEMATICS 

LEARNING: EVIDENCE FROM EXCEPTIONAL STUDENTS 

Maria Bempeni, Maria Kaldrimidou, & Xenia Vamvakoussi 

University of Ioannina 

 

It is widely acknowledged that there are individual differences in the way students 

approach the learning process, and that these are reflected in the learning outcomes. 

Little research has been done from the learning approaches perspective regarding 

mathematics learning. We report an exploratory study investigating the features of the 

deep approach to mathematics learning. We present the case study of two exceptionally 

competent students who participated in an in-depth interview. Indicators of the deep 

learning approach along the categories Goals, Study/Learning strategies, Self-

regulation aspects, and Motivation are presented. These findings can be employed in 

the design of instruments to be used in quantitative research. 

THEORETICAL BACKGROUND 

It is widely acknowledged that there are individual differences in the way students 

approach the learning process. A main distinction is the one of the superficial versus 

the deep approach to learning (Entwistle & McCune, 2004). The surface approach is 

associated with the intention to reproduce the content when necessary. On the other 

hand, the deep approach to learning is associated with the intention to understand, and 

is typically related to stronger conceptual understanding of the intended material as 

well as with higher performance (Chin & Brown, 2000; Chiu, 2011; Smith & Wood, 

2000; Stathopoulou & Vosniadou, 2007).  

An important question in this research area is the description of the features of each 

learning approach and their indicators (Cano & Berbén, 2009; Entwistle & Cune, 

2004). This is particularly the case for the deep approach to learning, for which 

different researchers opt for different features and/or indicators. Moreover, empirical 

studies validating features and indicators have been conducted mainly with adult 

participants (typically university students). As Entwistle and Cune (2004) argue, 

however, the defining features of each learning approach cannot be generalized across 

different disciplines and age groups. 

Research from the learning approaches perspective is scarce with respect to 

mathematics learning and focused mainly on tertiary education (e.g., Cano & Berbén, 

2009; Smith & Wood, 2000; but see also Chiu, 2011, for a study with late primary 

school students). 

In a previous study (Bempeni & Vamvakoussi, 2015), we attempted to capture the 

features of the deep and the surface approach to mathematics learning for secondary 

school students. Following Stathopoulou and Vosniadou’s (2007) work on learning 

approaches to science learning with adolescent participants, we started with three 
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categories, namely Goals, Study strategies and Awareness of understanding. Our 

results showed that students with surface approach value school performance as a goal 

adopt memorization and rehearsal as study strategies and have low awareness of their 

understanding and of the effectiveness of their study strategies. On the contrary, 

students that follow the deep approach combine theory studying and extensive practice, 

invest time in mathematics studying on a long-term basis, and are highly aware of their 

understanding and of the effectiveness of their study strategies. However, our data 

indicated that there are other aspects of our participants’ approach to mathematics 

learning that were not captured by our initial categories, mainly regarding motivational 

and self-regulatory aspects of mathematics learning and studying (see also Cano & 

Berbén, 2009; Entwistle, McCune, & Tait, 2013).   

In the present study we attempted to detect and describe in greater detail the features 

of the deep approach in mathematics learning by studying exceptionally competent 

students in mathematics. We adapted appropriately our previous instrument and we 

enriched it with the categories Motivation and Self-regulation.  

METHODOLOGY 

Participants 

The participants of the study were two students, one sixth grader (hereafter S1) and one 

ninth grader (hereafter S2) with exceptional competence in mathematics according to 

their mathematics teachers. We note that we didn’t rely merely on this information; we 

also tested their conceptual knowledge in a specific content area, namely rational 

numbers. 

Specifically, we used 25 tasks compatible with Rittle-Johnson and Schneider’s (2014) 

categorization of tasks targeting mathematical conceptual knowledge: a) evaluate 

unfamiliar procedures, b) evaluate examples on concept, c) evaluate quality of answers 

given by others, d) translate quantities between representational systems, e) compare 

quantities, f) invent principle-based shortcut procedures, g) generate or select 

definitions of concepts, h) explain why procedures work.  

These students dealt with these rather challenging tasks very successfully, indicating 

that they had deep conceptual knowledge in this content area, and also that they were 

highly competent in mathematical reasoning, in problem solving, and in explaining and 

justifying their reasoning. 

Research instruments 

We developed 29 items in the form of scenarios that the students had to react to (e.g., 

“If you had to advise a younger student how to study mathematics what would you 

consider important to tell?”, “You observe a friend of yours studying mathematics 

without solving exercises. You see him dedicate a lot of time studying the theory, 

making diagrams, going back to previous units, taking notes. Do you study 

mathematics in the same way? Is there any advice that you would like to offer?”,  
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“A younger student asks for your help with the comparison of fractions. What would 

you do to help him?”).  

Procedure 

The students participated in two in-depth semi-structured individual interviews. During 

the first interview, they were asked to solve the rational number tasks, thinking aloud 

and explaining their answers. During the second interview students were asked about 

their learning approach to mathematics. The second interview took place about three 

days later. Each interview lasted about one and half hours. All interviews were 

recorded and transcribed.  

Data analysis 

The starting points for our analysis were the following categories: a) Goals, b) Study 

strategies, c) Awareness, d) Self-Regulation, and e) Motivation. The indicators for each 

of the categories were: a) Understanding-Personal making of meaning, b) Combining 

theory and practice, Validation, Long-term time investment, Integration of ideas, c) 

High, d) Monitoring, Regulation, Control of cognition and emotions, e) Intellectual 

challenge, respectively (Bempeni & Vamvakoussi, 2015; Entwistle et al., 2013).  

Table 1: Features of deep approach in the learning of mathematics  

We selected sentences as unit analysis, but in some cases we used paragraphs so as to 

obtain a sense of the whole. We looked for utterances that included keywords 

pertaining to the indicators of each category (e.g., understand, concept, meaning for 

the indicator personal construction of meaning). We placed the sentences in the coding 

categories according to the initial indicators and developed new indicators when 

Features of the deep approach in the learning of mathematics 

Categories Indicators 

Goals 
Understanding - Personal making of meaning 

Academic success 

Study/Learning 

strategies 

Active involvement  

Validation 

Combining theory and practice 

Long-term time investment – Solving unfamiliar problems 

Integration of ideas 

Self-regulation 

aspects 

Monitoring/regulation of understanding 

Awareness of the understanding and the effectiveness of one’s strategies 

Regulation of emotions during the exam 

Regulation of study behaviour 

Flexibility in the use of strategies 

Motivation Intellectual challenge 
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needed. After coding, data that could not be coded were identified and analyzed later 

to determine if they represented a new category. New indicators emerged for the 

categories Goals, Study strategies, Self-regulation and Motivation.  

In addition, we merged the categories Awareness and Self-regulation in one more 

general category namely Self-regulation aspects because in our data utterances related 

to awareness and self-regulation typically were intertwined. The categories are 

presented in Table 1.  

RESULTS 

Goals 

Both students stressed that they care about marks, and also for their teachers’ and 

schoolmates’ opinion. However, they also stressed the importance of understanding in 

mathematics and especially of personal making of meaning. 

[Mathematics] is not rote learning. The point is to try on our own and understand. If I could 

not cope with mathematics and the teacher graded me higher than I deserved, I would try 

more. Mathematics is a useful subject and I have to understand it.  [...] Fractions do not 

only relate to comparison rules. First of all, you must understand what fraction is. If you 

do have everything in your mind and know what a fraction represents, then it is easier to 

solve what you are asked and to consider fractions much more familiar. (S1)    

Mathematics is not like other subjects that you have to memorize things-you must put your 

mind to the work, think sensibly. I prefer discovering new things on my own, because in 

that case I will never forget them. [...] There are other ways to compare fractions except 

rules. You do have to understand the fraction as quantity, to represent it with a figure. 

Estimating, using common sense... (S2) 

Study strategies 

Active involvement. Both students indicated that they are actively engaged in learning 

in the mathematics classroom: they recognize what they do not understand, do not 

hesitate to express their questions and assess the information they receive.  

[A good student] is not reluctant to express and support his/her opinion. […] When I don’t 

agree with my teacher I always step up. For example, I could not understand why we cannot 

use decimals as fraction terms. Since the fraction represents a division, why is it not 

allowed to use decimals as numerators or denominators? Decimals can also be divided, 

can’t they? (S1) 

Once I had doubts about what my teacher said. But I dared to express my objection and we 

had a scientific debate. I gave it up only when I realized that I was wrong. However, 

sometimes I happen to be right. (S2) 

Validation. As we can conclude from the above mentioned transcripts, the two 

students are not willing to accept something if it is not sufficiently proved. At different 

points of the interview, they mentioned that they use «common sense» to check their 

results or to monitor their steps while solving (see also transcripts in the section «Self-
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regulation aspects»). We note that both students monitored the solution process during 

the first phase of the study (e.g., they used counterfactual proof). 

Combining theory and practice. Both students referred to the importance of 

combining deep understanding of theory and solving exercises. 

Mathematics is theory too, if you don’t understand the theory well you cannot solve 

problems. There is always some theory behide the problem. How can you solve a problem 

with proportions if you have no idea of what proportion is? You must also practice with 

many exercises. But learning the rules by heart does not help. Then, in problems, how can 

the rules be useful to me? Will I simply write down the rule? (S1) 

Both theory and exercises are important. If you do not study theory, you cannot solve but 

only the simplest problems. (S2) 

Long-term time investement – Solving unfamiliar problems. Both children 

appeared to value the long-term time investment on mathematics studying. 

It is necessary for students to do extensive practice in mathematics, because when gaps are 

created, it is quite difficult to understand the more advanced material. That is why I try to 

solve many exercises by myself except the ones I have for homework. (S1) 

Studying should not be restricted to what is required in the course. […] I do a lot of practice 

during the private tutoring lessons I attend. (S2) 

For these students, practice is not limited to the study of solved examples or to solving 

similar problems. 

Solving many similar exercises is not enough. Then if you are asked to solve a slightly 

different problem, you cannot do it. This is because you can deal only with similar 

problems, with different numbers. I think that if somebody has not understood the material, 

then they cannot think further and solve unfamiliar problems. (S1) 

I do not like solving similar exercises all the time. Repetition may be useful for other 

subjects but not for mathematics. For example, I do not believe that memorizing the 

solutions of exercises in mathematics is useful even if one can solve them when asked. (S2) 

Integration of ideas. Both students referred to importance of making connection 

among different units of mathematics and also relating mathematics to other subjects 

(Physics, Chemistry), and to everyday life, too. 

Yes, I think that the previous and the following units are connected in some way in 

mathematics. For example, we had been taught proportions and then percents, for which 

good knowledge of proportions was necessary. And if you want to understand proportions 

well, you need to understand fractions as well. (S1) 

We were taught the distributive property with numbers when we were at sixth grade, and 

then we were taught the same property with variables, and the same holds for all other 

properties. (S2) 

It is worth mentioning that both students valued the connection of different 

representations in mathematics, and also to everyday life as an appropriate instructional 

method. 
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Teachers need to make mathematics real for students, to show mathematics in real life. For 

example when we say ¼ kg cheese what do we mean? How much is it? (S1) 

In the first years of school-life students have not understood fraction as quantity. I could 

help a younger student to understand it with figures and representations. (S2) 

Self-regulation aspects. Both students appeared to monitor, control and regulate 

themselves in the level of cognition, emotions and behavior in the learning of 

mathematics. 

When I face a difficulty, I try to see the problem from many different aspects and construct 

a table with what is given and asked in my mind. You can be aware if the process goes 

well while solving, if you monitor what you’re doing and do not solve it mechanically. 

You can also verify by putting numbers in case you want to make sure that you are correct. 

I validate in my mind without making operations. You should also pay attention to the 

result, the result should be reasonable. (S1) 

I am sure that I have understood the problem, when I am able to put that in my own words, 

when I have the problem in my mind and it is not necessary to read it all the time. When I 

have difficulty in understanding the problem I break it into small parts and then I try slowly 

to understand what I do not do well. (S2) 

As a result, both students appeared to have a high awareness of understanding and to 

be able to differentiate the difficulties in understanding from the school requirements. 

At first, I found fractions a little bit difficult. Not the operations and the exercises, these 

were very easy. (S1) 

I did not understand the unit “probability” that we were recently taught. I found it disjointed 

but I tried to understand using paper and pencil. […] Understanding the concepts that you 

are now taught in a greater grade is something very usual. For example we are accustomed 

to «cross-multiply». But you should look into it deeper, so as to understand the algorithm. 

(S2) 

What is also notable is their reference to the way they face an unfamiliar problem in 

the exam context. 

You have to try until the last moment. If you make negative thoughts from the very start, 

then you will not solve the problem even if you possess the sufficient knowledge to do it. 

If you have time, you can try until the end. There is no reason to give up. (S1) 

At first you say, “Oh my God”, then you are starting to swear, and finally you say “I will 

do my best. I will not die, after all, it’s just a test! (S2) 

Both students appeared to recognize that the combination of insistence on trying and 

flexibility is necessary. 

Once I had difficulty with a problem in a test I left it last. When I came back to it, I tried 

to look it from another perspective. Generally, when I realize that my method is not 

efficient, I try to apply some other knowledge, even if I am not sure that this is the correct 

way to solve the problem. (S1) 
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I simply made different thoughts. And when my thoughts took me nowhere, I rejected 

them. I thought different things regarding the solution and I got rid of the ones that did not 

help me. (S2) 

We note that S1 stated that she is always concentrated when studying so as to need less 

time. S2 «revealed» that he started courses with a personal tutor because he wanted 

somebody to motivate him to do more practice. Both students showed self-confidence 

regarding their current learning strategies in mathematics. S2 mentioned that he did not 

pay attention to the theory in the past and he added: «I realized it later, but I do not 

believe it was late». Moreover, he referred to his strategy focusing more on exercises 

and stated: «I understand in my own way. If I realize that this way is inappropriate, I 

will change it».  

Motivation. Both students appeared to be motivated by unfamiliar and challenging 

problems. 

I prefer problems that are difficult, when you need to think of something by yourself. I 

don’t like the ones that are solved in a particular way, mechanically. I find all these 

exercises with tables that we do the method of cross-multiplying all the time very boring. 

(S1) 

I find uninteresting what keeps me from going further. Everything that has operations and 

you must do constantly the same. That’s why Geometry is a more interesting part to deal 

with. (S2) 

CONCLUSIONS-DISCUSSION 

This exploratory study investigated the learning approach to mathematics of 

exceptionally competent students, with the intention to trace features of the deep 

approach to mathematics learning. The results provide indicators along the categories 

Goals, Study/Learning strategies, Self-regulation aspects and Motivation (Bempeni & 

Vamvakoussi, 2015; Entwistle et al., 2013). 

More specifically, the two students value the personal making of meaning, without 

neglecting academic success. They invest time in the study of mathematics, and 

consider the solving of unfamiliar problems an important part of practice. Despite the 

fact that they recognize the value of the theory, they do not dedicate much time to study 

it. This inconsistency may be explained by the quality of participation in the school 

classroom which is a central learning strategy for these students. They also actively 

look for connections among different representations, content units, different subjects, 

and everyday life. Validation of mathematical knowledge is highly significant for 

them: they actively seek for validation in the school context and when they solve 

problems. Furthermore, both students monitor, regulate, and control their emotions and 

their behavior in the context of mathematics learning and studying. As a result, they 

are highly aware of their understanding and their learning strategies, and they are 

flexible. Finally, they are motivated by intellectual challenge. 

The findings of the present study offer a more detailed insight into the features of the 

deep approach to mathematics learning and can form the basis for the design of a 
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research instrument to be used in quantitative studies. It should be noted, however, that 

these findings also point to the fact that the construct “learning approach” is rather 

broad and overlaps with other constructs stemming for other research perspectives 

(e.g., “intentional learning”, “self-regulated learning” – for a similar observation see 

Cano & Berbén, 2009). More detailed analysis of such constructs is necessary to 

highlight possible similarities and differences.    
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READING AND LEARNING FROM MATHEMATICS 

TEXTBOOKS: AN ANALYTIC FRAMEWORK  

Margot Berger 

University of the Witwatersrand 

 

I present a framework within which to analyse ways in which university students (in 

this case, teachers learning mathematics content) read and study mathematics from a 

standard PreCalculus textbook. In terms of both the course design and this research, 

the teachers are conceptualised as learners.  The framework examines the relationship 

between the written discourse (the mathematics in the textbook) and the enacted 

discourse (the student’s utterances as she reads the text). Theoretically this 

relationship is understood in terms of commognition. Sub-categories of interaction are 

derived inductively from observations of five students each participating in a talk-

aloud session in which they read and study mathematics text. Sub-categories of 

interaction are illustrated through typical exemplars from two talk-aloud sessions. 

Mathematics textbooks have the potential to be an accessible and powerful resource in 

and out of mathematics classrooms. Yet very little is known about their use by learners 

(Osterholm & Bergqvist, 2013; Rezat, 2013). At the tertiary level, within which my 

research is grounded, Shepherd, Selden and Selden (2012, p. 226) argue that “it appears 

to be common knowledge that many, perhaps most, beginning university students do 

not read large parts of their mathematics textbooks in a way that is very useful in their 

learning. Whether this is because they cannot read in such a way or choose not to do 

so does not seem to have been established”. In this paper, I hope to contribute to this 

important research by presenting an analytic framework within which to analyse 

university students’ reading of mathematics in textbooks.   

THE ANALYTIC FRAMEWORK 

I present an analytic framework based on two pillars: the discourse of the mathematics 

textbook (the written discourse) and the ways in which students interact with this 

discourse (the enacted discourse). The theorised sorts of interaction between these two 

forms of discourse derives largely from Sfard’s theory of commognition (2008) 

whereby individual development is theorised as individualization of collective activity 

and thinking is theorised as individualized communication. In mathematics, collective 

activity takes the form of mathematical discourse in which a range of permissible 

actions and re-actions are apposite. Learning takes place through the individual’s 

thoughtful participation in mathematical discourse, such as the discourse in a 

mathematics textbook. Mathematics learning is indicated by a change in the 

individual’s mathematics discourse.  

The analytic framework is refined through my observation of five individual students 

as they studied a particular section of a mathematics textbook (the written discourse) 

using a talk-aloud protocol (the enacted discourse).  
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Written Discourse: The different components of a traditional mathematical textbook 

are described using Sfard’s (2008) description of mathematics as a discourse. This 

discourse is characterised by its narratives, routines, visual mediators and words. 

Narrative is text that is used to define or describe or justify the existence of 

mathematical objects, for example, theorems, definitions and proofs; routine is text that 

refers to activities with these objects, e.g. worked examples, exercises; visual mediators 

are the symbols and notation of mathematics as well as alternate representations of 

mathematical objects, e.g. graphs, diagrams. These three categories of discourse all 

employ words in a particular way, and thus, for the purpose of this paper, I do not 

distinguish ‘words’ as a separate category. The instantiation of these characteristics, 

i.e., examples, exercises, proofs, theorems, graphs and so on, are regarded as mediators. 

They give mediated access to the mathematics objects that are created, acted upon and 

engaged with in mathematics discourse. See Berger (2015).  

Enacted discourse: The enacted discourse describes ways in which the students 

interact with the written discourse.  Given that my research concern is with the ways 

in which students use or do not use the textbook to promote learning, the categories for 

analysing how the student uses the textbook whilst studying from it, are related to the 

ways in which students engage with or ignore the different components in the textbook. 

Broadly speaking the categories are: using the textbook; injecting knowledge from 

other sources; making connections between different mediators in the textbook. These 

broad categories are then inductively (Hatch) refined using empirical data from the five 

students’ interviews. 

THE CONTEXT 

The study took place within the context of a PreCalculus module. This module was 

part of a one-year postgraduate degree (Honours level) programme in Mathematics 

Education at a South African University. The module consisted of one 3-hour session 

per week for eleven weeks. I was the lecturer in charge of the module.  

South African high school mathematics teachers often have weak mathematics specific 

content knowledge. This is partly a result of teachers often having a degree or diploma 

in education and an absence of traditional university-level maths courses (a legacy of 

apartheid).  Accordingly the focus of this course was on deepening and broadening 

mathematics content knowledge. For this reason, the in-service teachers were 

conceptualised as mathematics learners in the design of the course, and in this research 

paper.  Another important aspect of the course was an emphasis on self-learning. This 

emphasis derived from the idea that learning to use texts and other resources to learn 

or re-learn mathematical topics is necessary for a teacher who needs to keep on 

expanding and deepening her mathematical knowledge. In order to foreground the 

practice of self-learning, at the beginning of the course, all students (in this case, the 

teachers who are conceptualised as learners) were given a hand-out in which they were 

told exactly which part of the prescribed textbook (Sullivan, 2012) to study for each 

weekly session. As they were repeatedly told, studying involved carefully working 
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through definitions, theorems and proofs and worked examples of the text, referring to 

other resources or other section of the textbook if they so required, and doing and 

handing-in a set of prescribed exercises (taken from the back of the chapter). Thus 

‘new’ mathematical knowledge or revisited mathematical knowledge was accessed by 

the students through the prescribed textbook prior to the lecture. In order to encourage 

this self-studying before class, students were given a multiple-choice test on the 

prescribed study material at the beginning of each session.  Throughout the course, the 

lecturer (myself) discussed ways of reading mathematics text, for example, ways in 

which to deconstruct definitions. But these ways were based on my own experience 

rather than on research related to how students do read textbooks.  

RESEARCH FOCUS  

What analytic framework can be used to understand how students use a prescribed 

mathematics textbook for learning new mathematics and deepening knowledge of 

previously-encountered mathematics in a self-study mathematics course? 

COLLECTION OF DATA 

Six students from the PreCalculus module (two low-performing students, two medium-

performing and two high-performing students) were asked if they were willing to be 

video-taped while studying a prescribed section of a chapter (the sub-chapter) from the 

standard prescribed textbook. Five agreed. In terms of the expectations of what this 

studying entailed, and as discussed with the students in weekly sessions, studying 

meant carefully reading through the sub-chapter including definitions, theorems and 

proofs, referring to other resources or other sections of the textbook if they so required, 

working through worked examples and doing a set of prescribed exercises contained 

in the sub-chapter. For the video-taped session, students were asked to study the sub-

chapter ‘Properties of Logarithms’ (Sullivan, 2012, pp. 296–304) as they would in 

preparation for class and to talk out loud as they did so. They were also given a set of 

exercises at the back of this sub-chapter as was the case for their weekly sessions. This 

sub-chapter was chosen because it was not part of the course and it involved both new 

content and content which they had previously encountered (in school and at 

undergraduate level) but from a more advanced perspective. For example, these 

students should have known the Sum of Logs property but they were unlikely to have 

ever proved it. The ‘new’ knowledge included some new properties of logarithms and 

their proofs. Each video-taped session was at most 1.5 hours long. Before, during and 

after the studying of the sub-chapter, students were asked to point our which sections 

were new or familiar to them. 

Coding the data 

The main analytic categories were: Textbook Opportunities (using the textbook); 

Injections (injecting   knowledge    from    other    sources); Connections (making 

connections between different mediators in the textbook).  
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Textbook Opportunities: Episodes in which the student explicitly used the textbook to 

look at specific routines, narratives or visual mediators but with no indication as to 

whether this looking was productive or not, were coded OPT. Episodes in which the 

student did not use the textbook to clarify, illuminate or enrich their understanding of 

the mathematics discourse, despite such content being available in the textbook, were 

coded as ‘missed opportunities’ (OPTM). If the student used the textbook productively, 

for example, to make explicit connections, to generalise, to exemplify, etc. this was 

coded as OPTP. If the student attempted to use the textbook to enrich understanding of 

an aspect of math discourse but looked at discourse (e.g. theorems, worked examples, 

etc.) which were not relevant to the issue at hand, this was coded as OPTU. Finally, 

if the student looked at appropriate theorems, worked examples and so on, but was 

unable to see the connections to their particular conundrum or difficulty, this was coded 

as OPTX. 

Injections: If the student injected discourse from a source other than the textbook into 

the reading of the text, this was coded as INR or IND depending on whether the 

injection was ‘robust’ or ‘distractive’. These terms (injection, robust and distraction) 

were introduced by Leshota (2015) in her analysis of school mathematics teachers’ use 

of textbooks as a resource for teaching. Robust refers to productive insertions of 

discourse; distractive refers to unproductive or confusing insertions. If it was clear that 

the injection was that of prior knowledge, the code INPR or INPD (robust or distractive 

respectively) was used; if the injected discourse derived explicitly from the interviewer 

or a computer or resources other than the textbook, the code was INIR or INID 

(depending on whether it was robust or distractive).    

Connections: Since this framework is around how students engage with the discourse 

of the textbook, it was important to look at what connections (MC) were made both 

within the textbook and between textbook discourse and other discourse. And so there 

are codes for making connections between different parts of the text (MCT);  making 

connections between interviewer’s interjections and text (MCI); making connections 

between prior knowledge and text (MCP); making connections between visual 

mediator (eg a diagram) and text (MCV). 

ILLUSTRATION OF CATEGORIES AND CODES 

For purposes of illustration I look at exemplars of some of the more commonly used 

sub-categories in the analytic framework. These exemplars are taken from two 

contrasting students. Abby, is a very high-performing student; she has an 

undergraduate degree in science with two years of Mathematics (taught by Science 

Faculty) and a postgraduate diploma in education; she has been teaching at high-school 

level for just over two years. Tom is a relatively low-performing student. He had 

graduated with a B.Ed degree (which involved some mathematics courses taught by 

the education faculty) in the previous year and had some maths tutoring experience in 

the School of Education.    
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Exemplar 1: OPTP and MCT  

Abby’s reading of the text is comprehensive: she reads the entire text section, including 

all the different theorems, proofs and worked examples, before attempting any 

exercises. Throughout this reading she makes a large number of connections to prior 

knowledge and to other parts of the sub-chapter. In the vignette below, we see Abby 

(A) engaging with the given proof (Figure 1) of a property (Property 6) which she has 

not encountered previously. She uses the textbook productively, reading carefully 

through the proof of the property and making explicit the properties that this proof 

uses, and which she has just read (Figure 2). For example, she writes loga M
a M

(which is Property 1) on the text next to the first line of the proof. That is, she makes 

overt connections between the proof of Property 6 and other given properties. 

Accordingly the vignette (Table 1) is coded OPTP and MCT. 

Proof of property (6): From property (1) with a = e, we have 

                                                      ln Me M    

Now let xM a   and apply property (5). 

                             ln lnxa x a xe e a                             

Fig 1: Textbook Discourse – Proof of Property 6 (Sullivan, p. 298.) 

For ,a M positive real numbers, 1a  , r any real number. 

Property 1: 
loga M

a M ;  Property 2: log r
a a r ;  

Property 5: log logr
a aM r M ;  Property 6: 

lnx x aa e  

Fig 2: Some properties of logs given in textbook. 

What is said and done Reader Activity 
Comment on 

Reader Activity 
Code 

A: I’m focusing more on proof six now. 

So they mention property one again over 

here. So again, just to clarify everything 

in my head, I would go back and check 

property one. (Pages back to find 

Property 1.) So I like to have that with 

me. So any time they mention that 

they’re using property one and it’s 

something I haven’t seen before, I 

generally write property one next to it 

(writes). So that I can see alright.  

So they said that a is going to equal e, and 

obviously when you’re using e, you’re 

going to have to change it to ln. So I’m 

just identifying why they’ve used e, then 

ln n, and then M.   

A writes 
loga M

a M  next 

to 
ln Me M in 

textbook. 

Makes 

connections 

between new 

narrative (proof 

of Property 6) and 

previous 

narratives 

(Property 1 and 

Property 5) 

OPTP  

MCT  
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And then just spotting the differences. 

And then they’re saying, M now must be 

what we want up here, a to the x. 

(Reading) Okay, so just taking a look at 

how they go from e ln a x, and then they 

take the x to the front and then that 

becomes property five, which just 

becomes a to the x. 

Table 1: Enacted Discourse - Exemplifying OPTP and MCT  

Exemplar 2: INPR  

Abby is doing Exercise 22 (Figure 3). She solves the exercise seamlessly, referring to 

previous experience as she does this (Table 2). Hence the vignette is coded as INPR. 

In Problems 13 – 28, use properties of logarithms to find the exact value of each expression. 

Do not use a calculator. 

22.  log 16 log 2a a                      

Fig 3: Textbook Discourse – Exercise 22 (Sullivan, p. 303) 

What is said and done Reader Activity 
Comment on 

Reader Activity 
Code 

A: Okay, then we’re on 22, it says, do not 

use a calculator, which also would give it 

away. So this is…okay, now this is again 

is something that I’ve done with my kids, 

so it would be quite easy. Minus, then you 

just go and you say, it’s log… 

Solves exercise 

problem 

correctly 

Reader refers 

specifically to 

previous 

knowledge of this 

sort of exercise. 

INPR  

Table 2: Enacted Discourse - Exemplifying INPR 

Exemplar 3: Exemplifying OPT, OPTU and INPD  

On starting the session, Tom skims over the narratives and routines (including 

theorems, proofs and worked examples) and plunges into the exercises. From time to 

time, while doing the exercises, he refers back to worked examples (WE) and 

occasionally to statements of properties of logarithms (but he never reads the proofs). 

His engagement with the narratives and routines is characterised by a lack of attention 

to detail. In the vignette below (Table 3) Tom gets stuck on the simplification of terms 

involving logs and powers, while doing a routine, Exercise 52 (Figure 4).   

Although Tom is able to correctly simplify, using prior knowledge, the given 

expression (coded INPR) to    
1

23
2log log 1 log 2x x x    , he is unable to 

simplify further (to write powers as logs). Accordingly he turns to a different routine, 
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WE 2 (Figure 5) in textbook (OPT). This routine explicitly uses Properties 1 and 2 

which precede the example. In this episode, Tom is referring to discourse (a worked 

example) which is not directly relevant to the issue at hand. Hence this is coded as 

OPTU.  Also Tom is using (incorrect) prior knowledge (INPD). See Table 3. 

Q52: Write each expression as a sum and or a difference of logarithms. Express powers as 

factors: 
3

2

1
log 2

( 2)

x x
x

x





  

Fig. 4. Textbook Discourse (Sullivan, p.303): Exercise 52 

Example 2: Using Properties (1) and (2) 

(a) 2log2                        (b) 2
0.2log 0.2  2                     (c) ln kte kt  

Fig, 5: Textbook Discourse (Sullivan, p. 298): Worked Example 2 

What is said and done Reader Activity 
Comment on 

Reader Activity 
Code 

T: Yes, ma’am. It’s example two, 

on page 298. 

Looks at WE  

examples silently 

Looking at similar 

routines. 

OPT  

T: And then they say, log of this 

can be…but these are all of base ten 

(referring to exercise that he  

doing)…so this is log of x cube plus 

log of x plus one to the power of 

two, minus log of x minus two.  

Okay, well, I don’t know if 

that…they’re all of the base ten, so 

I cannot apply the rule that says 

log…that, says that I should come 

and multiply say log three log x or 

half because they’re all of base ten. 

They don’t have different bases 

here (referring to WE 2) so I don’t 

think it’s allowed to apply that 

function. I would leave it at this 

stage. 

Indicates that he 

cannot use WE 2 

because in WE 2, the 

bases were the same 

as the expression 

whereas in Exercise 

52, the different 

expressions all have 

base 10. 

Does not realize 

that Property 5 

(Narrative) – see 

Figure 2- is 

applicable to the 

simplification 

required for 

Exercise 52 

(Routine). 

OPTU

INPD 

Table 3: Enacted Discourse – Exemplifying OPT, OPTU, INPD  

CONCLUSION 

In this paper I have described a broad framework within which it is possible and 

feasible to analyse students’ reading of mathematics textbooks in a self-study context. 

I have illustrated the framework through a sample of purposefully chosen exemplars 
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from specially designed talk-aloud sessions. The value of such a framework, grounded 

in both theory and the empirical, lies in its potential use as a tool to better understand 

how university students read mathematics texts for self-study; such an understanding 

could lead to explicit tutoring in useful ways of reading mathematics texts. Being able 

to read and learn from mathematics texts is surely a very important skill in the learning 

of mathematics. 
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RESPONSES TO “THE SCARY QUESTION”: HOW TEACHING 

CHALLENGES IMPACT THE USE OF KNOWLEDGE AND ITS 

DEVELOPMENT  
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Helen Chick  

University of Tasmania 

 

This paper reports on teachers’ experiences of being out of their comfort zone in their 

mathematics teaching. We describe examples of experiences that the teachers 

considered “scary”, their reported responses to those situations, and the longer-term 

effects of such experiences. Implications for the acquisition of knowledge for teaching 

mathematics are discussed, and questions raised about the possible impacts of 

confidence and experience on the interaction between discomforting experiences and 

teacher learning. 

Considerable effort has been made to characterise the knowledge required to teach 

mathematics. Since Shulman (1987, p. 8) described pedagogical content knowledge 

(PCK) as “that special amalgam of content and pedagogy that is uniquely the province 

of teachers” PCK has been a focus of mathematics education researchers who have 

conceptualised Shulman’s notion of PCK in a variety of ways in relation to 

mathematics teaching (e.g., Chick, Baker, Pham, & Cheng, 2006; Hill, Ball, & 

Schilling, 2008; Rowland, Huckstep, & Thwaites, 2005).  

There are many complexities associated with PCK and its study. The role of content 

knowledge and generic pedagogical knowledge as contributors to PCK is 

acknowledged but not always well articulated. For example, there have been extensive 

efforts to identify mathematical knowledge for teaching (MKT) (e.g., Hill et al., 2008). 

The framework of Chick et al. (2006) attempted to identify key aspects of PCK on a 

continuum reflecting the mutual entailment of pedagogical knowledge and content 

knowledge, and showing how these broader constructs combine and interact to impact 

on PCK. To add to the complexity, some characterisations of PCK view it as a body of 

knowledge, aspects of which are either held or not (e.g., you either know how to 

respond to a particular student misconception or not). This suggests that PCK is 

measurable, and although it acknowledges that PCK can change, in a given moment—

such as at the time of being measured—it is static. Other characterisations consider 

PCK dynamically, notably in the ideas of transformation, connection, and contingency 

in the knowledge quartet of Rowland et al. (2005). This emphasises “knowledge-in-

action”, and recognises knowledge-based decision-making that takes place in response 

to unexpected classroom occurrences.  

The question of how best to examine teacher knowledge is thus difficult to address. 

Large-scale written “tests”, such as those used by Hill et al. (2008), cannot capture the 

rationale that teachers might have for their choices. Surveys with follow-up interviews 

(e.g., Chick et al., 2006) may provide insights into the knowledge that informs 
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teachers’ choices and responses, but still cannot capture the nuances of decision-

making in the complex milieu of the classroom. Classroom studies (e.g., Rowland et 

al., 2005) are labour intensive, and may capture the actions of a teacher but not always 

the underlying activated knowledge that motivated those actions.  

All the characterisations of teacher knowledge implicitly recognise that it can change. 

There has been only limited research into how teacher knowledge develops: what 

circumstances provoke change and growth, and the extent to which teachers seek to 

change. Chick and Stacey (2013) report on two occasions where Chick, as a teacher 

educator, appeared to develop PCK. The first involved her trusting that she would have 

sufficient mathematical expertise to respond appropriately during an unexpected and 

unprecedented class diversion; the second provoked her to rethink her expectations and 

actions during in-class problem-solving situations.  

More attention has been paid to how the beliefs of teacher might be changed. Although 

much has been written about the difficulty of influencing teachers’ beliefs, Liljedahl 

(2010) described five mechanisms by which teachers beliefs can change. Liljedahl and 

others (e.g., Rolka, Roesken, & Liljedahl, 2007) have drawn upon theories of 

conceptual change as well as Green’s (1971) metaphorical description of belief 

systems. According to the latter, beliefs may or may not be evidentially held and, to 

the extent that they are, evidence that contradicts them may result in change. Many 

beliefs, however, that are non-evidentially held are among the most strongly, or 

centrally, held being tied up with teachers’ identities. These are among the most 

resistant to change. At other times, the juxtaposition of contradictory beliefs, 

previously held in discrete clusters (Green, 1971) that have prevented their 

contradictory nature from being recognised, can be a catalyst for change. Change is at 

least dependent upon recognition of a need to change (e.g., Liljedahl’s (2010) 

examples), the availability of a plausible alternative, and willingness to make the 

required effort (Arvold & Albright, 1995). 

The distinction between knowledge and beliefs is, of course, not clear-cut. Beswick, 

Callingham, and Watson (2012) provided evidence of a rich construct of knowledge 

needed for mathematics teaching that encompassed Shulman’s knowledge types, as 

well as confidence and relevant aspects of beliefs. In light of this, and the examples 

from Chick and Stacey (2013) regarding how confidence influenced a response to an 

unforseen teaching incident, it seems reasonable to infer that much of the literature on 

belief change might also be applicable to the development of teachers’ knowledge. The 

purpose of this paper is to examine how teachers address these “scary” areas, and how 

this affects their knowledge for teaching mathematics. 

THE STUDY 

The study was part of the first phase of a larger study of the knowledge needed by 

teachers of mathematics and English. Phase 1 involved focus groups with experienced 

primary and secondary teachers in two Australian states (Tasmania and Victoria), and 

New Zealand (NZ). The focus group discussions examined the kinds of knowledge that 



Beswick, Chick 

PME40 – 2016 2–93 

experienced teachers use in their teaching, and how they acquire that knowledge. The 

particular focus of this paper is on how the uncomfortable or challenging experiences 

of teaching reveal and affect the development of knowledge for teaching mathematics. 

Participants 

The teachers who participated in the study were invited because researchers or 

colleagues knew them to have the experience and expertise needed to be able to discuss 

the knowledge that teachers use in teaching mathematics. There were three focus 

groups used for this study, one each for primary and secondary teachers (each with 

three or four teachers), and a single Victorian focus group (the sole secondary teacher 

joined the three primary teachers for most of that discussion). In all, there were 11 

teachers of mathematics, of which six were primary teachers and five were secondary.  

Instrument and procedure 

The focus groups were intended to uncover the knowledge of expert teachers, via 

questions addressing a range of issues related to mathematics PCK. Prompts included 

examples of student misconceptions, sets of tasks to stimulate discussion of task 

sequencing, and examples of activities. The discussions were conducted by different 

members of the research team (the authors, Rosemary Callingham, and Tim Burgess) 

and were audio-recorded for later transcription. They lasted between 75-105 minutes. 

The discussions were semi-structured with questions provided as a guide but they 

largely took the form of collegial conversations between the teachers and researchers. 

Initial versions of the interview protocols were used with Tasmanian focus groups, and 

then revised. During their discussions the Tasmanian teachers mentioned the effects of 

being out of one’s comfort zone when teaching. This led to the development of “the 

scary question” which is the focus of this study. It was included on the protocols used 

with the Victorian and NZ teachers who comprise the participants for this study. The 

question was: “If you were to be in a position where you had to teach something that 

was out of your ‘area’, how would you go about it? You may like to name what your 

‘scary space’ might be”. In some cases the teachers were prompted to consider how 

they would respond to having to teach mathematics that they had not taught before or 

at a grade level much higher or lower than those with which they had experience. 

RESULTS 

The transcripts were examined for responses related to the scary question and also for 

discussion in other parts of the focus group discussion that dealt with the experience of 

being challenged in one’s mathematics teaching. Most of the relevant discussion was 

in response to the scary question. Responses fell into one of three categories: 

1. Identifying a scary space in mathematics teaching, 

2. Describing teacher responses to being in such a space, and 

3. Considering the longer-term consequences and/or implications of such 

experiences. 
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In most cases the challenges identified, responses to them, and longer-term 

consequences were provided in the context of stories of personal experience. There 

were only occasional mentions of the challenges faced by other teachers, typically 

inexperienced or “out of area”, and how they might respond. Table 1 summarises the 

responses from the primary teacher focus groups in relation to the first two of these 

categories. Specific stories that are reflected in Table 1 included the following: 

I had to teach Year 12 … just as a relieving period, and the kids are like, "How are we 

going to solve this?" And I said, "Where are the answers?" I found the answers, […] I 

worked backwards, and I said, “for me, I don't know, off the top of my head how to solve 

this, but let's start at the end, and work out the process”. (NZ primary teacher) 

Identifying Describing responses to the situation 

Multiplying and dividing 

fractions 

Quadratic equations 

Being a relief teacher for 

a Year 12 mathematics 

class 

“Where I don’t know the 

maths” 

Other teachers who are 

frightened by the 

maths, don’t like the 

maths 

Go back over the mathematics myself 

Think about my understanding and how it makes sense to me 

Consult an expert in person (advisor, academic, colleague, son) 

Consult an expert via email 

Being unafraid to ask 

Use YouTube and other internet resources e.g., online tutorials 

Ask the students what else they could do besides asking the 

teacher to explain 

Work backwards from the answers with the class 

Consult a mathematics teacher education text  

Do problems myself before the lesson 

Use own difficulties and errors to stimulate class discussion 

Learn with the students 

Table 1. Responses of primary teachers to the scary question 

Table 2 summarises the responses of the secondary focus groups in relation to the first 

two categories. This group shared fewer specific stories than the primary teachers; one 

example was the following: 

I was the only teacher, but I had some cross-over with statistics, the Year 13 full course, 

so we went to any PD we could, we worked together, and, I also worked with the year 

below teachers, to get the next the level three, so, we worked below and aside, and we 

looked at all the paperwork, everything we could online, you know […]. But it was very 

collaborative. (NZ secondary teacher) 

The NZ secondary teachers also reported positive impacts of teaching challenges, 

saying that successfully facing such situations encouraged them to be more innovative 

and inclined to take risks in their teaching. They reported positive responses from 

students to changed and “risky” pedagogy even if there was initial resistance. For 

example, one teacher described how he had got his students to mark their own exams. 

Although there were protestations about this being his job not theirs, the students 
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performed the task honestly and thoughtfully and, according to the teacher, learned a 

great deal in the process. There was agreement in the group that teaching outside of 

one’s comfort zone improves pedagogy. One expressed it as follows: 

If you've been teaching for a long time … you do end up being on auto-pilot a little bit. 

You know where the pit-falls are and that they'll misunderstand this one, and all of those 

sort of things, but when you've got something new you can't afford to be in that situation, 

so, in a funny way, it probably actually improves classroom teaching, it does for me. (NZ 

secondary teacher) 

Identifying Describing responses to the situation 

Networks 

Level three statistics – 

new concepts, broad 

statements, lack of 

resources 

Using problems you don’t 

know the answer to 

Student resistance to 

innovation 

Using problems without 

scaffolding 

Moves to International 

Baccalaureate 

curriculum  

Avoid teaching the topic 

Allow students to work alone 

Work through with a colleague, “nut it out” together 

Take professional development opportunities 

Read online material 

Work with teachers of the year below 

Work with teachers in another school 

Ask students to explain thinking 

If students are getting things right don’t worry about how (if 

you can’t follow their reasoning) 

Persevere with innovation despite student resistance 

Get as much information as possible – from people rather than 

the internet 

Find out how to introduce the topic 

Other teachers might use textbooks 

Table 2. Responses of secondary teachers to the scary question 

Another teacher in that group explained that not knowing the answer to a problem 

“forces you to have those conversations [asking them about their thinking] with kids 

rather than knowing the answer and standing up the front.” They agreed that changing 

school, curriculum, or colleagues, or undertaking post-graduate study can all cause 

teaching “to evolve”. This evolution included a greater inclination to take risks: 

I've taken more risks in the classroom in activities … I completely changed the approach 

that that I would normally have taken, and I tried something. (NZ secondary teacher) 

The Victorian secondary teacher explained how the introduction of the International 

Baccalaureate curriculum was forcing some teachers to change. She said: 

… it gives the teachers no choice then, they have to actually use the tasks … It's sort of a 

very sledge-hammer approach though, it's not ideal, … you know, there's a balance 

between trying to bring people on board with it, and look, there's been a lot of positive 

out of it, a lot of people saying, "Oh, I never thought". (Victorian secondary teacher) 
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The only negative consequence of the uncomfortable situations they described was that 

less confident teachers who do not like mathematics or those teaching out of area tend 

to fall back on traditional and safe teaching approaches including reliance on textbooks 

and algorithms, and telling students. 

DISCUSSION 

The discussion is framed around the two foci of the study. The first deals with what a 

focus group discussion about uncomfortable teaching experiences can reveal about 

teachers’ knowledge; the second considers how the teachers’ responses suggest ways 

in which such experiences can influence the development of knowledge for teaching. 

Revealing knowledge through discussing uncomfortable teaching situations 

An immediate effect of facing a challenging teaching situation is recognition that one’s 

existing knowledge is not sufficient for the task. For the experienced teachers in this 

study this was accompanied by an assessment of the relative importance of the 

knowledge they needed to acquire and of how necessary or urgent its acquisition was. 

The teachers were able to recall and carry out a range of possible strategies for 

acquiring the needed knowledge. These included seeking out colleagues, internet and 

textbook resources, and professional learning opportunities. This suggests that 

knowledge of how to expand one’s own knowledge may be an important part of 

knowledge for teaching mathematics. Importantly, these teachers also evidenced an 

inclination to learn, underpinned by implicit confidence that they could.  

The scary scenarios that the teachers cited were teaching problems that demanded 

solving, and so provide contexts in which the teachers acted as problem solvers. Indeed 

the steps of Polya’s (1957) heuristic can be identified in the processes they articulated: 

understanding the nature and extent of the problem (their lack of knowledge); making 

a plan to solve the problem; carrying out the plan; and reflecting on the effectiveness 

of the teaching that followed. Chick and Stacey (2013) characterised mathematics 

teaching as a problem solving activity in which teachers bring to bear their 

mathematical and pedagogical knowledge in order to solve a mathematics teaching 

problem. In the challenges these teachers described, however, the problem was more 

often concerned with acquiring needed mathematical knowledge rather than applying 

it. This highlights a tension: the initial “scariness” is often a lack of knowledge of 

mathematics, but after the requisite mathematical knowledge is acquired, what are the 

implications for the development of the relevant necessary PCK? Given the claims of 

the specialised nature of PCK for mathematics, it is not likely to be enough to bring 

general pedagogical practices to bear, so there must be a quest for further knowledge. 

The scary question also appeared to be effective in revealing the more innovative 

pedagogies in the teachers’ repertoires. It prompted them to recount stories of the use 

of pedagogies that were inherently risky: where they were not sure of being in control 

to the extent that were possible with more familiar approaches, nor sure of the ways in 

which students would respond, or certain of the direction in which the lesson might go.   
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Development of knowledge for teaching 

Facing uncomfortable experiences in teaching mathematics appeared to have had 

positive effects on the knowledge development of these teachers. We know that 

significant belief change requires both willingness and effort on the part of teachers 

(Arvold & Albright, 1995) and it seems reasonable to extend this to changes in 

knowledge more generally. The innovative practices that the teachers described were 

largely precipitated by being in situations in which familiar strategies were judged not 

viable and hence trying something new was the only option. Without the impetus of a 

challenging situation it is possible that innovative pedagogies known to teachers may 

not be used. The scary situations appear to have prompted thought and experimentation 

with pedagogical practice, influenced by the content to be addressed, leading to the 

possible growth or at least broader understanding of PCK. These situations had also 

prompted teachers to reflect on their current knowledge and actively seek new 

knowledge. Sources of this knowledge included the internet and texts, but there was a 

clear preference for learning with colleague teachers, advisors or academics. For some 

teachers, more formal activities such as participation in professional learning 

opportunities or postgraduate study were ways of growing their knowledge.  

In contrast to their own experience, the teachers in this study were less positive about 

the impacts of challenging teaching situations for less experienced or less expert 

teachers such as those fearful of mathematics or teaching out of field. Rather than 

improving the teaching of these teachers, the experienced teachers believed that being 

uncomfortable about mathematics teaching resulted in textbook-reliant teacher-centred 

practice on the part of those less expert. Of course, teachers teaching out of field or 

who have negative attitudes to mathematics may find that every mathematics lesson 

that they teach is a scary experience. If impression of the teachers in this study is 

correct, it could be that always being in a scary teaching space rather than experiencing 

these situations only occasionally is a disabling rather than enabling experience.  

The underlying confidence of the experienced teachers in their capacity to acquire the 

knowledge that they needed and to deal with pedagogical challenges is also likely to 

make an important difference. This confidence may lie in either or both of content and 

pedagogy; the leap into the unknown described in one of the examples in Chick and 

Stacey (2013) was attempted because of the teacher’s confidence that both her 

mathematical knowledge and general pedagogical knowledge would be sufficient to 

deal with what arose. Just as in teaching mathematics the level of challenge presented 

by a task needs to be appropriate to the learners (Wertsch, 2011), it could be that for 

experienced teachers the need to teach unfamiliar mathematics is seen as an achievable 

challenge whereas less experienced or expert colleagues might experience it as 

overwhelming. 

CONCLUSION 

Posing the scary question prompted teachers to reflect on teaching situations in which 

they felt inadequate. This methodological approach appears to be a useful technique 
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for uncovering the more innovative pedagogical approaches that the teachers employ 

in teaching mathematics and hence for gaining a fuller picture of the PCK that they 

have at their disposal. It also suggests that a relevant aspect of teacher knowledge not 

included in current models could be knowledge of ways to gain further knowledge of 

mathematics, pedagogy, or PCK. The outcomes also suggest that finding themselves 

in challenging teaching situations can make a positive contribution to the knowledge 

development of teachers, with the possible caveat that the degree of challenge 

corresponds appropriately with the teachers’ existing expertise and confidence. 
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TEACHING FUNCTIONS IN A SECONDARY SCHOOL 
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Abstract: This paper presents a multi-case study of teachers describing and justifying 

the ways in which they teach functions at secondary school level. Typical forms of the 

reported teaching practice are identified; they show that despite the strong influence 

of the school vision on teaching mathematics, there is still space for individual 

variation. This variation is based on the differences in the teachers’ epistemological 

models of functions linked to their visions of learning mathematics.  

INTRODUCTION 

As early as 1991, Dreyfus (1991, 20) has ascribed functions as one of the “most 

difficult concepts to master and teach in all of school mathematics” (p. 120). The 

function concept encompasses many layers of complexity and sub-concepts (cf. p. 120) 

such as variables (Malle, 1993); correspondence and covariation (Malle, 2000); 

covariation related to rate of change (Johnson, 2015); and graphical representations 

(Stölting, 2007; Vogel, 2007). This complexity causes a variety of mistakes and 

misconceptions about functions that students show at the end of secondary school level 

(Nitsch, 2014). Representational fluency (cf. Suh & Moyer, 2007) seems to be 

underdeveloped. Hence, students are burdened with many learning difficulties at the 

initial state of high school (the Oberstufe). In this state, the topic of functions is 

readdressed to prepare students for calculus, there we have observed an additional 

problem in Germany: The kinds of mistakes, and the unfavourable ways in which 

students deal with functions seem unpredictable broad. In order to design suitable 

lessons for this student body, teachers have to know how their students have been 

taught functions previously. But this is difficult to achieve, since the students come 

from many feeder schools with a variety of different school cultures in which they may 

have been taught functions in many ways, with different purposes and emphases. 

However, beyond the curricular steps of types of functions provided by textbooks, little 

is known about such variable teaching practices. This problem is addressed in an 

ongoing qualitative empirical study that investigates teaching practices on functions at 

the secondary school level. This paper reports on an initial approach which answers 

the following research question: What kinds of vision on teaching functions in the 

secondary school can be reconstructed at the institutional school level and at the 

teachers’ level. Preliminary results will be presented involving seven teachers, five of 

whom come from a reform school.  

THEORETICAL FRAMEWORK: THE CONCEPT OF PRAXEOLOGY  

Ways of teaching functions are determined by matching two perspectives, a 

perspective on institutional practices based on school programs and their visions and 

on the individual teacher’s view of the function concept and how it is, should or can be 
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taught best. This matching is conceptualized in the concept of “praxeological 

equipment” which stems from the Anthropological Theory of the Didactic (ATD) and 

will now briefly be described.  

All human activity consists of practice and discourse; Chevallard talks about praxis 

and logos (Chevallard, 2006, 23). These two directions of acting are shaped by two 

blocks, the practical and the theoretical block. The practical block consists of tasks to 

be conducted and techniques for how these tasks as ways of doing are or can be carried 

out. The theoretical block consists of technology and theory, describing the kind of 

discourse on the techniques and its theoretical basis. Technology is the way in which 

the techniques enacted by the tasks are described, justified, and validated (see Bosch 

& Gascón, 2014, 69). The theory consists of the basic assumptions underlying the 

technology. ATD uses the term praxeology which is shaped by the quadruple (task, 

technique, technology, theory).  

According to the topic of functions, the bath task is an interesting task which is 

currently used in German schools. It considers a bathtub filled with water and a 

graphical representation of a story: It asks students to invent a possible story that fits 

the representation. For that, a number of techniques may be considered, for example, 

the slope of the graph, sections where it is positive, zero or negative, using the variables 

in the coordinate system, addressing points on the graph, and so on. The kind of 

reasoning in the description of the story would tell us about the technology used; for 

example, the students could explain the story either by contextualized or de-

contextualized language, going back and forth from the story to the graph. The 

underlying theory of mathematics could be that mathematics provides tools for 

interpreting real-world stories by the use of mathematical concepts.  

Didactic praxeology involves “setting-up a praxeology” (Chevallard cited by Bosch 

and Gascón, 2014, 69). In our case it describes the activity through which the 

mathematical praxeology on functions is implemented in class as an institutionalized 

way of doing mathematics. If we consider the ‘bath-task’ to be implemented in class 

as a didactical tasks of a teacher, this could be justified by pointing to the relevance of 

diagrammatic reasoning on covariation and the use of modelling an everyday situation, 

the first aspect to provide access to covariation as an important feature of functions and 

the latter to link this concept of functions to the students’ empirical world. Such a 

justification expresses a didactic technology and highlights the assumption that 

mathematics can best be learned if it is related to the students’ experience.  

When a teacher talks about the way he/she teaches functions then we gain information 

about a mixture of institutional didactic praxeologies and the teachers’ individual views 

on teaching and learning functions, on teaching mathematics and on pedagogy in 

general. With reference to Chevallard, Bosch and Gascón (2014, 69), we call this 

mixture “praxeological equipment”. Students do not only get used to or adopt 

institutional praxeologies as a habit but build their own praxeological equipment that 

is also influenced by those of the teachers. Therefore, the secondary teachers’ 
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praxeological equipment is an important factor which may direct students’ 

interpretation of task requirements in the initial phase in high school. 

METHODOLOGY, METHOD AND TECHNIQUES 

The empirical study presented here is part of a design-based research project called 

“The function concept in the transition to high school”, conducted by the 

interdisciplinary research group FaBiT (Fachbezogene Bildungsprozesse in 

Transformation, see Doff et al., 2014)* at the University of Bremen, Germany. One 

aim of this study is to reconstruct teachers’ praxeological equipment for teaching 

functions at secondary school level. This equipment is the result of the school’s 

praxeology being modulated by the individual teachers’ views and biographies. 

Therefore, the methodical approach will be twofold: (1) the didactic praxeology on 

teaching functions will be reconstructed by analyzing the school program, talking to 

the educational chair, and by ethnographic documentations through participant 

observation; and (2) traces of teachers’ praxeological equipment are reconstructed, 

based on interviews. The interviews are meant to be conversations producing narratives 

that disclose official and implicit personal views and experience. They last about 60 

minutes and are partially structured following these subsequent questions: How do you 

teach functions, what is relevant, on what do you pay attention, and which resources 

or teaching aids do you use (e.g. the textbook)? Provide a task that is typical for your 

way of teaching functions and explain your choice. How do you teach formulas and 

how are they linked to functions? Since there is not one single function concept being 

taught in school, it is important to know the teachers’ epistemological models of the 

function concept. Therefore, we have asked additionally: What are functions for you? 

This paper focuses on an empirical multi-case study of one reform school. The data 

consists of five audio interviews with teachers (we refer to them by abbreviations 

beginning with T for teacher: TUB, TIB, TFB, TOB, TEB) from the reform school 

including the educational chair, the school program (available on the school’s 

homepage) and ethnographic documentations on ways in which teachers can access to 

tasks and task descriptions. To be able to make distinctions, these five interviews are 

complemented by and contrasted with additional interviews with two teachers (TO1, 

TO2) from two other schools. All interviews are audio-recorded; pictures are taken of 

the tasks provided by the teachers.  

According to the praxeological categories, the school program (cf. homepage) is 

analyzed and complemented by participant observations. The audio-recordings of all 

seven interviews are analyzed in three steps: (1) identifying relevant categories in the 

audio recordings and transcribing the interview scenes around them, (2) distinguishing 

the pronouns we, us, and our for institutionalized practices and I, me, and my for 

individual practices; and (3) reconstructing the teachers’ typical praxeological 

equipment and their epistemological models of functions. Finally, all analyses are 

matched. 
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PRAXEOLOGICAL ANALAYSES ILLUSTRATED BY SOME DATA 

Tasks and techniques 

The school was established as a learning community where teachers work together, 

prepare and develop lessons in class-grade teams not only for themselves but also for 

their colleagues, who may adapt and improve the tasks in the following year. This is 

expressed by teachers using the words “we, us, our” but also through stressing the 

“open door conception”: If doors to the classrooms are open, colleagues are invited to 

participate (cf. TOB). Tasks are gathered in boxes or uploaded into a Dropbox with 

descriptions (cf. TOB). Parallel tests are written regularly (cf. TUB) and taken as a 

starting point to analyze weak and strong points to be discussed and improved. In this 

way, the teachers have discovered that improving reasoning should be a major issue 

(see TIB). These techniques establish a common vision of teaching. 

The program of mathematics is arranged around topics from the textbook (cf. TUB). 

Learning arrangements are commonly developed (see TIB, TEB) and strengthen the 

common vision. When teachers experience teaching aids as effective (TIB, TEB), they 

voluntarily share the school vision on which the aids are based (“the tasks work very 

well” (TFB)). Through this program and working in class-grade teams, new teachers 

are quickly introduced into the school practice of teaching mathematics (cf. TFB). In 

the school vision, the function concept is a core concept (TIB, TUB, TOB). In the 

interviews, teachers talk about teaching functions in different teaching topics such as 

teaching scales, fractions, check lists as well as tables and graphs from the beginning 

in grade five (TIB, TOB, TUB, TFB). Nearly all teachers have pointed to similar tasks 

as being typical for teaching functions in this school: An early up-take of distance-

time-graphs in grade 5 (Fig.1) to be taken up and deepened in grade 7 (Fig 2). 

 

x-axis: time, y-axis: 

distance School starts. 

Tell stories about 

Nadine’s and Bainca’s 

routes to school and show 

this in the diagram. 

(mathe live 5, p. 70, own 

translation) 

Fig.1: Typical task 

example for grade 5 

 

 

Fig.2: Task for 

 grade 7 

Skating down town 

Arrange the statements referring to 

the velocity in the right way, then you 

will know where skaters like to drive. 

A: Watch out! Pedestrians. Here I 

have to brake. 

P: First up-hill and then relaxed 

down-hill. 

I: Tim pulls me a bit with his bike. 

F: Now down-hill. This will be 

wonderful speedy. 

H: First step up and then gather speed. 

L: Uh, a red traffic light- that means 

waiting. 

E: nearly managed! Only a slow 

brake 

P: The police – there I take the board 

under the arm. (mathe live 7, p.73, 

own translation) 
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Fig. 3: Task example 

for grade 7/8  

1. In the boxes with the 

same color is the same 

number of matches. 

2. On both sides of the 

equation sign are the 

same number of 

matches. 

How many matches are in 

the boxes? (mathe live 7, 

p. 153) 

  

One walks, the other draws the graph. 

Fig. 4: Walking graphs 

 

Technology and theory 

The vision of teaching and learning mathematics is available on the homepage: The 

main ideas are that all students participate in ambitious, competence-oriented learning 

and all students are supported in the ways they need: instruction is regarded as 

contemporary and modern, arranged around topics which come from the students’ 

empirical world, varied and vivid, but also addressing competitions and out-of-school 

learning. Concepts are built up in a spiral curriculum, thus appearing again and again 

(ed. chair). All teachers emphasize that understanding is more important than the 

ability to use symbols, e.g. TUB has expressed this point by saying: it is always 

important to know “what stands behind, what the slope means” (1.23, TUB). This 

school’s didactic vision serves as theoretical background for practice, which is 

reflected in the educational chair’s narrative but also referred to by the teachers to 

justify the choice of tasks and techniques. For example, teachers point to “use functions 

flexibly … in various application contexts” (2:00, TUB), and refer to the task in Fig. 4 

as a tangibly “experience [of] functions” (6.50, TFB). However, the teachers also 

modulate the didactic praxeology at the school level in their praxeological equipment. 

Praxeological equipment of the teachers 

Technology and theory of the teachers’ didactic praxeologies are based on individual 

values and preferences, reflecting two aspects: the second subject they teach (arts, 

geography, language, science), and their epistemological models of functions. In the 

five interviews from the reform school, we found, apart from nuances, three types of 

traces of such didactic praxeological equipment:  

Type a: Preparing equations: Teaching functions means teaching equations since 

functions only come into existence with variables, terms and equations. Everything that 

is learned before is only preparation. Even graphical representations only prepare 

functions. This also means that sub-concepts such as the concept of variables must be 

built up before, otherwise “the function concept cannot be understood” (4.0 TEB). This 

is done best when students directly experience concepts; e.g. the perimeter can be 

walked in footsteps but this is not possible for the area, hence, going along the 

perimeter initiates the experience of the difference between area and perimeter 

(13.TEB).  
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Type b: Providing application contexts: A function is a correspondence between two 

magnitudes (cf. Thompson 2008) that is expressed by contextual stories, tables, graphs 

and other representations. Therefore, teaching functions means flexibly changing 

representations and contexts. This can be carried out with climate diagrams (“as a 

GUB teacher [society and politics], [I find] climate diagram are exciting” (3.50, TUB)), 

or motion stories. “a highlight with which we have made positive experience, are 

distance-time-diagrams ...implemented early in grade 5 ... that is, motion stories” or  

talking about “routes to school” (2.55, TUB). (Fig. 1, 2, 4).  

Type c: Nurturing progression: Functions are tools for analysing and predicting 

factual connections. This can best be achieved when students answer their own 

questions (3.00, TIB) and are able to interpret functions (4.30, TIB). Teaching 

functions means providing meaningful contexts, starting early by inquiry learning, and 

progressing by connecting content across the grades (1.42, TIB). Thus, concrete tasks 

such as measuring the child’s room or inventing motion stories (Fig. 1) provide access. 

Friction occurs when functions are expressed by terms and equations. But tasks like 

“Knack die Box” (Fig. 3, 8.10, TIB) may provide “tangible experience” (4.30, TIB) 

out of which students’ own questioning may still occur again. The next two types are 

expressed by the two teachers from other schools. Their didactic praxeologies are 

shaped around different visions of instruction:  

Type d: Generalizing models: Teaching functions means “experimenting with 

functions as tools for modelling” to prepare high school mathematics right from the 

beginning, as co-varying changes of magnitudes. A typical task is the bath task. 

Examples for instance tables from science are used as a didactic technique to introduce 

functions. But examples are not enough to access the shape of the function as a general 

structure. Predictions provide the need for a more general view leading to a structure 

such as a formula. In order to avoid friction and to keep understanding lively, contexts 

and mathematical expressions should always be related. (cf. TO2)  

This is the only teacher who has high school requirements in mind. We believe that 

this is the case because he also teaches at the high school level and the others do not. 

Type e: Teaching parts: Teaching functions should be done by teaching the functions’ 

main parts, e.g. “the m [slope] and the n [y-intersect]” (TO1) in the use of linear 

functions, and how they can be found and drawn. Functions are built by their main 

parts; for linear functions this is the slope and the y-intersect. Using graphs means 

finding points on the graphs and drawing graphs means drawing points; didactic 

techniques are worksheets and examples. Structuring instruction is done by designing 

clearly arranged worksheets. The categories of evaluating tasks and worksheets are 

“simple” or “difficult” (TO1). Simple examples and simple language are used to make 

tasks accessible, hence, simpler. The main aim is to avoid difficulties. (cf. TO1) 

The narrative of this teacher is reduced to describing techniques. The underlying 

assumption that guides technology seems to be that tasks ‘looking simple and 

manageable’ (TO1) will provide access to mathematics, avoid overexertion, and help 

students overcome problems. 
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Role of the teachers’ epistemological models  

In contrast to the last two teachers, the teachers in the reform school did not talk about 

specific examples, neither as a step towards generalizing nor to simplify the tasks. They 

were more concerned with how the function concept could be built up as a whole idea 

right from grade five by engaging the students in many types of diagramming. 

However, their epistemological models of the function concept differ and deeply 

influence the way they talk about tasks, or justify their choice and techniques. For 

example, if functions come into existence only as equations (as in type a), then the term 

function does not appear when using graphs or tables in grades 5-7, or when graphical 

representations cannot be described by equations. Teacher TO2 teaches also at the high 

school level (type e), therefore, he seems to be concerned with developing competences 

for this level. In this respect, the awareness of generalizing seems to be an important 

point. According to his view on functions as a modelling tool, generalizing is meant to 

be described by functions as a dynamic structure allowing predictions and 

extrapolations, e.g. in science (his second subject). Analysing and predicting can also 

lead to another teaching view. TIB’s theory is concerned with the students’ factual 

connections (type c) and their own questions as a fruitful recourse. TIB admits that this 

can lead to friction when algebra begins. His technique is to find tasks that overcome 

this friction, such as the Knack-die-Box task, which may initiate students’ own 

questioning through inquiry. If a function is predominantly seen as a correspondence 

between specific magnitudes in contextual situations being expressed by 

representations (type b), then it is clear that this correspondence can, as expressed by 

TUB, best be “addressed by the flexible use of representations”.  

In contrast to the four holistic views on functions, type d presents a fragmented view 

of functions. When simplifying tasks is an additional technique to make tasks 

accessible, students will have difficulties building up functions as entities made of 

many parts. 

CONCLUDING REMARKS  

To date, we have only reconstructed traces of praxeological equipment of seven 

teachers from three schools providing a small excerpt of how praxeological equipment 

might constrain students’ learning during the transition to high school. When students 

adopt a fragmented view of functions they will have difficulties as soon as a flexible 

use of function is required in high school. When students adopt the view that functions 

only come into being when they can be described by an equation, they will also 

encounter problems as soon as functions need more than one equation to be expressed 

(e.g. the absolute value function) or cannot be described by equations at all. The other 

views of teaching functions differ only slightly; together they emphasize that functions 

should be taught as early as possible (25.30 TIB), by meaningful contexts, nurturing 

progression and generalizing models to prepare for high school level. A more formal 

definition of types of functions might then be a natural extension of what is already 

known leading to a pattern for predictions and extrapolation. (cf. 10.50, TIB). 

* Funded by the Excellence Initiative of the German Government (www.uni-bremen.de/cu-fabit). 

http://www.uni-bremen.de/cu-fabit
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Although technology has long been identified as an integral part of mathematics 

education, there has been, more often than not, an overemphasis on the use of 

technology as a goal rather than a means to learning mathematics. Thus, researchers 

are still grappling with how to integrate technology that is, at once, subject-based as 

well as compatible with learning theories and pedagogical strategies. In this paper, 

the authors use the theoretical model TPACK to demonstrate a mutually 

interconnected framework. Data were collected from two courses in a teacher 

education program in mathematics where the instructor (the first author) used a grade-

six digital textbook to teach the pre-service teachers. Three examples are discussed to 

illustrate the use of TPACK and its implications for further research.  

INTRODUCTION 

School mathematic has traditionally been associated with textbooks and curriculum 

material (Remillard, 2005). But, with the increasingly growing awareness of the 

importance of technology in mathematics education (Drijvers et al., 2010), and with 

the realization that the use of technology helps leaners achieve a better understanding 

of mathematical concepts and their relationship (Hohenwarter, Hohenwarter, & 

Lavicza, 2008), technology too has been gaining recognition in the teaching of school 

mathematics. Having said that, researchers have been witnessing several problems in 

relation to subject-based, pedagogically sound integration of technology into teaching 

and learning. Most recently, Ornellas and Sancho-Gil (2015) have warned against 

treating the mere availability of technology as a panacea. Obviously, it is not. To date, 

with the prevalence of technology in mathematics education, teachers have a plethora 

of digital applications, digital labs, videos, and recommendations for teaching the 

subject content. Nonetheless, Brush and Saye (2009) found that teachers feel 

inadequately prepared for subject-specific use of technology. It is thus understandable 

why adapting subject specific, technology-based teaching techniques continues to be a 

concern for teacher educators (Lagrange, Artigue, Laborde & Trouche, 2003). To 

address this concern, researchers called for a theoretical framework to be used in 

incorporating technology into teaching (Brush & Saye, 2009; Kramarski & Michalsky, 

2010). The purpose of this paper is to answer this call by employing the TPACK 
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model—an acronym for technological, pedagogical, and content knowledge—that we 

elaborate on in the next section. 

THEORETICAL BACKGROUND 

Technological knowledge, content knowledge, and pedagogical knowledge  

We draw on Lundeberg, Bergland, Klyczek, and Hoffman’s (2003) TPACK model, 

which offers an integrated approach that simultaneously encompasses three distinct 

education-specific domains: knowledge of technology, knowledge of the subject 

content, and knowledge of pedagogy (Niess et al., 2009). Table 1 provides definitions 

of the different domains of TPACK.  

TPACK domain Definition Example 

TK Knowledge about how to use 

equipment or software  

Knowledge about how to use 

Facebook, WhatsApp  

PK Knowledge about theories and 

teaching methods  

Knowledge about Socio-

cultural theory 

CK 

 

TCK 

 

TPACK 

Knowledge about the subject 

content 

Knowledge about how to use 

technology to teach specific 

subject content 

Knowledge about what 

technology to use and when 

Knowledge of mathematics 

Knowledge about how to use 

GeoGera  

Knowledge about what 

technology to use to best teach 

area of a circle  

Table 1: Definitions of TPACK domains. Adapted from Chai, Koh, and Tsai (2013) 

In this paper, we focus on the interplay of the three dimensions in TPACK in the 

context of a teacher education program in mathematics. We also note that our attention 

was drawn to the intersection of knowledge of technology, content knowledge, and 

pedagogical knowledge rather than to the skill of using a particular application, 

software, or hardware. To wit, our aim is to explore the use of technology, content 

knowledge, and pedagogical content knowledge in a context of a teacher education 

program in mathematics. 

RESEARCH QUESTIONS  

The following research questions were formulated: 

(1) How and to what extent do the TPACK domains intertwine when teaching and 

learning mathematics using digital books in a mathematics-teaching program?  

(2)  How do pre-service mathematics teachers put forth pedagogical considerations 

in a content-based environment of technology? 

(3) What possibilities and limitations are attributed to the experience of using 

digital textbooks in mathematics education? 
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DATA SOURCES  

In this study, the first author taught courses in elementary school mathematics to 26 

pre-service teachers of mathematics using Paths—the Grade 6 digital textbook in 

geometry developed by the Centre for Educational Technology in Israel (Ovodenko et 

al., 2009). The digital textbook includes, among other things, an integrated forum 

platform, evaluation tools, and applications. The theoretical framework of TPACK was 

used throughout the duration of the courses to design multiple opportunities to solidify 

knowledge of technology, pedagogy, and content knowledge among the pre-service 

teachers of mathematics. To keep track of emergent needs, interesting scenarios, 

relevant examples, and theoretical and practical interconnections, the first author kept 

a journal of his experience teaching these courses. In addition to the course instructor’s 

journal entries, the pre-service teachers’ work, assignments, and activities were also 

recorded. TPACK-integrated manifestations were identified and analysed—three will 

be discussed in the next section.  

DATA ANALYSIS  

The following manifestations of TPACK were empirically derived through an 

examination of the pre-service teachers’ work and the journal the first author kept. 

Each is framed as a learning opportunity that encompasses knowledge of technology, 

pedagogy, and mathematics. Whereas all manifestations include all three elements of 

TPACK, some include some elements in a higher degree than others. In the first 

example, we present a learning opportunity that exemplifies the interrelationship 

between knowledge of technology and pedagogical knowledge. The second example 

illustrates how knowledge of technology and content knowledge intertwine. The third 

example demonstrates the interplay among knowledge of technology, pedagogical 

knowledge, and content knowledge.  

Learning opportunity 1: TPACK in action - Pen & paper or digital technology?  

In grade six, one of the demonstrations used to teach the theorem of the area of a circle 

is an activity of cutting up a circle into regions and finding the relationship between 

the area of the regions (in approximation to the rectangle) and the area of the circle. In 

this context, pre-service teachers were asked to weigh the pedagogical possibilities and 

limitations of either literally cutting up a circle into regions or of using digital 

technology by merely pressing a button and seeing the circle unfold into a rectangle. 

 

Figure 1: Carving up a circle into regions to find the relationship between the area of 

the regions and the area of the circle. From: Geometry for Grade 6, Paths, CET 

(Ovodenko et al., 2009) 
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Here, the pre-service teachers were engaged in making a pedagogical decision. Which 

tool should they ask their students to use? What might students gain and what might 

they lose by working with one technology over the other? Pre-service teachers were 

invited to discuss these questions in a forum that was positioned right “on top” of the 

digital page and in juxtaposition to the assignment everybody was working on. The 

forum reflected pedagogical considerations the pre-service teachers weighed in as they 

were pointing to advantages and limitations of each activity. For example, one of the 

teachers explained:  

Because the student is the one who manually cuts up the circle and builds up the rectangle, 

it might be easier for him/her to make the connection between the radius of the circle, its 

circumference, and the length of the sides of the rectangle. [As for using the digital tool], 

there is the advantage of accurate use of the ruler that is integral part of the rectangle that’s 

created. The app is suitable for children who are better at abstract thinking. As well, it is 

suitable for children who love to work on a computer. It is also suitable for children who 

have motor difficulties.   

This excerpt demonstrates the interconnectedness of all three elements as pre-service 

teachers simultaneously use their knowledge of technology to express their 

pedagogical considerations and to implement subject-specific knowledge.  

Learning opportunity 2: Real-time feedback (TCK) 

Working with digital textbooks in mathematics allows teachers to provide real-time 

feedback. Each pre-service teacher sits at a computer and answers assigned questions 

from the digital textbook. In our context, as soon as the pre-service teachers submit the 

answers, an analysis of the responses is generated (see Figure 2) to capture how each 

of them did. This tool in the digital textbook allows the identification of content that 

requires further attention.  

 

Figure 2: A snapshot of the success rate on an assignment generated by OFEK—a 

tool integrated in the digital Geometry textbook  
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The following is an example of an episode recorded in the instructor’s journal. The 

pre-service teachers were asked to indicate True or False for the statement: “Two 

intersecting circles with different radii will always have two points of intersection.” As 

the responses were streaming in, the course instructor (the first author) noticed that one 

of the pre-service teachers concluded that there are multiple intersection points 

between two intersecting circles. He next asked the student to draw what she meant 

(See circles on the left-hand side in Figure 3.). By this time, other pre-service teachers 

in the course also concurred that two intersecting circles may have multiple points of 

intersection. At this point, the course instructor explained that the use of a thick-lead 

pencil to draw the circles yielded this misperception. He then used GeoGebra to redress 

this misperception by using the zoom-in and zoom-out features embedded in GeoGebra 

to demonstrate to the pre-service teachers that intersecting circles with different radii, 

will always have two points of intersection (See circles on the right-hand side in 

Figure 3).  

 

 

Figure 3: The response of the pre-service teacher and the course instructor were 

compacted for this paper into figure 3. 

 

Learning opportunity 3: TPACK mutually interconnected  

One of the features of the digital textbook allows teachers to upload additional 

assignments, tasks, or elaborations onto relevant pages thus simultaneously applying 

knowledge of technology, pedagogical knowledge, and subject content. In a topic 

about time units, a pre-service teacher incorporated a succinct summary of the time 

units: hour, minutes, and seconds, and asked the students to add three more examples 

for each time unit.  

https://app.geogebra.org/#geometry
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Figure 3: A pre-service teacher of mathematics uses the platform of the digital 

textbook to design and incorporate her own assignment within the book. 

 

The rich variety of possibilities offered by the digital textbook allows the teacher to 

consider different pedagogical principles and a variety of digital tools to choose from. 

DISCUSSION AND CONCLUSIONS  

The three examples illustrate a variety of learning opportunities that were occasioned 

through the use of TPACK as a framework in the teacher education programs in 

mathematics. Working within this framework, there is added value in employing the 

forum tool (example 1) that can be plugged in within the textbook on a specific page, 

next to a specific section. Such a tool not only facilitates a visually available continuity 

in the exchange of content-specific pedagogical ideas, but also creates equal 

opportunities, for all, to participate regardless of considerations of wait-time, airtime, 

or turn-taking that typify non-digital platforms of discussion. In this study, the forum 

was task-specific. It was in fact located on top of the relevant page in the digital book 

and right next to the assignment thus creating a continuity of discourse that the pre-

service teachers could refer to if they wished to better understand the pedagogical 

considerations of other pre-service teachers.  

The second example highlights real-time feedback within the framework of TPACK. 

Real-time feedback that is occasioned within the framework of TPACK is, by default, 

content specific, prompt, and focused. It thus plays a critical role in student learning. 

The impact the feedback had on the pre-service mathematics teachers was significant 

as it yielded a learning opportunity which could have otherwise been gone unnoticed 

and hence overlooked.  

The third example illustrates how digital textbooks allow for the integration of 

pedagogical considerations, content knowledge, and knowledge of technology to take 

place through the input of the mathematics teacher. While there may be limitations to 

using digital textbooks in teacher education programs of mathematics, we believe that 

the possibilities embedded in using the TPACK framework outweigh them. For 
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example, using digital textbooks in a mathematics education program not only reduces 

costs by not having to provide hard copies of textbooks for all pre-service teachers to 

work with, but also allows the levelling of the playing field for all pre-service teachers 

so that they can collaboratively delve into the curriculum, improve their content 

knowledge, explore pedagogical practices, and hone their skills in digital technology. 

To wit, we demonstrated how harnessing TPACK as a framework can—when 

appropriate—provide instantaneity, accuracy, and perceptivity in the context of 

mathematics education. The analysis of the examples discussed in this paper 

demonstrates how the use of TPACK merits attention from the perspective of pre-

service teachers of mathematics.  

Bearing these comments in mind, the findings of this study may serve three purposes: 

provide evidence of how technology, pedagogy, and content knowledge intertwine and 

are in fact distinct but inseparable in the context of mathematics education; indicate 

TPACK’s theoretical and practical relevance that pertains to the essential role of 

technology in the development of mathematical understanding; and suggest that 

TPACK is relevant not only in teacher education programs in mathematics but, by 

extension, also in professional development courses catered to in-service teachers. For 

the purposes of this study, we challenge the understanding of the TPACK framework 

as compartmentalized entities. We suggest treating these entities as distinct but 

inseparable dimensions that can be used as helpful tools to further explore how, 

through the principled consideration of the interplay between these dimensions, 

learning opportunities are occasioned. 
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MEASURING LANGUAGE-RELATED OPPORTUNITIES TO 

LEARN IN PRIMARY MATHEMATICS CLASSROOMS 

Katrin Bochnik, Stefan Ufer 

University of Munich (LMU) 

 

Lower mathematical achievement of learners with a migration background was 

repeatedly explained by language proficiency. This study focusses on language-related 

opportunities to learn (OTL) during instruction, distinguishing active and receptive 

language-related OTL. An instrument to measure OTL was developed, evaluated and 

studied for similarities and differences between N=383 third graders from German 

and non-German speaking homes. Results show lower receptive, but higher active OTL 

of students from non-German speaking homes. Receptive OTL is positively related to 

mathematics skills in both groups, while active OTL only in learners from non-German 

speaking homes, pointing to the relevance of OTL for acquiring and fostering 

mathematics skills.  

INTRODUCTION 

International and national school achievement studies repeatedly revealed differences 

related to a migration background, indicating a disadvantage of students with a 

migration background in language skills, but also in mathematics achievement. In that 

research, a migration background is usually defined by the child’s or parents’ country 

of birth. For many of the about 35% of students with a migration background in 

Germany, the language spoken at home differs from the instructional language German 

that is spoken in school. There is evidence that language skills explain migration-

related differences in mathematics achievement to a large extent (Heinze, Reiss, 

Rudolph-Albert, Herwartz-Emden, & Braun, 2009). Explanations for this relevance of 

language vary from the role of language for participating in classroom discourse (Civil, 

2008), over the need to comprehend mathematical test items (Haag, Heppt, Stanat, 

Kuhl, & Pant, 2013) to the ability to use the language based thinking processes during 

learning (i.e. the epistemic function of language; Sfard, 2008). Researching these 

different explanations is important to understand language-related achievement 

differences and conceptualize instructional support to reduce them. In this contribution 

we focus on the first explanation: students’ opportunities to actively participate in 

mathematical classroom communication are often put forward as a decisive reason for 

mathematical disadvantages in the literature on English Language Learners (e.g., 

Abedi & Herman, 2010). We propose a conceptualization of language-related 

Opportunities to Learn (OTL) with a specific focus on language-based learning 

processes. We propose an instrument to measure OTL in elementary mathematics 

classrooms. For this contribution we were also interested in relations between OTL and 

students’ mathematics self-concept and achievement. 
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THE CONCEPT OF OPPORTUNITIES TO LEARN MATHEMATICS 

In the current literature on Opportunities to Learn, rather broad conceptualisations are 

used. OTL is defined, for example, as “what students learn in school related to what is 

taught in school” (Schmidt & Maier, 2009, p. 1). In that research, OTL is often 

measured by structural conditions of math instruction, for example the time spent in 

small-group instruction or the school’s financial situation and equipment (Pianta, 

Belsky, Houts, & Morrison, 2007). Even though these conceptualizations surely 

describe relevant context conditions of mathematics instruction, they do not provide 

insights into the mathematical teaching and learning processes in the classroom.  

From a mathematics education perspective, the communicative discourse between the 

individual students, their peers, and the teacher is one of the crucial determinants of 

mathematical learning processes (Sfard, 2008). Moreover, it is considered decisive that 

students can engage in authentic mathematical practices during learning (Hiebert & 

Grouws, 2007). To realize this, students are expected to communicate their thinking 

about mathematics in writing and orally (Civil, 2008; Gorgorió & Planas, 2001). As 

indicated above, it can be assumed that one reason for language-related disparities in 

mathematics learning lie in the participation in these communication processes. In 

particular, it is hypothesized repeatedly (Abedi & Herman, 2010; Civil & Planas, 2004; 

Heinze et al., 2009) that students with weak skills in the instructional language have 

fewer opportunities to participate in these discourse processes. Starting from this 

perspective, we define OTL in our research as the opportunity to follow and participate 

in mathematical discourse processes in the classroom and to engage in mathematical 

practices. 

Opportunity to learn in this sense is strongly, but not solely dependent on the classroom 

environment provided by the teacher. For example, it can be assumed that students 

with low mathematics skills or low mathematical self-concept tend to refrain from 

active participation in a mathematical discourse, if the classroom atmosphere does not 

support them sufficiently (Liu & Wang, 2008). This would result in reduced OTL in 

the sense of the definition above. On the other hand, the provision of OTL is of course 

dependent on the practices of mathematics teacher (Baumert et al., 2010) to stimulate 

a rich discourse. Different dimensions of OTL can occur in a classroom discourse. In 

certain situations, a clear and structured verbal teacher instruction might offer 

substantial opportunities to construct initial mathematical knowledge (Hiebert & 

Grouws, 2007, Drollinger-Vetter, 2011) by decoding the information provided by the 

teacher and connecting it to prior knowledge. It is indisputable nevertheless, that 

sustainable learning also requires active mental processing of this information beyond 

taking up information (Baumert et al., 2010). Finally also practicing mathematical 

forms of discourse is put forward as an important preparation for own mathematical 

thinking (Sfard, 2008). In this vein, we distinguish between receptive OTL and active 

OTL in the sequel. While the first describes opportunities to access information offered 

by the teacher or peers in class, the second refers to opportunities for active elaboration 

of mathematical ideas and concepts. 
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Measuring Opportunities to Learn 

To study the antecedents and effects of OTL, it is in many cases necessary to obtain 

valid and reliable measures of the opportunities students have and use for mathematics 

learning in the sense described above. In the past, different approaches have been 

developed to achieve this. The most valid paradigm to obtain information about 

opportunities to learn is surely the use of classroom observation or video analysis. For 

example, mathematical discourse processes have been analysed in regard to how 

transparent mathematical concepts are communicated in classroom discourse (e.g., 

Drollinger-Vetter, 2011) and related to student achievement. Nevertheless, students’ 

individual thinking processes are not accessible in video recordings. Since a video-

based approach is not feasible for practical reasons under some conditions, different 

and more distal indicators of OTL are often used. This comprises, for example, 

examining the tasks used in classroom instruction (Baumert et al., 2010), or student 

and teacher reports. Balancing validity and efficiency, well-constructed student self-

reports have been used successfully in the past. For example, Abedi and Herman (2010) 

asked students about the content that was covered in their classrooms as a measure of 

OTL and found relations of this variable to the students’ self-report on their 

understanding of their teachers’ instructions, explanations and tests. These self-

reported content coverage and comprehension ratings are inspired by more traditional 

definitions of OTL. In general, self-reports are frequently used to measure self-beliefs 

and were repeatedly shown to be valid instruments even in young age. For example, 

Ehm, Duzy, and Hasselhorn (2011) measured the mathematical self-concept already in 

grade 1 to study its relationship to mathematics skills and migration background. 

Summarizing, even though more elaborate instruments for deeper analyses are 

desirable, efficient, reliable and valid self-report measures of OTL have a high 

potential for research on differences in individual learning processes in general, and 

language-related disparities specifically. Yet, validated instruments addressing 

students’ opportunities to participate in classroom discourse are rare. 

AIM AND RESEARCH QUESTIONS 

The present study is part of the first author’s PhD project that focuses on language-

based explanations for migration-related disparities in mathematics learning. One goal 

was to develop and study a self-report instrument to measure language-related OTL in 

the elementary school mathematics classroom. The following questions guided our 

study: (1) Do students’ self-reports reflect the theoretical differentiation of receptive 

and active OTL? (2) Do learners from German and non-German homes differ in their 

ratings of language-related OTL? (3) How are students’ self-reports of language-

related OTL connected to their mathematics skills and self-concept in both groups? 

METHOD 

In a cross-sectional survey design, data was collected from N = 383 German third 

graders (N = 163 students from non-German speaking homes) from 24 classrooms. A 

questionnaire with two subscales was developed, with items measuring receptive OTL 
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(ROTL) and active OTL (AOTL). Students were asked to give self-evaluations on their 

communicative (e.g. “I often explain how to solve a task in math.”, 2 items) and 

cognitive (e.g. “I often think about how to solve a task.”, 2 items) participation in 

classroom discourse as parts of the active OTL scale, as well as on their receptive OTL 

(e.g. “I often only understand what to do in math, if our teacher explains the task 

several times.”, 4 items) on a four-point Likert scale (1: completely disagree to 4: 

completely agree). Mathematical self-concept was investigated with six items adapted 

from previous studies (Mullis, Martin, Ruddock, O'Sullivan, & Preuschoff, 2009). 

Mathematics skills were measured with 52 open items covering arithmetic skills (AS; 

e.g. 38 + 43), mathematical concepts (MC; e.g. finding the half of 56), word problems 

(WP) and understanding of manipulatives (UM; e.g. label numbers on the number line). 

Sum scores were computed from each half of the items of all arithmetic skill facets for 

further analysis (eight item parcels). Confirmatory factor analysis (CFA) and 

measurement invariance testing with MPlus (Muthén & Muthén, 1998-2015) was 

applied, using the WLSMV estimator for categorical data and robust standard errors to 

correct for the hierarchical structure of the data. 

 

Figure 1: Full CFA model for receptive (ROTL) and active OTL (AOTL), 

mathematics skills and mathematical self-concept (MSC), **p < .01 
 

RESULTS 

The confirmatory factor analysis revealed a good fit for a measurement model of 

language-related OTL that differentiates the two subscales of ROTL and AOTL 

(² = 26.10, df = 19, ²/df = 1.37, RMSEA = .031). Also the full model including 

mathematics skills and mathematical self-concept and the OTL measures (Figure 1) 

showed good model fit (² = 252.99, df = 202, ²/df = 1.25, RMSEA = .026). The low 
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correlation (r = .128, n.s.) between the two OTL facets supported the theoretical 

differentiation between the two OTL facets. 

When considering the complete sample, receptive OTL is positively correlated with 

mathematics skills and mathematical self-concept. Active OTL only correlates 

significantly positively with mathematical self-concept and not with mathematics 

skills. Latent correlations of r = .618 (AOTL, p < .01) and r = .318 (ROTL, p < .01) 

indicated that the OTL constructs can be differentiated statistically from students’ self-

concept ratings. 

In the next step, differences between learners from German and non-German speaking 

homes were analysed. A measurement invariance analysis using nested models 

indicated full scalar invariance between students from German and non-German 

speaking homes. This ensures that means and correlations from the analysed model 

(Figure 1) can be compared meaningfully between the two groups. 

Comparing children from German and non-German speaking homes in analyses of 

variance (ANOVA, Table 1) revealed differences in self-reports between students from 

non-German and German speaking homes with small effect sizes. Students from non-

German speaking homes reported more active OTL, less receptive OTL but equal self-

concept as students from German-speaking homes. The expected large difference in 

mathematics skills was observed, as well. 

 

 Non-German German  

 M SD M SD F ² 

Receptive OTL 2.72 0.78 2.95 0.73 8.90** .023 

Active OTL 3.01 0.54 2.86 0.57 6.66* .017 

Mathematical Self-Concept 3.23 0.70 3.28 0.69 0.46 .001 

Mathematics Skills 51% 18% 63% 17% 44.31** .104 

Table 1: Means and standard deviations (by the language spoken at home), statistics 

from group comparisons, *p < .05, **p < .01 

 

A comparison of correlations among latent variables in our CFA model (Figure 1) 

showed differences between the two groups (Table 2). While the two subscales of 

language-related OTL can be clearly separated for learners from non-German speaking 

homes (r = .035, n.s.), they are significantly, but weakly correlated for learners from 

German speaking homes (r = .258, p < .01). Moreover, a higher amount of active OTL 

in learners from non-German speaking homes goes along with higher mathematics 

skills, while this relation is substantially weaker for students from German speaking 

homes. Receptive OTL is related to mathematics skills in both samples substantially. 
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Variable  1 2 3 4 

1. Receptive 

OTL 

German 
– 

   

Non-German    

2. Active  

OTL 

German .258** 
– 

  

Non-German .035   

3. Mathematics 

Skills 

German .388** .137 
– 

 

Non-German .420** .296*  

4. Mathematical 

Self-Concept 

German .389** .557** .495** 
– 

Non-German .246** .769** .688** 

Table 2: Correlations of the latent means for children from German (N = 163) and 

non-German (N = 220) speaking homes, *p < .05, **p < .01 
 

DISCUSSION 

In this contribution, an instrument to measure language-related OTL in the 

mathematics classroom was presented, evaluated and studied for similarities and 

differences between learners from German and non-German speaking homes. A good 

CFA model fit indicated that the developed items are sufficiently reliable to survey 

language-based OTL and measurement invariance analyses showed no differences in 

the internal structure of the single scales between the two groups. This means that our 

instrument can be used to compare learners from German and non-German speaking 

homes in their self-reported OTL, ensuring that the same construct is measured in each 

group. 

Compared to learners from German speaking homes, students from non-German 

speaking homes reported less classroom discourse understanding (ROTL), slightly 

more active participation in classroom discourse (AOTL) and equal self-concept than 

those from German-speaking homes. While this resembles the expected pattern for 

receptive OTL, it was unexpected for active OTL. Since both groups showed 

comparable self-concept ratings, an over-estimation of active OTL due to higher self-

concept is not a plausible reason. A different explanation might be that students from 

non-German speaking homes compensate their lower mathematics skills and 

classroom discourse understanding by engaging more (or perceive to engage more) in 

the classroom interaction. 

As expected theoretically, opportunities to follow classroom instruction (ROTL) and 

active participation in class (AOTL) are positively related to mathematics skills and 

students’ self-concept. While these relations are mostly comparable for both language 

groups, the relation between active OTL and mathematics skills goes back primarily to 

students from non-German speaking homes. While the overall result provides 
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additional support for the relevance of receptive and active participation in the 

instructional discourse (Civil & Planas, 2004; Drollinger-Vetter, 2011) in general, it 

was unexpected that the relation between AOTL and mathematics skills was much 

weaker for students from German-speaking homes. Several explanations for this result 

are possible. It would be problematic, if this relation would be primarily due to 

confoundations of AOTL with self-concept in the non-German sample. This warrants 

further research. On the other hand, the importance of active participation in classroom 

discourse lies in the language-based elaboration of mathematical knowledge. This 

process might be less relevant for the development of students’ mathematics skills, if 

these students already possess a certain level of skills in the language of instruction, 

which allows them to engage in these elaborations without frequent active participation 

in the classroom discourse. This would result in a weaker relation for students from 

German-speaking homes. We would not expect such a result for measures that capture 

purely mental cognitive elaboration of mathematical ideas (Baumert et al., 2010), but 

for our measures that covers communication-related aspects of classroom discourse 

this could explain our finding. 

Our study was – to our knowledge – the first to differentiate between receptive and 

active OTL. Before strong conclusions can be drawn, of course further research is 

needed. In particular our result, that active participation in the classroom discourse 

seems to be particularly important for students who are less familiar with the language 

of instruction, must be considered preliminary in this sense, even though it is in line 

with opinions in the literature (Civil & Planas, 2004). Nevertheless, if this result is 

substantiated with other methods and more elaborate research designs, this would offer 

empirical evidence that actively engaging students with low language skills in the 

classroom discourse is at least equally important as supporting them to follow the 

instructional discourse (for example by using language accommodations). 

To summarize, our instrument proposed a first effective approach to measure language-

related OTL using self-reports. Our first results indicate that this instrument can be 

used for analysing differences and similarities between learners from German and non-

German speaking homes at least for receptive OTL. The active OTL measure requires 

further analyses: The effects found here can be explained, but were unexpected based 

on our theoretical assumptions. Moreover, the cross-sectional design of this first study 

can only provide preliminary insights and does not support strong causal claims. 

Validation studies with other instruments, longitudinal and intervention studies are 

necessary to shed more light on the role of OTL for mathematics learning in students 

from different language or migration backgrounds. 
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In this research report we analize and discuss the extent to which prospective high 

school teachers engage in problem solving experiences that involve the formulation of 

conjectures and relationships, ways to test and validate those conjectures and the 

extension or generalization of results. Ten prospective high school teachers 

participated in a course that promoted the use of GeoGebra in a problem solving 

environment during one semester. Results indicate the importance for teachers of 

developing ways to appropriate a set of technology affordances to represent and 

explore mathematical tasks. In this process, they recognized that the construction of 

dynamic models of tasks not only helped them identify mathematical relations, but also 

ways to validate or support them.  

INTRODUCTION 

The experience developed over the years and the absence of technology in the 

secondary school classrooms lead us to rethinking the validity of the teaching 

methodology followed in our teacher training courses. We also ask why the prospective 

teachers, who manage the software skilfully, do not use and do not take advantage of 

the potential of the Dynamic Geometry Software (DGS) for planning mathematics 

lessons. The teaching process followed during the training period of the prospective 

secondary mathematics teachers was guided by two ideas: on the one hand, the idea 

that mastering software techniques was enough to be a competent mathematics teacher 

and confident to use technology for learning and teaching mathematics, and on the 

other hand, the importance of the type of mathematical tasks for unpacking the 

potential of technology in the learning of mathematics. We have found that 

instrumentalization and technical training is not enough to appropriate the tool, beyond 

its use to illustrate concepts. Several studies (Santos-Trigo & Camacho, 2009, Santos-

Trigo, Camacho-Machín & Moreno-Moreno, 2013 and Santos-Trigo, Camacho-

Machín & Olvera-Martínez, 2014) stress the need to provide prospective mathematics 

teachers with opportunities for using the dynamic software to enhance the 

mathematical activity that arises from problem solving environments. 

This work is part of a research project: "Problem Solving and Technology for 

Professional development of the secondary mathematics teachers”, whose aim is to 

characterize the knowledge that prospective secondary mathematics teachers need for 

developing problem solving activities in classroom, using computational tools and 

providing a guide work which allows them to structure and organize the teaching of 
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mathematical content based on the use of technological tools in problem solving 

environments  (Moreno, Camacho & Azcárate, 2012).  

Therefore, the specific objectives of this research report are: 

 To characterize the mathematical activity of the students in the context of 

problem solving using DGS and “paper and pencil” 

 To develop a protocol to guide the resolution of tasks and which enhances the 

appropriation of DGS as a resource in teaching mathematics. 

CONCEPTUAL FRAMEWORK 

The mathematical knowledge of secondary school teachers plays an important role in 

teaching the discipline, however, it is necessary to investigate the effects of that 

knowledge domain of teachers in the teaching and learning scenarios. This mastery of 

mathematical knowledge is not enough to promote a conceptual understanding in their 

future secondary school students based on their teaching practice. The term 

Mathematical Knowledge for Teaching (MKT) is usually used to refer to what teachers 

need to know in terms of content, representations, ways of thinking, how to act and 

what to use so that their students develop strong and solid mathematical knowledge. 

This idea, backed by various studies (Ball, Thames & Phelps, 2008, Davis & Simmt, 

2006), suggests some relevant research questions on the relationship between the 

mathematical knowledge of teachers and the quality of teaching: How is this 

knowledge expressed in teaching practice? For example, do the most proficient 

teachers, in terms of mathematical knowledge, offer different ways and strategies of 

teaching and focus their attention towards their students’ construction of meanings and 

connections of concepts? Do they only show fewer mathematical errors than their 

colleagues with less mastery of the discipline or topic under study? What distinguishes 

a teacher with solid mathematical knowledge for teaching in their classroom practices? 

How does a deficiency of mathematical knowledge for teaching restrict the 

development of activities in the classroom? etc.. Regarding to Conner, Wilson & Kim 

(2011), mathematical competence or proficiency for teaching secondary school 

teachers is structured around three dimensions or categories that are not independent, 

but interrelated components characterizing the mathematical knowledge of teachers for 

teaching: 

 Mathematical Ability (aspects of mathematical knowledge and skills). 

 Mathematical Activity (process to do mathematics). 

 Mathematical work of teaching (skills that enable teachers to integrate their 

knowledge and the processes to increase the understanding of their students). 

Another increasingly important issue for teachers is the need to incorporate the 

systematic use of various technological tools into their mathematics teaching and 

learning scenarios to help secondary school students develop an understanding of 

mathematics based on their competence to solve problems.  

The present research involved the collaboration of several researchers from different 

universities where secondary school teachers are being trained, with the aim of 
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developing and evaluating the design of a set of tasks in the terms mentioned in the 

previous paragraph. We look at the mathematical activity shown by prospective 

mathematics teachers in solving an optimization problem with “pencil and paper”, and 

we compare it with the mathematical activity that emerges when DGS is used to solve 

the problem.  

METHODOLOGY 

The research work was performed with ten prospective high school teachers in the third 

year of the mathematics degree. As researchers, we selected several tasks from 

baccalaureate or similar textbooks and analyse and discuss the potential of these tasks 

through different ways of resolution and environments (Santos-Trigo & Camacho-

Machín, 2009).  

The experimental work was divided into three phases. Although prospective 

mathematics teachers were engaged with three tasks, in this research report we focus 

on only one of them. In the first stage, prospective mathematics teachers solve tasks 

individually, using “paper and pencil”. The second phase was to develop a training 

workshop with the DGS, which consisted of eight sessions of one and half hour each, 

so that the prospective mathematics teachers acquired a mastery of instrumentalization 

techniques (Trouche, 2005) for their own use. Finally, in the third phase, they worked 

in pairs to solve the same three tasks, but now, using the GeoGebra software. The 

following three questions were asked to the prospective mathematics teachers to help 

them to reflect on the mathematical activity and on the use of DGS: 

 What other ways of solving each of the tasks does GeoGebra suggest to you? 

 Can you propose a variant of the initial one which allows an extension of the task? 

(Santos-Trigo & Camacho-Machín, 2009) 

 What is the new mathematical knowledge involved in the solution which has not 

been taken into account in the solution performed with “paper and pencil”? 

Through an inductive process, coming from the analysis of the first phase (individual 

resolution using “paper and pencil”) and from the third phase (solutions which were 

worked out by the five pairs of students using GeoGebra), we have identified some 

features of the mathematical activity developed by the students, and we have analysed 

the role of DGS for learning mathematics.  

The analized task is as follows and a detailed analysis of the potentialities of the task 

can be seen in (Santos-Trigo, Camacho-Machín & Olvera-Martínez, 2014): 

ABCD is a rectangle, AB has a length of 6.5 cm, BC has a length of 4 cm. M is a 

point on segment AB. N is a point on segment BC, P is a point on segment CD, and 

Q is a point on segment DA. It is known that AM=BN=CP=DQ. Where should point 

Mbe located in order to minimize the area of the quadrilateral MNPQ?” Could you 

solve the task in different ways depending on the course in which you could propose 

the task?  
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DISCUSSION OF THE RESULTS 

Phase 1 (“pencil and paper”). The two main strategies that prospective mathematics 

teachers used to solve the task were substractive and additive strategies: -Subtractive 

strategy (Figure 1): minimizing the area of the quadrilateral  

-Additive strategy: maximizing the area of the inner triangles, as is shown in the 

solution (Fig. 2). 

 

 
 

Figure 1. Substractive strategy Figure 2. Additive strategy 

 

One prospective teacher uses a Cartesian approach (Figure 3) to define the vertices of 

the rectangle and justifies that the inscribed quadrilateral is a parallelogram with its 

sides as vectors verifying the condition of parallelism, then, he calculates the area of 

the triangles and maximizes it. He adds the fact of calculating the area of a 

parallelogram as another possibility, but he states that "it would be more complicated 

as it is a rectangle, moreover, the position of the figure MNPQ would complicate the 

calculations "(Fig. 4). 

 

 

Figure 3 . Cartesian approach Figure 4. Parallelogram area 
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For minimizing the area, several of the prospective mathematics teachers propose 

finding the first derivative and setting it equal to zero, although there is an absence of 

checking and justification with the second derivative test. They accept that the obtained 

value corresponds to a minimum or recognize that the function to minimize is a 

parabola and the minimum corresponds with the vertex of the parabola ("x = -b/2 a") 

We observe a lack of rigour in the responses of the prospective mathematics teachers.  

They do not use a suitable algebraic notation, in spite of the fact that the algebraic 

calculation is the one preferred by almost all prospective mathematics teachers. It is 

also noteworthy that there is an absence of adequate justifications or mathematical 

proofs. Now, we go on to analyse the work the students did with DGS.  

Phase 3 (GeoGebra in pairs): three pairs "copied" the solution which was individually 

developed in Phase 1, they get more precise images by using the software. There are 

certain differences in how each pair uses the software and, therefore, in the role it plays. 

Some interesting solutions are shown below. 

One pair is able to connect the following three representation modes: geometric, 

numeric and graphic, and they check the same solution obtained in each of the systems 

of representation (Figure 5). And another couple only connects the geometric and the 

analytical modes of representation. They use the GeoGebra tool called "Function 

study" to provide the necessary information, once the function is defined as area (Fig 

6). They do not use the numerical representation mode. Another couple understand that 

GeoGebra enables them to graphically represent the parallelogram area function which 

helps them to visually check the result obtained in Phase 1. They believe that the said 

software aids the graphic demonstration of a wide range of problems when it is 

graphically represented after obtaining the function to be optimized. 

 

 

Figure 5. Three representation systems Figure 4. Function study 
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Regarding the extensions of the problem, most students do not make many significant 

contributions. On the one hand, they propose the extension in terms of changing the 

rectangle for regular polygons, in their view, the minimum area of the inscribed 

polygon is obtained when the vertex is at the midpoint of one of the sides. On the other 

hand, they propose minimizing the perimeter of the inscribed figure as an extension 

activity and anticipate a possible solution.  

To summarize, as regards the mathematical knowledge involved in the solution using 

GeoGebra, the students are not aware of the new mathematical knowledge arising from 

a dynamic approach to the task. For example, some students do not consider the use of 

the three systems of representation provided by GeoGebra as new knowledge. Neither 

do consider the importance of mastering the existence of the function as being new 

knowledge, which appears to be implicit in the decision to move the point on the 

shortest side of the rectangle so as not to lose the effects of "drag" from the 

parallelogram. This absence of reflections on the mathematical knowledge, which 

arises in solving the tasks, requires asking questions that help them to make such 

knowledge explicit.  

SOME FINAL REMARKS  

In this research report we intended to characterize the mathematical activity, in terms 

of Conner et al. (2011), of ten mathematics students’ involved in a course of training 

secondary mathematics teachers when they might solve the same problems by hand 

(“paper and pencil”) or using DGS. The results have not met our expectations because 

the students were not able to explore and experiment the potential of the dynamism 

provided by GeoGebra. As teacher trainers, we believe it is important to provide our 

students with more specific information to facilitate the appropriation of the tool as an 

instrument to develop mathematical activity and develop problem solving skills. We 

have found that being able to manage the tool skilfully is not enough to take full 

advantage of it as a knowledge generator. Students have difficulties in making the 

mathematical activity (defining, justifying, arguing, testing, generalizing, etc.) explicit 

performed during the resolution of the tasks with “pen and paper" and with the DGS. 

For them, there were almost no differences between both ways to solve the tasks. 

Students were not able to communicate the cognitive processes that emerge from the 

task, neither identify key moments of the resolution nor procedural development, 

which is the first step for planning a lesson, guiding the learning of the students, 

anticipating responses, etc. It also seems essential to reflect about the pertinence of 

mathematical formalism that should be required depending on teaching situations. We 

have prepared a guide (implementation guidelines), for solving tasks using dynamic 

software as a learning tool. The guide intends to help prospective mathematics teachers 

to make the mathematical activity that emerges during the process of resolution 

explicit: 

 A dynamic approach using GeoGebra: Comprehension- Identify the elements that 

make sense of the problem. Analyzing- analyse from a geometric perspective. 
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Communicating- comment on the process. Exploration- What properties can be 

observed from the movement of the set of generated figures? Are the basic 

characteristics giving rise to the constructed geometric model maintained? Find the 

variation domain of the dynamic model. Obtain a Cartesian representation linking what 

you want to optimize (dependent variable) with a value that can be considered as an 

independent variable and find the geometric locus which is obtained. Could you use 

more than one independent variable? Is there a pattern associated with the chosen 

variables? Visually identify at what point the graph obtained reaches the maximum / 

minimum value. Build (using Excel) a table showing some values of the variables that 

model the problem.  

An Algebraic approach: Communicating- Choose an appropriate notation and find an 

algebraic expression for the function to be optimized. Obtain the dependence of 

variables and relationships for converting the expression into a real function of a real 

variable. Find an algebraic expression for the function to be optimized. 

Conceptualization- Graphically represent the function obtained and discuss the 

properties. Connecting- What is the relationship between the obtained function and the 

functional model obtained from the dynamic approach? Apply the derivative test to 

obtain optimum points to find the value(s) that optimizes or optimize the function 

obtained. Compare this value with the previously obtained value by using the software. 

Could a more general case be found?  

Extensions: Modify some of the initial conditions and try to extend the original 

problem. 
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FUNCTIONAL RELATIONSHIPS IDENTIFIED  

BY FIRST GRADERS  

María C. Cañadas and Rodolfo Morales 

Universidad de Granada 

 

This study forms part of a broader research project conducted in Spain on functional 

thinking as an approximation for algebraic thinking in elementary school students 

(ages 6-12). The two types of functional relationships identified by first year (6-year-

old) pupils are discussed in this article. We present results from two sessions of a 

teaching experiment developed. Most students revealed the ability to detect 

correspondence or co-variation relationships. Most of the former were inappropriate 

and the latter appropriate. 

INTRODUCTION 

This study lies within the realm of the early algebra proposal, according to which 

algebraic thinking should be introduced in mathematics from the earliest years of 

schooling (Kaput, 1998) as a way of precluding secondary school students’ difficulties 

with algebra. Some of these difficulties revolve around students’ inability to 

understand the relationship between two data sets (MacGregor & Stacey, 1995; 

Warren, 2000). This understanding is one of the keys to a functions-based approach in 

early algebra. As Schliemann, Carraher, and Brizuela (2012) observed, “a functions-

based approach to early algebra relies on the importance accorded to sets of values and 

to ordered pairs from a domain and target” (p. 110).  

Research on students’ functional thinking shows that this approach should be 

introduced in the early years of schooling and gradually developed, for functions are 

not readily understood (Chazan, 1996). A longitudinal study by Brizuela and Martínez 

(2012) confirmed that early experience with tasks entailing functional relationships is 

beneficial in the long run. Traditional assumptions about elementary school pupils’ 

limited ability to work with functional elements have been challenged by prior studies 

(Blanton & Kaput, 2011; Brizuela & Martínez, 2012). In recent decades, early algebra 

researchers have shown that children acquire functional thinking-related aptitudes at 

younger ages than believed (e.g., Brizuela, Blanton, Sawrey, Newman-Owens, & 

Gardiner, 2015). Cañadas, Brizuela, and Blanton (2016) recently provided a detailed 

description of these relationships in the context of functional thinking for second year 

elementary school students. That study portrayed students’ understanding of functional 

relationships and the differences in the ways they expressed it. 

The results of the aforementioned studies showed that elementary education students 

can engage in tasks involving functional thinking. Moreover, the authors generally 

agree that very young (particularly pre-school and first-year elementary school) 

students’ functional thinking should be explored in greater depth (Cañadas and Molina, 

in press). 



Cañadas, Morales 

2–132 PME40 – 2016 

While research has shown that introducing functional thinking is beneficial for 

elementary school children, very few studies have addressed the subject in Spain 

(Cañadas & Fuentes, 2015). The possible implications for classroom practice in the 

wake of the recent inclusion of functional relationships in the Spanish curriculum 

(Ministerio de Educación, Cultura y Deporte, 2014) lend the subject particular 

relevance at this time.  

This paper on functional thinking in first year elementary school students focuses on 

the functional relationships exhibited by the Spanish children involved.  

FUNCTIONAL THINKING AND RELATIONSHIPS  

Functional thinking, one of the approaches deployed in early algebra, centres on the 

processes that come into play when working with functions, i.e., quantities exhibiting 

co-variance (Cañadas et al., 2016). Functional thinking is based on the construction, 

description and reasoning, with and about functions (Cañadas & Molina, in press).  

Consequently, functions are the mathematical content involved in functional thinking. 

Using linear functions, early elementary schools pupils can be confronted with 

situations that afford them the opportunity to identify relationships. The symbolic 

algebraic expression of these functions is f(x)=ax+b, where a and b are natural 

numbers. Representational systems other than algebraic symbolism, such as verbal, 

manipulative or tabular expression, play a prevalent role in the early years.  

In functions, variables indicate a quantity that in a given numerical set may adopt 

different values depending on the nature of the problem. In the equation y=f(x), x 

represents the independent and y the dependent variable (because its value depends on 

the value of x). Correspondence is the relationship established between each pair of 

values (x, f(x)).  

In the correspondence relationship, the focus is on the relationship between two sets 

and on explicitly stating an (algebraic) rule (Confrey and Smith, 1995). In contrast, in 

a co-variational approach, the links between domain and range are spatial and 

relational, and the (algebraic) rule is only “a derived characteristic” (p. 79). In the co-

variational approach, linear functions have a constant first difference.  

Co-variation implies correspondence because the variation in the values of one variable 

with respect to the other is attendant upon the pairs of values (x, f(x)).  

Based on prior research, Smith (2008) identified three types of approaches to working 

with functional thinking in the earliest years of schooling: (a) recursive patterning; (b) 

co-variational thinking; and (c) correspondence relationships. These three approaches, 

associated with the functional relationships stemming from the mathematical study of 

functions, are described below.  

Recurrence or recursive patterning involves identifying the pattern of variation in a 

series of values and hence entails a single variable. 
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In correspondence relationships two variables are found to be correlated. The focus is 

on the relationship between two sets, i.e., on identifying the relationship between the 

values of two sets of data and establishing the general rule or pattern governing that 

relationship. 

Co-variational thinking is based on the analysis of how two quantities vary 

simultaneously and how change in the values of one variable induces change in the 

values of the other. 

RESEARCH OBJECTIVE 

This study describes the functional relationships identified by Spanish first year 

elementary school pupils when solving problems designed to further functional 

thinking.  

METHOD 

The findings discussed hereunder derive from a study conducted on an intentional 

sample of 30 first year (6-7-year-old) elementary school pupils enrolled in Granada, 

Spain. The reasons for choosing the school were the institution’s and its teachers’ 

willingness to participate and its geographic location within the region where the 

broader research project is underway. The pupils had not previously been exposed to 

problems involving functional thinking (nor was this content on the Spanish curriculum 

at the time).  

The teaching experiment designed and conducted consisted in five approximately 90 

minute classroom sessions. Three researchers in situ collected the data, one of whom 

assumed the role of teacher-researcher.  

This paper focuses on sessions 2 and 3, both of which were video-recorded. The setting 

for the task performed in these sessions was a kennel in which each dog needed its own 

feeding bowl and which had an additional five bowls to be shared for water. The 

functional relationship, then, was of the type y=x+5. Pictures of dogs and bowls were 

used and the situation was described verbally in the interaction with the whole group 

in the classroom. The students were asked by near and far particular cases. Then they 

had time to work individually on a questionnaire. After which their solutions were 

discussed aloud, in the whole classroom. The questions asked followed the inductive 

reasoning model proposed by Cañadas and Castro (2007). The videos were fully 

transcribed. We used two videcameras in the classroom: The first one for recording the 

whole classroom; and the second for the specific moments during the individual work. 

DATA ANALYSIS AND RESULTS 

The data analysis drew an initial distinction between responses that did and did not 

evince functional relationships. The answers that entailed such relationships were then 

grouped by type (recurrence, correspondence or co-variation). Relationships were also 

classified as appropriate to the problem or otherwise.  
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We identified students exhibiting functional relationships from those who did not. The 

type of relationships established by the former was defined. Each pupil was identified 

with the letter S and a number from 1 to 30. Students who reached at least one 

inappropriate conclusion were labelled with an asterisk (*).  

 Sin evidencia de relación funcional: S1-S4-S12-S15-S17-S23 

 Recurrencia: - 

 Correspondencia:S2-S2(*)-S3(*)-S5-S6-S6(*)-S7-S7(*)-S9-S10-S12(*)-

S13-S13(*)-S15(*)-S16-S17-S17(*)-S18-S19-S20-S21-S21(*)-S26-S26(*)-

S28-S28(*)-S29-S29(*)-S30-S30(*) 

 Covariación: S7-S12-S12(*)-S13(*)-S17-S21-S25-S28 

All six students who showed no sign of having identified functional relationships 

answered the problem correctly.  

No recurrent relationships were observed in any of the students’ replies.  

Correspondence was the relationship most frequently exhibited by the students (20). 

The relationships established by 13 of these 20 pupils were inappropriate for the 

problem.  

Seven of the students who detected a correspondence relationship also identified co-

variation between the variables involved. Two of these students established an 

inappropriate relationship.  

For reasons of space, the above summary of the students’ replies cannot be analysed in 

detail here. One student (S17) answered differently depending on the functional 

relationship considered. Fragments of a conversation with him are transcribed below. 

Although initially his reply displayed no functional relationship whatsoever, as the 

experiment progressed he was observed to draw both correspondence and co-variation 

relationships  

Fragment 1. S17 draws no functional relationship 

In the following fragment S17 replied to the teacher-researcher’s (I1) question about 

the total number of bowls needed for three dogs.  

1. I1: […] yes, S17? 

2. S17: Eight. 

3. I1: Eight. Why? 

4. S17: Because there are three (pointing to the three dogs with three feeding bowls 
in Figure 1) and five more (pointing to the five water bowls in the figure) 
makes eight. 

To find the answer, S17 observed the manipulative material furnished by I1 when 

introducing the problem, which showed three feeding and five water bowls (Figure 1). 

He consequently added 3+5 to find the answer to the question. He found eight bowls 

for three dogs, but without perceiving any relationship between the number of bowls 

and the number of dogs.  



Cañadas, Morales 

PME40 – 2016 2–135 

  

Figure 1. Dogs, feeding bowls and water bowls 

Fragment 2. S17 draws a correspondence relationship 

At the beginning of session 3, I1 asked the students whether they remembered what 

they did in session 2. In the following fragment, S17 explained the task of session 2 

with an example, proposed by the students himself, in which he established a 

correspondence relationship.  

24. S17: We had some dogs. Then we had to give them doggy bowls from the bowls 
we had... For instance, there were ten, we had to add five. 

25. I1: Why? 

26. S17: Because the dogs only had five water bowls. 

In the example proposed, to find the total number of bowls S17 added the feeding 

bowls (which he equated to the number of dogs) to the number of water bowls. The 

student identified the five water bowls as a fixed amount (line 26) and explained that 

it should be added to the number of feeding bowls (one per dog, line 24), to thereby 

find the total number of bowls needed for 10 dogs. 

Fragment 3. S17 draws a co-variation relationship 

After working with situations involving one, two and three dogs, I1 asked how many 

bowls would be needed for five, positioning two more dogs with their respective 

feeding bowls in the window. The following fragment shows that S12 and S17 

identified a co-variation relationship.  

 I1:[…] Now a tougher question. Suppose more dogs come […] to the kennel. Look 
what we’re going to do now. This one comes and we give it its food and 
then this other one comes and we give it its food too (I1 pastes two more 
drawings of dogs and their feeding bowls alongside the initial three), OK? 
How many bowls do we need now? 

 […]  

We have five dogs, and how many bowls? 

 S12: Ten.  
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 I1: How do you know that, S12? 

 S12: There were eight and if you added two more that makes ten.  

 […] 

 I1: OK, S17, do you see it that way or some other way? 

 S17: I see it like S12. If we had eight and you added two more, we’ll have ten. 

 

In this fragment the students realised that if the kennel admitted two dogs, it would 

need two more bowls. In this case, both students noticed how one variable varies (the 

quantity of bowls) attending to how the other variable (the quantity of dogs) changes.  

CONCLUSIONS 

Despite their unfamiliarity with problems designed to further functional thinking, most 

of the students were able to detect functional relationships based on the specific 

situations described to them. Some replies showed no signs of functional relationships, 

although none were necessary to answer the questions, as attested to by the fact that all 

the students who established no relationships came up with the right answer. Although 

recurrence is considered as the most basic of the three relationships addressed here, 

none of the students identified it. No evidence of functional relationships was observed 

in students’ replies to specific near questions. As the process of inductive reasoning 

progressed toward generalisation, correspondence and co-variational relationships 

were normally observed more frequently. Functional relationships arose in students’ 

replies as the numbers involved in the problems grew.  

Although correspondence was the relationship most frequently identified by students, 

the number detecting this type of relationship inappropriately might infer that they 

considered it locally for the specific questions posed. When larger numbers were 

involved, however, co-variation and the number of appropriate relationships rose.  

Some students verbally generalised the relationship. Further to the above fragments of 

conversations with student S17, whose academic performance was average for the 

class, he generalised the correspondence relationship. In fragment 2 he resorted to an 

example with 10 dogs but, in light of his reply, he might be expected to follow the same 

process in other specific cases. In the student  presented, as in another student, we 

observe that they select particular cases but the procedures and reasoning are valid for 

more cases that are part of the same clase. These particular cases can be considered 

generic examples in terms of Balacheff (2000). 

Cañadas et al. (2016) noted that Spanish students tend to generalise functional 

relationships as correspondence rules. Nonetheless, in contrast to that study, the 

Spanish students in the present sample showed no signs of recursive patterning. These 

differences may be attributable to the functional relationship involved in the problem 

posed and the systems of representation used for the tasks.  
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AN EXEMPLARY MATHEMATICS TEACHER’S WAYS OF 

HOLDING PROBLEM-SOLVING KNOWLEDGE FOR TEACHING 

Olive Chapman 

University of Calgary 

 

This case study investigated the mathematics problem-solving knowledge for teaching 

[MPSKT] of an exemplary secondary mathematics teacher. Particular focus was on 

how the knowledge was held to make it usable for effective teaching of problem solving. 

The study was framed in a perspective of MPSKT consisting of 5 components of 

knowledge. Analysis of data that included extensive interviews and classroom 

observations indicated that there were important relationships in how the teacher held 

her knowledge, with a core or anchoring component of knowledge giving meaning to 

the other components of knowledge in MPSKT and was critical to how she taught PS. 

INTRODUCTION AND LITERATURE REVIEW 

“The teaching of problem-solving in arithmetic offers one of the greatest challenges to 

elementary-school teachers” (Johnson, 1944, p. 396).  

 “One does not have to look far to establish the fact that success in teaching problem 

solving procedures is very limited” (Earp, 1967, p. 182). 

Mathematical problem solving [PS] continues to be a challenge for many teachers to 

teach effectively and students to learn proficiently. While both student- and teacher- 

related factors have been identified as contributing to this, recent focus on mathematics 

knowledge for teaching suggests the importance of understanding mathematical 

problem-solving knowledge for teaching [MPSKT] in order to support teachers’ 

change/growth. This paper contributes to this by reporting on a study that investigated 

the MPSKT of an exemplary secondary mathematics teacher. In particular, the study 

focused on how the knowledge was held to make it usable for effective teaching of PS.   

PS has a special importance in mathematics education (NCTM, 2000) and thus should 

be a central aspect of teachers’ knowledge for teaching mathematics. However, studies 

have highlighted issues with, in particular, prospective teachers’ PS ability and 

knowledge of PS. For example, they tend to lack flexibility in choice of PS approaches 

(van Dooren, Verschaffel, & Onghena, 2003), apply a stereotypical solution to a 

problem (Leikin, 2003), and make sense of PS as a linear process (Chapman, 2005).  

In order to address these and other concerns, both practising and prospective teachers 

have received attention in studies that investigated ways of supporting their learning 

and teaching of PS. For example, they have been engaged in: PS using a variety of 

strategies (Szydlik, Szydlik & Benson (2003), multiple-solution tasks (Guberman & 

Leikin, 2013), tasks with potential to promote creativity in PS (Levenson, 2013), the 

role of facilitating students’ mathematical PS (Lee, 2005), and pedagogical skills in 

navigating PS and listening to students (Leiken, 2003). 
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Such studies on teachers provide insights for improving specific aspects of their 

MPSKT. But they do not address the combination of knowledge teachers should have 

and how they ought to hold it. Teachers’ knowledge of and for teaching for PS 

proficiency (Chapman, 2014) must be broader than knowing how to solve problems 

and include a deep understanding of other factors that are associated with the 

development of proficiency in PS. This study examined the nature of this knowledge 

as held by an exemplary teacher. 

THEORETICAL PERSPECTIVE 

Genuine PS is considered here as “engaging in a task for which the solution method is 

not known in advance” (NCTM, 2000, p. 52); “finding a way out of a difficulty, a way 

around an obstacle, attaining an aim which was not immediately attainable” (Polya, 

1962, p. v). Adopting Ball, Thames, and Phelps’s (2008) perspective that general 

mathematical ability does not fully account for the knowledge and skills needed for 

effective mathematics teaching, this study assumes that the knowledge needed to 

effectively teach genuine PS should be more than general PS ability. Teachers need to 

hold knowledge of PS for themselves as problem solvers and to help students to 

become better problem solvers. This is supported by works such as Mason, Burton and 

Stacey (2010), Mayer and Wittrock (2006), Polya (1962) and Schoenfeld (1985) and 

literature on PS that suggests what ought to be included in this knowledge, which 

provides the theoretical perspective of MPSKT used in this study. 

Based on a review of literature on PS in mathematics education from 1922 – 2013, 

Chapman (2014) proposed a perspective of MPSKT for PS proficiency. Table 1 

provides key components of it, which could be classified as: (1) PS content knowledge 

consisting of knowledge of problems, PS, and problem posing; (2) Pedagogical PS 

knowledge consisting of knowledge of students as problem solvers, and instructional 

practices for PS; and (3) Affective factors and (cognitive) beliefs. Chapman explained 

that this category-based perspective does not provide a complete picture of MPSKT 

since it does not account for relationships among the components. Understanding 

possible interdependence of them could be important to help teachers to hold MPSKT 

so that it is usable in a meaningful and effective way in supporting PS proficiency in 

their teaching. This study contributes to this by investigating this knowledge from the 

perspective of an exemplary teacher in order to determine a practice-based orientation 

of it regarding possible relationships among the components. 
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Knowledge of: Description 

Mathematical PS 

proficiency 

Understanding what is needed for successful 

mathematical PS 

Mathematical problems  

 

Understanding of the nature of meaningful problems; 

structure and purpose of different types of problems; 

impact of problem characteristics on learners   

Mathematical PS Being proficient in PS 

Understanding of mathematical PS as a way of thinking; 

PS models and the meaning and use of heuristics; how 

to interpret students’ unusual solutions; and 

implications of students' different approaches  

Problem posing Understanding of problem posing before, during and 

after PS 

Students as mathematical 

problem solvers 

Understanding what a student knows, can do, and is 

disposed to do (e.g., students’ difficulties with PS; 

characteristics of good problem solvers; students’ PS 

thinking) 

Instructional practices for 

PS 

Understanding how and what it means to help students 

to become better problem solvers (e.g., instructional 

techniques for heuristics/strategies, metacognition, use 

of technology, and assessment of students’ PS progress; 

when and how to intervene during students’ PS). 

Affective factors and 

beliefs 

Understanding nature and impact of productive and 

unproductive affective factors and beliefs on learning 

and teaching PS and teaching 

Table 1: Components of MPSKT (Chapman, 2014, p. 22) 

RESEARCH PROCESS 

This study is part of a 4-year national funded project that investigated elementary and 

secondary mathematics teachers’ thinking and teaching of PS using contextual/word 

problems. The methodology for it is case study (Stake, 1995) to allow for an intensive 

investigation, framed in a naturalistic research perspective that focuses on capturing 

and interpreting peoples’ thinking and actions based on actual settings through an 

emergent approach (Corbin & Strauss, 2008).  The participant was a high school math 

teacher (pseudonym, Cintia) for 16 years. She received a national teaching award, 

provincial teaching awards and other awards as an outstanding/exemplary math teacher 

and was co-author of secondary mathematics textbooks used in the province. Her 

teaching was inquiry based with emphasis on students’ understanding of math. 

Main sources of data were open-ended interviews, PS tasks, classroom observations, 

role play, teaching/learning artefacts, and students’ work. As part of the larger project, 
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the interviews explored the participant’s knowledge (understandings/conceptions) of 

and experiences with PS in three contexts: past experiences as student and teacher, 

current practice, and future expected practice. This included: questions/scenarios on 

ability; nature of tasks, PS, and learning; classroom processes; contexts; planning; and 

intentions for PS in their teaching. It also included her commenting on five different 

types of relevant problems without solving them and solving three others while 

thinking aloud, e.g., “Two telephone poles of different lengths are to be placed 40m 

apart. The poles must be anchored by guy wires to a peg located between them. Where 

should the peg be placed so that the sum of the lengths of the guy wires is minimum?” 

Interviews were audiotaped and transcribed. Classroom observations and field notes 

focused on the teacher’s actual instructional behaviours during lessons involving PS. 

Ten lessons (60 to 85 minutes each) involving PS were observed and audio-taped. Post-

observation discussions focused on clarifying the teacher’s thinking and actions. 

Data analysis involved the researcher and a trained research assistant working indepen 

-dently to thoroughly review and code the data and identify themes, which were 

validated through an iterative process of identification and constant comparison. The 

coding was guided by the 5 components of MPSKT (Table 1). Statements that clearly 

indicated what Cintia knew for each were highlighted and summarized into subthemes. 

A separate category was used for relevant coded data that did not clearly fit any of the 

5 components and further analysed for emerging themes or components. Data 

collection was done prior to development of Table 1, independent of this study. So the 

data were not intentionally based on the 5 components or relationships among them. 

Thus what emerged from the data reliably represented Cintia’s knowledge. Central to 

understanding how she held this knowledge was examining the data for connections/ 

relationships in the way she talked about something without being prompted to do so. 

The connections coded were mapped through charts/diagrams and significance/ 

strength of them determined by the emphasis, frequency and consistency in occurrence 

throughout the data. For example, most of her talk about any of the components of 

MPSKT showed explicit connections to students and her classroom actions were 

consistent with this. Thus knowledge of student emerged as central to how she held and 

used her knowledge. Further analysis focused on unpacking and confirming the 

relationships with students. Findings reported next focus only on these relationships.  

FINDINGS 

Cintia held theoretical and practical knowledge of each component of MPSKT (Table 

1), but most of it was held as a complex network of relationships among components.  

Figure 1 is a version of a more complex representation to highlight focus on students.  
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Figure 1: Cintia’s connections of components of MPSKT 

In Figure 1, Lr/P-Sr is learner/problem solver; Lg/Kg is learning/knowing; AF/B is 

affective factors/beliefs; P is problem; Pp is problem posing; PS is problem solving; 

and IS is instructional strategies. The lengths of the connecting lines have no meaning, 

but the heavier lines represent stronger connections. Descriptions of all of these 

relationships are obviously not possible here, so only key ones are highlighted next. 

Cintia held knowledge of students in relation to them as learners and problem solvers, 

their ways of learning/knowing, and affective factors/beliefs impacting them as 

problem solvers/learners. This knowledge included students as designers, interpreters, 

evaluators, inquirers and agents of their learning and doing of PS; students’ fears, 

attitude, and beliefs; and expectations for students’ learning as in this example. 

Learning occurs when students are able to make meaning about the problems for the 

concept that has been presented to them, knows why a certain process works and … 

understand why other ways would not work, … and knows it sufficiently to teach to 

someone else, talk about it to someone else in their own words. 

Of significant importance was the role her knowledge of students played in defining 

her MPSKT. It formed the core knowledge on which all of the other components of 

MPSKT in Table 1 depended. It provided an anchor for them and determined how they 

were enacted in practice. Direct relationship with each is highlighted next. 

While Cintia held appropriate knowledge of tasks to support genuine PS, her 

knowledge of problem was held as a relationship between the task and the student.  For 

her, a problem emerges based on how the student experiences the task. The task 

provides possibilities from which this problem emerges, while the student provides the 

interpretation that gives meaning to the problem, e.g., as interesting, relatable, and 

challenging or not. Consistent with this, Cintia held her knowledge of problem posing 

in relation to students as task designers. Thus, problem posing involved students 

creating tasks, modifying/redesigning tasks contextually, and extending a problem. It 

allowed them to realize their interests and be creative. As she explained: “A lot of 

times, the problems are generated from the class.” “Students have opportunities to 

write problems on their own about things that they find interesting to share with 

others.” She also required that they produced solutions and grading schemes for their 

problems as a way to understand PS. 

P
    Student 

 

PS 

IS 

P 

Lg/

Kg 
Lr/P

-Sr 

AF/
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Cintia is proficient in PS and has knowledge of general heuristics/models of PS (e.g., 

Polya’s (1957) model), but she held her teaching knowledge of problem solving in 

relation to her knowledge of students. For her, PS is determined by the students’ 

thinking/inquiry process. It is what students are able to do that makes sense to arrive at 

a solution. She explained, “I make sure I tell them that I don't care how they solve it. 

It doesn't make any difference what kind of methodology they use as long as it's logical 

and they can explain it and let other people understand it.” She generalized this as: 

It's like anything else that you don't know what the outcome will be and you're kind of 

game for anything else, so you just take your chances and you try and use the tools that are 

available to you, see what happens. … It is whatever takes you to get to that solution.  So 

thinking, trying out things, writing, using whatever tools are necessary to find a solution.   

Finally, strong bond between knowledge of instructional strategies and knowledge of 

student made Cintia’s teaching of PS about empowering students and not the teacher. 

She held knowledge of instruction to support students’ agency and autonomy in PS. 

This included not teaching general or specific heuristics in an explicit way, but 

allowing them to emerge out of students’ experiences in trying to solve a problem and 

reflecting on the process. It also included the importance of having “students work with 

others so that ideas could bounce back and forth between them and … have that 

opportunity to do problems individually” and “students understand how they're going 

to be graded.”  She also held knowledge of productive struggle and how to facilitate it, 

knowledge of when and how to intervene, and knowledge of questioning. For example, 

I go around and listen to the groups. …I can sit next to any group and they talk, and I ask 

them questions if they're stuck but that's about it.  I simply watch how the groups are work- 

ing together and if I see a group is stuck, I try to come up with a question that will allow 

them to continue, but I will not give anybody the answer at any time …they can always 

ask a question, but if they want to know how to do it, or are they right, they may not talk 

to me. 

I have the students usually in three's working on a different problem then … they present 

the problem to the class, and because they're all different, the kids have something 

interesting to listen to and to learn from. 

Cintia’s knowledge of instruction is also held in relation to affective factors associated 

with the students. Her knowledge included: how to help them “to not be afraid to try 

different kinds of things;” the importance of allowing them to “work in groups as well 

as individually so that they could see lots of problems and be comfortable doing them;” 

when and how to allow them to have a choice of problems to solve on assignments and 

tests because “giving them a choice often helps a lot of times;” and the importance of 

getting them used to reading and writing mathematics problems on their own so that they're 

desensitized, if you will, to word problems and begin to see them as experiences where 

they can struggle and the struggle is part of the process, then it's not a scary thing but the 

struggle is meant to help them arrive at an answer.   
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CONCLUSIONS 

The study indicated that MPSKT from the teacher’s perspective includes a complex 

network of interdependent knowledge. Thus, while the categories of Table 1 provide a 

way of making sense of MPSKT in a general way, the study highlights the possible 

importance of how they are held by teachers to be usable in a meaningful and effective 

way in supporting PS proficiency in their teaching. It suggests that there is a core or 

anchoring category of knowledge that gives meaning to the other categories of 

knowledge in MPSKT and is a critical factor in how PS is taught. In Cintia’s case, 

having knowledge of students as the core knowledge enabled her to empower students 

in learning PS. Thus from a practice-based perspective, there could be different core 

knowledge that teachers hold with different impact to teaching PS. Future studies are 

needed to understand other types of core knowledge held and how they work or not 

work to support students’ engagement in PS in order to help teachers to understand 

how they hold MPSKT and develop appropriate core knowledge for teaching PS.  
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SNAPSHOTS OF A TEACHER’S IN-THE-MOMENT NOTICING 

DURING A LESSON ON GRADIENT 

Ban Heng Choy 

National Institute of Education, Nanyang Technological University, Singapore 

 

This paper introduces the notion of snapshots of noticing, which captures the noticing 

processes of teachers to characterise their mathematical noticing. I present two 

snapshots of a teacher’s in-the-moment noticing when she interacted with a Secondary 

One student during a lesson on gradient in Singapore and illustrate how snapshots of 

noticing can provide an analysis of a teacher’s noticing during the lesson.  

ANALYSING TEACHER NOTICING 

There has been a growing interest to decompose and analyse teaching to make teaching 

practice more learnable (Ball, Sleep, Boerst, & Bass, 2009; Grossman & McDonald, 

2008). The idea is to move away from thinking of teaching as entirely improvisational 

to a more balanced view, where important skills and routines can be mastered even by 

novice teachers (Ball & Forzani, 2009; Lampert & Graziani, 2009). Mathematics 

teacher noticing, which refers to what teachers see and how they interpret their 

observations to make instructional decisions, is one of these core skills (Jacobs, Lamb, 

& Philipp, 2010; Mason, 2011). Teacher noticing is seen as an important component 

of teaching expertise, and it has the potential to improve teaching practices (Mason, 

2011; Schoenfeld, 2011). Moreover, to bring about a pedagogy that focuses on 

developing student reasoning, Erickson (2011, p. 33) contends that it is important for 

mathematics education researchers to “learn more about the what, how and why of 

teacher noticing”. Hence, it is timely and useful to analyse what and how teachers 

notice. 

However, analysing what teachers notice during a lesson poses some challenges. First, 

despite the apparent simplicity of the construct of teacher noticing, the ability to “notice 

productively” during mathematics teaching is both difficult to master, and complex to 

study (Jacobs, Philipp, & Sherin, 2011, p. xxvii). Next, as Mason (2011) argues, it is 

difficult to track what teachers attend to given that one can attend to different things at 

various levels of details simultaneously. Although Sherin, Russ, and Colestock (2011) 

had used wearable cameras to access and study teachers’ in-the-moment noticing with 

some success, they also acknowledged that teachers’ attention and thinking could only 

be better accounted for during the interviews after lessons. Moreover, to support 

teacher in developing their noticing expertise, it is also crucial to characterise teacher 

noticing in a way that honours the complexity of classroom practice, while at the same 

time, pinpoints specific actions that teachers can take. In light of the above discussion, 

this paper introduces one such framework to characterise teacher noticing that is 

productive for enhancing students’ reasoning, illustrates its application in examining 
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how a teacher’s noticing can be described, analysed and represented using snapshots 

of noticing, and discusses the possible implications of this framework.  

THE FOCUS FRAMEWORK: CHARACTERISING PRODUCTIVE 

NOTICING 

Using a photography metaphor to describe and analyse the complexity of teaching is 

not new. For example, Lampert (2001) contends that a teacher has to actively zoom in 

and zoom out, across time and relationships, to 

focus on different aspects of teaching. The 

FOCUS Framework, developed as part of a 

doctoral study (Choy, 2015), highlights two 

critical dimensions that promote productive 

noticing: The need for an explicit focus for 

noticing (what to notice) and the central role of 

pedagogical reasoning (how to notice).  

Drawing on the Three Point Framework 

described by Yang and Ricks (2012), the 

FOCUS Framework highlights three 

mathematically significant aspects for teachers 

to direct their noticing—the concept, confusion, 

and course of action. Furthermore, it is also 

crucial for teachers to align their teaching 

approaches (courses of action) to target 

students’ learning difficulties (confusion) 

associated with the mathematical concepts. 

However, this alignment is not automatic and is 

mediated by the teacher’s pedagogical 

reasoning. Therefore, when teachers analyse 

their observations and provide the evidence or 

justification for making an instructional 

response, they are more likely to generate an 

instructional decision that promotes students’ 

reasoning. 

A theoretical model of noticing has been developed from the FOCUS Framework to 

describe what, and how, a teacher can notice productively when learning from practice 

(See Choy, 2015, p178.). It maps a teacher’s noticing processes (attending, making 

sense, and responding) through three stages of learning from practice (planning, 

teaching, and reviewing) to the three key productive practices for mathematical 

reasoning (designing lesson to reveal thinking; listening and responding to student 

thinking; and analysing student thinking). In other words, the model describes a 

theoretical process of productive noticing, which highlights explicitly the three crucial 

focal points, and how the alignment between these three points can be achieved. An 
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example of how the model describes productive noticing during teaching is shown in 

the figure above. By comparing a teacher’s noticing to the theoretical model, a snapshot 

of noticing can be developed to provide a picture of what, and how, the teacher notices 

during a teaching segment. 

SNAPSHOTS OF NOTICING: DESCRIBING ANITA’S NOTICING  

A snapshot of noticing depicts what a teacher sees, and how, one interprets the 

observations to make instructional decisions. This new notion is different from the 

levels of noticing expertise developed by van Es (2011), and does not give a static score 

to assess teachers’ ability to notice (Jacobs et al., 2010). Instead, it offers a new and 

dynamic perspective of teacher noticing by capturing the flow of noticing processes 

from lesson planning to lesson review after teaching. In this section, I will demonstrate 

how the model can be used to develop snapshots of a teacher’s noticing during her 

teaching. 

Context of Anita’s lesson on gradient 

Anita, a mathematics teacher with 12 years of teaching experience, was part of the 

study from which the FOCUS Framework was developed. In this vignette, she was 

teaching a lesson on gradient for Secondary One (aged 13) students in a Singapore 

school. In the context of this study, gradient is defined as the ratio of the vertical change 

to the horizontal change. Students, who encountered the coordinate system for the first 

time, were expected to find gradients of straight lines set in the Cartesian coordinates 

system (1 cm represents 1 unit) without the formula for computing the gradient of a 

straight line using coordinates.  

Episode 1: Missed opportunity to orchestrate a discussion 

In this episode, Anita realised that students mistook height as gradient during the lesson 

(See Lines 30 to 33 below). Although she started off with a potentially illustrative 

example, Anita did not take the opportunity to initiate a discussion, and instead decided 

to tell students that slope is rise over the run (See Line 36): 

30. Anita: (Draws four lines) But lines can be this way… something 

like that or something like that.  

 

So we notice… they have different? Steepness. Another 

word for steepness is? [Without waiting.] Slope… And 

talking about the steepness… how is it applicable in our 

daily lives? How can you see the link? If you notice, when 

you climb up a mountain, or go up the staircase… Here’s a 
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mountain… (Draws a mountain.) If you are climbing up the 

mountain, the bigger the number, what do you notice about 

the slope? 

31. Students: Higher. 

32. Anita: Higher? You mean higher mountain when the number is 

bigger? 

33. Students: (Various answers. Cannot be transcribed.) 

34. Anita: So, if you mean that if a mountain that is higher, and this 

mountain is higher, the gradient is even higher? Remember? 

The key word here is the steepness. So, let’s say I have two 

mountains… The two mountains are of the same height. 

One mountain is like that… the other mountain … I’m 

drawing here. This is the base… the land. They have the 

same land [sic] right? And this is the top. When we are 

learning gradient, right? What do you think we are learning? 

So, we are learning about how high is the mountain? 

 

35. Students: How steep? 

36. Anita: How steep is the mountain? It’s not a matter of the height. 

It’s about how steep. So, we are talking more about the 

slope, or what we call steepness. In order to find the 

gradient, which is the steepness…in order to find how steep, 

we are going to use? The? Height over the? Horizontal. So, 

we are looking at the steepness here, right? I need to use the 

reference from the height, which in this case is the? Rise. 

Because we are going to address how steep is the slope right, 

we will look at how high it is… 

In this excerpt, Anita attended to her students’ confusion—a slope that is steeper is 

higher (Line 34)—from their responses (Line 31). Anita demonstrated her awareness 

of the students’ confusion by drawing two mountains, of the same height but with 

different gradients, to illustrate the concept of steepness (Line 34). Her response 

suggests that she might have analysed her students’ confusion in-the-moment, because 

this scenario was not discussed during the planning sessions. While the analogy of 

mountains may not correspond directly to straight line graphs, Anita possibly assessed 
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that the use of these two figures would draw students’ attention to the relationship 

between steepness, gradient, height (rise) and the run.  

However, Anita was more focused on getting students to know the important terms and 

calculations than orchestrating a discussion to listen to their thinking. She told the 

students that calculating gradient is the same as finding “the height over the horizontal” 

(Line 36). Her explanation only revolved around computing “height” or “rise”, and she 

left out the relationship between the “rise” and “run”. Even when Anita later explained 

the difference between a steep slope and a gentle slope, she assumed that students could 

see the left-to-right convention, and that a steeper slope corresponded to a “bigger 

number”. Furthermore, her questioning was more evaluative, requiring students to give 

a closed answer (“How steep.” see Line 35). Therefore, evidence suggests that while 

Anita noticed student thinking, she chose to use a more teacher-directed mode of 

instruction (Lines 34 and 36), which was not productive with regard to promoting 

students’ reasoning. Although Anita was able to bring to her mind a counterexample 

to illustrate the point about steepness and height, she opted for telling, which did not 

provide opportunities for students to reveal their understanding. Thus, her response 

was not targeted at her students’ confusion and hence, her noticing, as a whole, was 

not productive.  

Episode 2: Telling instead of listening 

Anita’s preference for telling students during teaching was also clearly seen when she 

interacted one-to-one with the students. For example, when Student S4 asked Anita 

about the determination of “rise”, she reacted by telling without listening to find out 

what Student S4 was thinking about: 

38. S4: Ms Anita, what’s the rise? How to count? 

39. Anita: The rise is the height. You find the perpendicular, and 

count how many units are there here. 

40. S4: So, you count by the? 

41. Anita: Yes. You count by the boxes. How many boxes are 

there? (Moves to the front of the classroom to explain 

how to count the “rise”.)  

Anita’s definition (Line 39) requires Student S4 to see the same right-angled triangle 

as hers. The most natural triangle in the problem of interest is the biggest triangle 

formed with the end points of the line segment. Anita did not ask what Student S4 was 

specifically puzzled about with regard to the “rise”. Instead, Anita’s emphasis on 

“counting” might cause Student S4 to associate the “counting of boxes” with the 

measurement of “rise” and “run”. It was not clear whether Student S4 understood the 

key idea, that what matters is the ratio of the “vertical change” to the “horizontal 

change” at this point. However, it became apparent that Student S4 had difficulties 

with Question 1b (See Figure 1) when coordinates were introduced a few minutes later. 
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She was confused about how the “rise” and “run” are counted when the coordinates 

involved were negative.  

 

Figure 1: Question 1(b) in the worksheet. 

Like several other students, Student S4 mistook the run as “negative three” because 

they took reference from the origin. Anita asked Student S4 to ignore the origin and 

directed her to focus on “forming the right-angle triangle” and “counting the rise and 

run”. However, she did not make explicit how distance is measured or calculated in a 

coordinate system, and did not realise that her students might have problems when 

coordinate were introduced.  

 

Figure 2: Snapshots of Anita’s noticing during teaching. 
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Snapshots of Anita’s noticing: What do they tell us? 

Anita’s noticing during these two episodes may be summarised as follow: 

1. Anita attended to an unexpected difficulty of confusing gradient with height 

(Episode 1); and the difficulty of finding the rise (Episode 2); 

2. Even though she might have analysed the difficulty as evidenced by the use of 

the mountain example, Anita still decided to tell the students (Episode 1); and  

3. Without preparing to listen to her students’ reasoning, Anita’s instructional 

strategy remained consistent (telling) through the lesson, which might not have 

targeted the difficulty that surfaced (Episode 2). 

Snapshots of her noticing processes during the two episodes are represented in Figure 

2 (The left for episode 1 and the right for episode 2). These snapshots present a clear 

picture of what, and how, Anita noticed during the two teaching episodes. As seen from 

the snapshots, while Anita had attended to the specific details with regard to her 

students’ confusion (both episodes), she might not have interpreted her students’ 

thinking (episode 2), and missed opportunities to build on students’ reasoning (both 

episodes). These observations suggest that Anita did not align her responses to target 

students’ confusion, and hence her noticing is characterised as non-productive 

according to the FOCUS Framework. More importantly, the snapshots highlight that 

Anita seemed to focus more on her own thinking, and as a result, did not ask her 

students questions that might have revealed their thinking. By comparing Anita’s 

snapshots with the theoretical model, it is therefore possible to pinpoint specific actions 

that she could take to raise her noticing expertise, and potentially improve her 

classroom practices. Last but not least, a portrait of Anita’s noticing can be formed by 

putting together her snapshots of noticing. This can provide researchers a means to 

observe the regularities in her noticing and account for these patterns in light of the 

analysis of her teaching episodes.  

CONCLUDING REMARKS 

This paper offers snapshots of noticing as representations of practice (Grossman & 

McDonald, 2008), which can be used to discuss and analyse teaching and its 

interactions with the processes of noticing. As a theoretical model, the FOCUS 

Framework characterises the notion of productive noticing and enables investigations 

of teaching while preserving its complexities. Besides its value as an analytical tool, 

the theoretical model can also serve as a self-reflection tool for teachers by directing 

their attention to mathematically significant aspects of their teaching. How this can be 

realised in teacher education and professional development will be a fruitful area of 

research in the study of teacher noticing. Furthermore, the model described in this 

paper was developed in the context of promoting student reasoning. It remains to be 

seen whether this model can be applied and tested in other contexts, such as teaching 

mathematics in a technologically-enhanced environment. 
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EXAMINING MATHEMATICS TEACHERS’ JUSTIFICATION 

AND ASSESSMENT OF STUDENTS’ JUSTIFICATIONS 

Boon Liang Chua 

National Institute of Education 

Nanyang Technological University 

 

This paper presents an analysis of teachers’ justification to a geometry task concerning 

the converse of Pythagoras’ theorem and their assessment of two authentic student 

justifications to the same task. Data were collected through administering a written 

test and a questionnaire combined to 50 mathematics teachers from over 30 secondary 

schools. The findings revealed that teachers were able to produce the correct working 

although many did not cite the right reason or any reason at all. When assessing 

students’ justifications, the teachers did not seem to be clear about the rigour of 

justification and tended to be lenient in scoring if the reason was not explicitly stated. 

BACKGROUND  

In recent years, educators and school reformers worldwide have called for schools to 

develop in students a broad set of competencies such as character traits, knowledge and 

skills that are believed to be an imperative for success in the workplaces in the 21st 

century. Given the emphasis on 21st century competencies (21cc), greater demands are 

then being placed on students to reason, explain and justify in the learning of 

mathematics. In Singapore, mathematical reasoning and justification should have been 

carried out in most mathematics lessons because, for many years, reasoning and 

communication have been two key process skills in the Singapore Mathematics 

framework (Ministry of Education (Singapore), 2012). But the problem is the extent of 

them being practised is not clear! The reports for the national examinations in 

Singapore have frequently revealed that justifying mathematical claims not in the 

context of formal proof is fraught with difficulties. To find out why students fail to 

establish justifications correctly, a small exploratory study was first conducted on 

Singapore mathematics teachers to examine their ability to justify non-proof tasks. This 

paper reports on the performance of the teachers in this study.    

JUSTIFICATION IN MATHEMATICS 

The topic of justification is often associated with the topic of proof in the literature. 

According to Simon and Blume (1996), mathematical justification is the process of 

“establishing validity [and] developing an argument that builds from the community’s 

taken-as-shared knowledge” (p. 28). This notion of justification as a means of 

determining and explaining the truth of a mathematical conjecture or assertion 

resonates strongly with many other researchers such as Balacheff (1988), Thomas 

(1997), Harel and Sowder (2007), and Huang (2005).  
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The types of responses expected of students in the justification process depend on at 

least two factors: the cognitive abilities of students and the nature of the task. For 

secondary school students, particularly those in the lower grades, a justification does 

not need to measure up to a formal proof. This is because providing a theoretical 

argument for a mathematical result is sometimes not required in the light of their 

cognitive level until they reach higher level of study (Hoyles & Healy, 1999). Take, 

for instance, the justification task asking lower secondary school students why 2𝑛 − 1 

is an odd number for any positive integer 𝑛. An acceptable justification could simply 

state: with 𝑛 being a positive integer, putting together two groups of 𝑛, which is 2𝑛 

when expressed in notation, thus forms an even number, therefore subtracting one from 

it will result in an odd number. 

Certain justification tasks lend themselves well to experiential justification, which is 

mainly supported by specific examples and illustrations. Take, for instance, the task 

asking why the rule 𝑎𝑚 × 𝑎𝑛 = 𝑎𝑚+𝑛  is true for any positive integer a, m and n. 

Students can rely on intuitive reasoning through using several numerical examples in 

the justification. Such a justification does not involve any established theorems and is 

therefore deemed a less formal argument than a typical mathematical deductive proof 

(Becker & Rivera, 2009). But it is this type of justification that is valued by educators 

because it “explains rather than simply convinces” (Lannin, 2005, p. 235). 

Justification tasks such as the two examples provided above are quite different in nature 

from the typical proof questions in that they do not require the use of theorems to 

establish the validity of the mathematical claims. After reviewing the research 

literature and Singapore past years national examination questions, it was found that 

the justification tasks can be classified into four broad categories: validate (e.g., explain 

why 2𝑛 − 1 is odd), elaborate (e.g., explain how you obtained 2𝑛 − 1 as a general 

term of a number sequence), interpret (e.g., explain what the y-intercept of the graph 

represents), and predict (e.g., explain which of the three averages – mean, mode or 

median – is the most suitable for the data set). The present study used justification tasks 

such as these to examine the mathematics teachers’ ability to justify and their 

assessment of students’ justifications. The two research questions that are addressed 

here are: How do Singapore mathematics teachers justify a geometry task concerning 

the converse of Pythagoras’ theorem? How do the mathematics teachers assess 

students’ justifications?  

METHODS 

A 30-minute written test-survey consisting of two parts was administered to 50 

mathematics teachers from 32 different secondary schools in Singapore. 30% of the 

teachers have taught mathematics for fewer than 5 years, another 40% for at least five 

to less than 15 years, and the remaining 30% for over 15 years. Part 1 of the instrument 
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comprised four justification tasks, one each in number, algebra, geometry and statistics. 

Part 2 comprised the same four justification tasks, this time each accompanied by two 

authentic student solutions. The teachers had to individually complete all four 

justification tasks and the marking of eight student solutions. For Part 1, the teachers 

had to construct the justification that would deserve the best mark. For Part 2, since a 

justification task typically carries one mark in the national examinations, the teachers 

were asked to score the authentic student solutions using a dichotomous scoring scale  

with 1 point for a correct response and zero for an incorrect response. Only the 

geometry task in Figure 1, called Mr. Right Triangle, concerning the converse of 

Pythagoras’ theorem is reported here. 

 

Figure 1. Mr. Right Triangle 

 

Figure 2 below presents the two student solutions for Mr. Right Triangle given in Part 

2. Produced by Year 9 students in another project, these solutions are believed to 

represent common and unacceptable justifications. In Student solution 1, the values of 

𝐴𝐶2  and 𝐴𝐵2 + 𝐵𝐶2  were determined separately and found to be equal. But 

Pythagoras’ theorem should not be cited as a warrant when drawing the conclusion that 

“it is an right-angle triangle”. In Student solution 2, the warrant for the justification: 

the formula 𝑎2 + 𝑏2 = 𝑐2  can only be used for right-angled triangle, is actually a 

rephrasing of the Pythagoras’ theorem that the student was very clear about (see his 

first statement). So like Student solution 1, this justification was also unacceptable on 

grounds of incorrect warrant. 
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Student solution 1 

 

 

Student solution 2 

Figure 2. Student solutions for Mr. Right Triangle  

All the teachers’ test scripts were collected and immediately coded T1 to T50. The 

teachers’ responses to Mr. Right Triangle in Part 1 were analysed carefully. A correct 

justification must ascertain that the condition 82 + 152 = 172 is satisfied followed by 

citing the converse of Pythagoras’ theorem as a warrant for drawing the conclusion 

that angle ABC is a right angle. The teachers’ justifications were analysed again two 

days later by the researcher and 100% consistency was achieved. As for the teachers’ 

assessment of students’ justifications in Part 2, a frequency count was done for each 

given student solution to determine the number of teachers who awarded it one point 

and zero. 

RESULTS AND DISCUSSION 

This section addresses the two research questions by reporting what has been found 

from the analyses of data. 

(1) How do Singapore mathematics teachers justify a geometry task concerning the 

converse of Pythagoras’ theorem? 

Five categories of responses as presented in Table 1 were observed amongst the 

mathematics teachers’ justifications. 

 

Code Description 

CP 5 Correct working with correct warrant  

CP 4 Correct working with incorrect warrant 

CP 3 Correct working with no warrant 

CP 2 Partially correct working 

CP 1 Wrong working 

Table 1: Types of teachers’ justification for Mr. Right Triangle 
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Mr. Right Triangle appears somewhat challenging for the mathematics teachers. Only 

14 of them were successful in giving a clear and complete justification (CP5). On closer 

examination of the unsuccessful teachers’ responses, it was discovered that of the 36 

incorrect responses, 22 of them were coded CP4 (e.g., see Figure 3a), four were coded 

CP3 (e.g., see Figure 3b), and another seven were coded CP2. Only three mathematics 

teachers produced a completely wrong justification. 

In Figure 3a, T50 established the condition 𝐴𝐵2 + 𝐵𝐶2 = 𝐴𝐶2 by separately working 

out the values of 𝐴𝐶2  and 𝐵𝐶2 + 𝐴𝐵2 , and noticing that both values were equal. 

Subsequently, the teacher inferred that triangle ABC is a right-angled triangle and the 

angle opposite the longest side 𝐴𝐶 (i.e., ∠ABC) is 90°. This justification seems logical 

and systematic except that it is actually flawed. The correct warrant to use should be 

the converse of Pythagoras’ theorem and not Pythagoras’ theorem. On the other hand, 

the justification by T47 in Figure 3b is less precise than the one produced by T50. This 

teacher never stated any warrant to substantiate his justification. 

These results indicate that a significant number of teachers did understand what was 

required to deduce their conclusions: that is, to check that the condition 82 + 152 =
172 holds before substantiating the claim with the converse of Pythagoras’ theorem. 

But the compelling evidence of nearly half of the teachers citing the wrong warrant in 

their responses points to a possible misconception amongst them: that the Pythagoras’ 

theorem and its converse might have been regarded as essentially the same – an 

observation similarly noted by Wong (2015) as well. 

(a) Solution by Teacher T50 (b) Solution by Teacher T47 

 

 

 

 

 

Figure 3. Teachers’ justifications for Mr. Right Triangle 
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(2) How do the mathematics teachers assess students’ justifications? 

Table 2 presents the distribution of the mathematics teachers’ scores for each of the 

two authentic student solutions by the types of justifications they produced. It shows 

that there are variations in the distribution of teachers’ scores between the two student 

solutions. Sixty percent of the teachers awarded zero to Student solution 1 but the 

corresponding percentage of teachers for Student solution 2 dropped to 40%. The 

analysis appears to suggest that a considerable number of teachers were able to 

recognise that Student solution 1 was flawed because Pythagoras’ theorem was 

mentioned and they knew it was the wrong warrant. When Pythagoras’ theorem was 

not explicitly stated as a warrant in a similar solution such as Student solution 2, the 

teachers were divided in their assessment, with more teachers awarding one mark. This 

finding demonstrates on one hand that the teachers tend to be more lenient and likely 

to accept the response as correct when it is not, but on the other hand, it appears that 

the teachers are not clear about the rigour of justification of this nature. 

 

(n = 50) Student solution 1  Student solution 2 

score 

  code 

0 1  0 1 

CP 5 11 3  8 6 

CP 4 14 8  9 13 

CP 3 1 3  - 4 

CP 2 4 3  2 5 

CP 1 1 2  2 1 

 31 19  21 29 

Table 2: Teachers’ scores by the types of teachers’ justification 

 

When the teachers’ scores for the two student solutions are compared with their 

justification, two features of particular interest are noted. One is the assessment by the 

14 teachers who produced code CP5 responses. These teachers ought to know very 

well the correct justification for Mr. Right Triangle and should be able to spot the 

mistakes in the two student solutions. Yet nearly half of them accepted Student solution 

2 as correct. A second striking feature is the higher frequency of zero mark than one 

mark in Student solution 1 by teachers who constructed code CP4 responses. Student 
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solution 1 was similar to what they produced, yet it was rejected. The reasons for this 

are not yet known though interviewing teachers might offer some clues.       

CONCLUSION 

Mathematics as a discipline calls for an examination and evaluation of the validity of 

facts, articulation of reasons for employing a certain method to solve a mathematical 

task, and substantiation of any arguments put forth. So justification is a crucial process 

skill enabling all these activities to be carried out. But the justification process appears 

to be complex. Even some mathematics teachers fail to navigate this process 

successfully. The present study, though small in size, is certainly worthwhile to 

develop further. Despite the limitations, it is hoped that the findings presented here 

offer useful ideas for researchers to think about mathematics teachers’ understanding 

of justification and ability to justify. 
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FACILITATING DISCUSSION OF VIDEO WITH TEACHERS OF 

MATHEMATICS: THE PARADOX OF JUDGMENT 

Alf Coles 
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This report details findings, related to the role of the facilitator, from a UK 

government-funded project to promote the use of video clubs for the professional 

development of teachers of mathematics. Seven teachers met on six occasions, over a 

three-month period, and shared video recordings of their own classrooms, all meetings 

were themselves recorded. While it is a common finding that discussion norms can be 

hard to establish, participants adapted to intended norms from the first meeting. The 

way this was achieved is analysed, within the enactivist methodology of the project. 

There is an apparent paradox that a move away from judgment is achieved through 

the use of judgment. Bateson’s (1972) levels of learning and communication are 

offered as one explanation of the observed phenomena. 

INTRODUCTION 

This report details results, relevant to the role of the facilitator, from research into the 

professional learning of teachers of mathematics, funded by the UK’s Economic and 

Social Research Council (ESRC). The aim of the research is to investigate effective 

use of video for teacher learning, building on previous work conducted by the Principal 

Investigator (Coles, 2013, 2014) and to promote and support such use via the creation 

of ‘video clubs’ in the UK and beyond. 

The video clubs, as conceived in this research, last over a three-month period with 

participants meeting fortnightly on six occasions. The clubs are partly inspired by those 

run in the USA (e.g., van Es et al., 2014). This report is based on outcomes from a 

video club that ran between May and July 2015. There were seven participants (all 

volunteers). Participation in the club is free, but a commitment is required to attend 

and engage in activities (most importantly video recording of their own classroom) 

between meetings. The number of participants could be up to ten, based on principles 

of collaborative group-working (Brown and Coles, 2011). The video club was framed 

around an action research text (Altrichter, Posch and Somekh, 1993) and participants 

were asked to come to the first meeting having read the first chapter and engaged in an 

activity (from the book) to help them find or refine an issue in their teaching they 

wanted to develop or investigate. In other words, the video clubs were not set up with 

any particular pedagogical focus in mind, but instead with the aim of supporting each 

participating teacher in developing their own practice. 

After a review of literature on the use of video, the enactivist methodology of the 

project is described briefly. Results are then presented and analysed, prompting further 

theoretical discussion in order to offer an explanation of those results. 
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USING VIDEO 

In reviewing the history of the use of video for teacher learning, Sherin (2007) cites 

reports going back to 1966 that found mixed results in terms of effectiveness 

(McIntyre, Byrd and Foxx, 1966). Sherin (2007) suggested more empirical work was 

needed to gain appreciation of possible roles for video – work that she herself has 

continued to conduct (e.g., Sherin and van Es, 2009). It is only relatively recently, 

however, that there has been a sustained interest in investigating the role of the 

facilitator of discussion, when working on video with teachers (Borko, et al., 2011; 

Coles, 2013; van Es, et al., 2014; Zhang et al., 2011). This report contributes to the 

emerging field exploring the skills needed to facilitate discussion.  

There are many methods proposed for using video with teachers (e.g., Star and 

Strickland, 2008; Santagata and Angelici, 2010). My own use of video is drawn from 

Jaworski (1990) and involves using 3-4 minute clips, where the first task for 

participants is to reconstruct (without interpretation or judgment) what happened, 

before any move to accounting for events is allowed (see Coles, 2013). 

More recently, frameworks have been suggested to support facilitators. Due to space 

limitations, just two of these frameworks will be described briefly below (chosen for 

their relevance to this study). At present, a common (and unsurprising) feature of 

frameworks relevant to facilitators is that they come out of particular uses of video. 

This report attempts to draw out issues around the facilitation of video that are 

potentially independent of the particular method of video use being employed. 

van Es et al., (2014) analysed discussion in their own video clubs and identified four 

categories that represented key strategies used by experienced facilitators during high 

quality discussions (defined as those discussions where there was sustained 

engagement in making sense of students’ thinking or participants’ own thinking). 

These four categories are: orienting the group to the video analysis task; sustaining an 

inquiry stance; maintaining a focus on the video and the mathematics; supporting group 

collaboration (van Es et al., 2014, p.347). A list of decision-points for the facilitator in 

Coles (2013) shares many aspects of the van Es et al., framework. In Coles (2013), the 

following five decision-points are identified: selecting a video clip; setting up 

discussion norms; re-watching the video clip; moving to interpretation; 

metacommenting. 

Common to both frameworks is: (i) the importance of establishing a mode of talk, 

whatever that mode is, (orienting the group to the task; setting up discussion norms); 

and, (ii) helping participants make links to their own practice (sustaining an inquiry 

stance; moving to interpretation). One other issue relevant to this report that has arisen 

from a recent review of video use, not just within mathematics education (Gaudin and 

Chalies, 2015), is the cognitive load of video viewing and the problems, particularly 

with beginning teachers, in their ‘capacity to identify and interpret classroom events’ 

(Gaudin and Chalies, 2015, p.29).  
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ENACTIVISM AS A METHODOLOGY 

The methodology behind the project was enactivist (Reid and Mgombelo, 2015). 

Enactivism is a research stance that offers a way through the philosophical and 

practical pitfalls of the subject-object divide, and all it entails, through collapsing 

knowing, doing and being (Maturana and Varela, 1987). From an enactivist stance, ‘all 

doing is knowing and all knowing is doing’ (ibid, p.27). What we think of as ‘subject’ 

and ‘object’ arise together in patterns of co-ordinated activity, each one (co-

)determining the other. All perception is an active process – perhaps easy to 

acknowledge with touch but maybe harder to notice with vision. 

We say that someone (including ourselves) knows something if we observe them acting 

in an ‘adequate’ manner in an environment. Knowing is therefore never fixed, never 

certain and alters in each expression. Knowing cannot be separated from acting and 

our whole being. We acknowledge learning when we observe someone acting 

differently in a similar context (perhaps moving from inadequate to adequate action).  

The implications of the enactivist stance for the doing of research were explored in a 

special issue of ZDM, The International Journal of Mathematics Education, volume 

47, issue 2. Of relevance here is an enactive approach to studying language (Coles, 

2015), since the data from this project is recordings of talk. Analysis was conducted 

beginning with a search for patterns in the last piece of data collected, on the principle 

of equifinality (see Coles, 2015 for one description of this principle).  In this project, 

in the final meeting of the club, participants were invited to reflect on what they had 

learnt and anything significant they would take away from having attended meetings. 

A pattern observable during this conversation was that every participant mentioned 

something related to questioning their own immediate ‘judgment’ of situations, or the 

difficulty of not interpreting events to fit one’s ideas. A random selection of comments 

is below (phrases linked to judging are underlined). 

 ‘From that very first session when we watched that video and I think that’s the one thing 

I’ve picked up most from this club is understanding how you doctor what you watch 

unintentionally’ (Teacher N) 

‘Just that judgment, being judged and judging … After we watched that first [video] … we 

were making judgments … but then that wasn’t really reflection’ (Teacher J) 

‘At the very beginning I found it so difficult just to be objective and I have realised that 

this is a direct reflection of how I am in the classroom. I listen to children and sometimes 

I don’t listen to the question for the question’s sake, and move it on, trying to keep that 

pace high.’ (Teacher T) 

Having identified a theme, the enactivist approach in Coles (2015) is to trace mention 

of this theme through earlier sections of data. The aim is to follow the emergence of 

the theme rather than account for patterns in a directly causal manner. So, starting at 

the first meeting any mention of judgment, or difficulties with interpretation, in the 

audio recordings were transcribed; the aim is to uncover further patterns related to the 

role of the facilitator (which is the focus of the research project). 
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FACILITATING THE MOVE AWAY FROM JUDGMENT 

A striking feature of the comments reported above (from meeting 6) is the number that 

refer back to the first meeting. It appeared as though a significant shift took place 

during the first meeting, in relation to the move away from judgment. This first meeting 

would have been the starting point for analysis anyway, and in this section the focus is 

just on that meeting. Three transcripts are reported, which are all the instances where 

a comment from a participant gets interrupted or re-focused by the facilitator, in 

relation to judging/interpreting. Given the focus of this report on the decision-making 

of the facilitator (in this case, me), the three transcripts are presented in the form of a 

narrative, combining what was said with my own, stimulated-recall of the events. After 

the three transcripts/incidents I offer some further reflections.  

Incident 1 

In the first meeting, having had some time discussing how the group would operate 

and hearing what participants had done on the pre-meeting tasks, we moved to watch 

our first video. No participants were expected to take video recordings of lessons 

before this meeting and so I chose a video clip from the Video Mosaic database 

(www.videomosaic.org) called ‘Alan’s Infinity’. I have used this clip before and am 

aware it can provoke strong responses (both positive and negative) and so hoped it 

would be suitable to establish the discipline (Jaworski, 1990) of starting work on video 

with the detail of what took place, without initially straying into interpretation. 

I was explicit that the initial task would be to simply say what participants saw on the 

video. I let the video run, pressed stop and as I was returning to my seat one teacher 

(P) began talking. The first comment, below, refers to teacher J (another teacher in the 

group) who had mentioned at the start of the meeting that he was interested in 

promoting more ‘independence’ in the students he teaches. 

[Transcription conventions: //text// indicates overlapping speech; [text] is a transcriber 

comment; [2] indicates a pause of 2 seconds; other punctuation has been used to give 

some sense of phrasing; … indicates some text has been skipped, for ease of reading] 

P: I couldn’t stop watching, thinking of you [P looks at J] and your independent children 

[Alf raises his hand towards P] and unfortunately all //the children that 

weren’t paying attention// 

//Alf: So, so, so// 

//J: Yeah, yeah// 

Alf: That’s an interpretation. So, at this stage, the invitation is to say what you saw, what 

you observed [1] so [1] how did it begin? 

I remember feeling taken aback that P had begun talking before any invitation from me 

(in which I would usually have re-iterated the task of description and staying with the 

detail). On reflection, P’s comment was, I suspect, extremely helpful to the group in 

terms of allowing me to give feedback in relation to a discussion norm, from the start. 

The distinction on offer here is that we cannot observe ‘not paying attention’. What we 

http://www.videomosaic.org/
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might see is, say, children looking away or playing with items on a desk or talking – 

from which it is an interpretation that they are not paying attention.  

Incident 2 

My intervention, in Incident 1, did not ensure that conversation thereafter remained at 

the detail level (and nor would I have expected it to). After 3 minutes the following 

interchange occurred (G and J are commenting about a student on the video clip). 

G: He said that it wouldn’t work if your one whole was 10? 

J: Yeah, I think he was talking more on the discrete nature of number, he was thinking 

about things being discrete 

Alf: So, try to avoid interpreting what you think he was saying [Alf laughs] try and stay 

with [1] so, what did you hear him say? 

I recognise being attuned, when the task for the teachers is one of description, to any 

mention by a teacher of what might be going on in the mind of a student on the video. 

For me, these are the easiest comments to spot that are interpretations and not 

descriptions. We cannot observe what a student may or may not be thinking, by way 

of explanation of what they say. So, when J suggests a student was thinking about the 

discrete nature of number, I am not surprised to observe myself intervening and re-

emphasising the discussion norm for this phase.  

Incident 3 

A little later in the meeting I do something similar to the first two Incidents, for a third 

time. P, in the transcript below, begins referring to a student on the video who she had 

heard talk about ‘atoms’ (on a number line). 

P: Someone started saying about atoms, didn’t they. 

J: And that other lad saying about a really long number line. He was saying, if you had 

the longest number line in the world you could. 

T: I thought that was interesting because he kind of got it right, it’s the same concept// 

Alf: //[Alf interrupts T] That // sounds like an interpretation // 

J: //Interpretation, yeah// 

Alf: Try and stay with the detail, we’ll come on to that in a second. Let’s try and see if 

we can get the chronology of things. 

A little like comments about what a student might or might not be thinking, any 

comment evaluating the video, for example, as here whether a student is right or wrong, 

I recognise as indicating a move into judgment and interpretation. Again, I intervene, 

in this case interrupting T’s contribution, and re-state the task as getting ‘the 

chronology of things’, i.e., what happened when during the clip. 

In J’s re-voicing of my comment ‘Interpretation, yeah’ there could be evidence of him 

beginning to recognise the distinction I am making between interpretations and 

descriptions. Following this third incident, there are no others where I notice a 
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judgment and the teacher discussion remains at the level of detail and description (with 

some re-viewings of sections of video) before I shift to the next phase of asking for 

interpretations and analysis of what was seen. 

Further reflections 

The technique of starting with a reconstruction of events was designed precisely to 

move participants out of ‘judging’ and into a space where it is more likely teachers can 

learn and observe something new in the video clips they watch (Jaworski, 1990). This 

is not the end of the process of working on video and, following the ‘reconstruction 

phase’ there is then an invitation to move into an analysis of the video and a drawing 

out of implications for participants’ own classrooms; however, the analysis phase is 

beyond the scope of this report, further details about the entire way of working can be 

found in Coles (2013, 2014). 

There is evidence that a discussion norm (about starting off with description and not 

interpretation) has been established in the first meeting. After three interventions by 

me to flag up when discussion has moved to interpretation, no more are needed. It 

appears that discussion norms can become established quickly in a group, with a 

facilitator prepared to intervene and make the criteria for intervention explicit to the 

group, so that those criteria can become ones that participants are able to apply to 

themselves. There is no evidence of the cited difficulties of ‘cognitive load’ (Gaudin 

and Chalies, 2015, p.29) required for these teachers to work with video and adopt the 

way of working, even though several of them were newly qualified. 

Reflecting on the way this first meeting went, there is a paradoxical sounding sense in 

which my own judgmental interpretation of the ‘kind’ of comment made by teachers 

supported them in moving away from their own judgmental interpretations of the 

video. The nature of this apparent paradox – that the facilitator appears to support 

participants moving away from judgment through the use of judgment, is not a 

phenomena I have found reported previously and it is explored in the next section. 

LEVELS OF COMMUNICATION, LEARNING AND ERROR 

The use of video recordings with teachers of mathematics sets up a context in which 

there is communication about the communications in the classroom. This report sets 

up a third level of communication (about communications of video that are about 

communications in the classroom). In order to help untangle the webs of connections 

involved and, in particular, the paradox mentioned above, there is a need to draw on 

theory beyond mathematics education. I have found it instructive to go back to 

Bateson’s (1972) views on communication, errors and learning, which were an early 

influence on me and which also form part of the background to enactivism. 

Bateson (1972) distinguished three levels of learning to capture how animals (including 

humans) alter their behaviours over time. Learning 0 indicates the same response (at 

two different times) to the same stimulus (e.g., the bell rings and the dog salivates; I 

ask a student what is 7x8 and they answer correctly). Learning I indicates that between 
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time 1 and time 2 there is a change in response to the same stimulus (e.g., the dog learns 

to salivate on hearing the bell; a student moves from not knowing 7x8 to being able to 

give the correct answer). Learning II indicates a change in the way Learning I takes 

place (e.g., a dog becomes more efficient than it was at learning in the context of 

Pavlov-style experiments; a student moves from memorising discrete multiplication 

facts, to being able to use commutativity and ‘doubling’ of known facts to derive 

others).  Learning II is only observed in animals able to engage in communication about 

communication and cannot be taught directly since it cannot be specified by particular 

behaviours. Learning II concerns how we learn new behaviours, not the behaviours 

themselves. 

These considerations indicate there are two kinds of error an organism can commit, 

where ‘error’ is interpreted as an action that is not well adapted to the context:  

The organism may use correctly the information which tells him (sic) from what set of 

alternatives he should choose, but choose the wrong alternative within this set; or 

He may choose from the wrong set of alternatives. (1972, p.291) 

Errors of the first kind, if corrected, can lead to Learning I; over time I may memorise 

that 7x8 is 56, not another number (my errors were from choosing the wrong alternative 

within a set). Errors of the second kind can lead to Learning II; over time I may learn 

that I can work out 7x8 not just by trying to remember it (and often committing the 

first type of error) but, say, from knowing 7x2 and doubling twice. My previous errors 

now can be seen as coming from trying to do the wrong kind of thing (for me) in 

memorising, compared to building on what I know (my errors were from choosing the 

wrong set of alternatives). NB What counts as ‘wrong’ in the example above, and in 

any instance, is relative to individuals and context. 

When teachers speak judgmentally in the first phase of video watching, my feedback 

to them indicates that they are making this second kind of error. I am not questioning 

the interest or validity of what they say, but what I feedback to them is that they have 

made an error in terms of the kind of thing they are saying – they have made a choice 

from the wrong set of alternatives and, described in this way, the paradox seems to 

dissipate. My judgments are at a different ‘logical’ level to the communications and 

judgments about the video and so do not conflict with them. 

Making the shift that teachers show they have done, in the evidence above, is evidence 

of Learning II – they have made a shift in the way they go about learning from video. 

When working with teachers of mathematics on video my aim is, precisely, to support 

a new way of acting and seeing. I want to allow for the emergence of new descriptions 

and, with those new descriptions, a possibility for new actions (see Coles 2013, 2014). 

The intention is to provoke Learning II and it is perhaps no surprise that so many 

research projects report that learning from using video is hard to facilitate. The kind of 

learning we are aiming for should be hard because, as humans, we can get ingrained in 

the set of alternatives from which we choose, in any given context.  
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A website has been created with resources to support facilitators in using video 

(www.mathsvideoclubs.ac.uk). We hope in the future to track the influence of these 

video clubs on teachers’ developing practice and the on going learning of facilitators. 
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USING THE BIG IDEAS OF MATHEMATICS  

TO ‘CLOSE THE GAP’ 

Tom J Cooper, Merilyn G Carter, James A Lowe 

YuMi Deadly Centre, Queensland University of Technology (QUT) 

 

Researchers at QUT have developed a mathematics pedagogy (AIM) that seeks to 

achieve deep learning of powerful mathematics, particularly in Indigenous and low 

SES schools. AIM is a vertically structured pedagogy intended to ‘close the gap’ for 

underperforming students. It is based on the big ideas of mathematics, drawing on the 

Piagetian notion of schemas and Skemp’s approach to relational understanding of 

mathematics. After initially partnering with eight schools to provide teacher training 

and support for the implementation of AIM the program, early outcomes were 

encouraging. There is evidence to suggest that a program based on big ideas of 

mathematics and vertical sequencing enabled significant acceleration.  

INTRODUCTION 

The mathematics performance gap between Indigenous and low SES students and other 

students is particularly large in Australian schools. In response to this, researchers at 

the YuMi Deadly Centre (YDC) at the Queensland University of Technology (QUT) 

developed a mathematics pedagogy called YuMi Deadly Maths (YDM). YDM seeks 

to achieve deep learning of powerful mathematics, particularly in Indigenous and low 

SES schools, so that students have improved employment and life chances. YDM 

embraces the ‘big ideas’ of mathematics, that is, ideas that illuminate a variety of topics 

across many year levels, as a central framework for the teaching of mathematics in the 

primary and secondary years. It is the basis of several different programs that assist 

mathematics teachers in addressing the needs of students at all levels of mathematical 

understanding,  

This paper focuses on a YDM program called Accelerated Inclusive Mathematics 

(AIM) that uses big ideas and a vertical curriculum to accelerate learning of junior 

secondary Indigenous and low SES students to ‘close the gap’ between these students 

and other students. The paper is an initial analysis of the effect of the first interventions 

based on AIM on students in Indigenous and low SES schools in Queensland Australia. 

It discusses AIM’s views on connections, schema, big ideas, sequencing and vertical 

curriculum, describes the design of the interventions, provides findings from the first 

case studies, and draws conclusions for the use of big ideas in remediation and 

acceleration. It complements a more theoretical paper on the definition and use of the 

big ideas of mathematics in YDM by Carter, Cooper and Lowe (2016).   

THEORIES UNDERLYING AIM 

AIM is a remedial pedagogy that is based on accelerated unlearning/relearning of 

mathematics ideas. It is based on constructivist theories that come from the work of 
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Piaget (1977) and Vygotsky (1978) that individuals need to actively construct meaning 

from experiencing guided activities in the social milieu (Davydov, 1995; Jardine, 

2006). It is also based on the importance of this meaning relating to the fundamental 

structures of mathematical knowledge, particularly the importance of students’ 

knowledge being relational (Skemp, 1977), principled/conceptual (Leinhardt, 1990) 

and structural (Sfard, 1991). It integrates constructivism and structural knowledge 

based on the principles of Alexander and Murphy (1998) and taking account of the 

integrity of structure alluded to in English (2007) and English and Sriraman (2010).  

Connections, schema and big ideas. AIM assumes that humans learn by organising 

knowledge into schemas that are stored for use when needed to understand and respond 

to situations. Learning occurs by increasing the number and complexity of the schemas 

and integrating schemas by adaptation (adjustment) to the world, through the processes 

of assimilation or accommodation (Piaget 1977). Where possible, existing schemas are 

used to understand (assimilate) new information. A general schema that is not context-

specific can facilitate the assimilation of many types of new information (Richland, 

Stigler, & Holyoak, 2012). It is such schemas (called big ideas) that are the basis of 

AIM.  

Successful assimilation creates a state of equilibrium in the learner. When the new 

information cannot be assimilated into existing schemas, a state of disequilibrium 

occurs which is resolved (schemas are changed or supplemented) through the process 

of accommodation. It follows that learning is easier if assimilation is possible, and this 

is more likely if big schemas (big ideas) are available. However, if learners fail to 

develop a relational understanding of mathematics (Skemp, 1976) as a framework of 

connected big ideas, there are few adequate schemas to draw on to assimilate new 

knowledge. The result can be a large number of disconnected facts that cannot be 

generalised and require drill and practice methods to ensure future recall (called 

instrumental knowledge by Skemp). 

To reinforce underlying mathematical principles, there has been recent renewed 

interest in big ideas (Askew, 2013). This interest has resulted in big ideas being seen 

as the central organizing ideas (Schifter & Fosnot, 1993) that robustly link many 

mathematical understandings into a coherent whole (Charles, 2005). Big ideas have 

been characterised as having potential for: (a) encouraging learning with understanding 

of conceptual knowledge; (b) developing meta-knowledge about mathematics; 

supporting the ability to communicate meaningfully about mathematics; and (c) 

encouraging the design of rich learning opportunities that support students’ learning 

processes (Kuntze et al., 2011). It has been argued that relating new concepts to big 

ideas promotes understanding, thus enhancing motivation, further understanding, 

memory, transfer, attitudes and beliefs, and autonomy of learning (Lambdin, 2003). 

Many argue, explicitly or implicitly, for the need for the big ideas to transcend the 

various branches of mathematics and also year levels (e.g., Morgan, 2012; Siemon, 

Bleckly, & Neal, 2012). However, as Carter et. al (2016) argued, agreement is harder 

to find when it comes to listing the big ideas.  
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AIM uses such ideas as an effective way of accelerating underperforming students. The 

program includes a taxonomy and detailed list of big ideas (see Carter et al., 2016).  

Sequencing, vertical curriculum and big ideas. It is crucial that sequencing between 

connected ideas is seamless, where the transition from one idea to the next is not 

impeded by concepts taught in a way that do not support (or, worse, are contrary to) 

future developments. For example, if whole numbers are taught by adding like place 

values (and renaming if needed), the ground is prepared for algebraic addition which 

involves adding like variables. In contrast, denying the existence of negative values in 

the early years (for example, “you can’t take 5 from 3”) leads to confusion when 

subtraction requires regrouping.  

AIM was designed for the junior secondary years where it provides teacher 

professional development (PD) and resources for use with students who are more than 

three years behind their age level in mathematics performance. They have been 

designed to teach six years of mathematics in three. To do this, a series of vertically 

sequenced modules covering Year 3 to 9 content were developed, each focussing on a 

few big ideas. They were based on the structured sequencing theory (Cooper & Warren, 

2011) that was designed to develop big ideas across time. Figure 1 diagrammatically 

shows the difference between AIM’s vertical curriculum and traditional horizontal 

curriculum. The horizontal approach, more commonly used to teach school 

mathematics, in which every topic is taught each year, is shown at the left of Figure 1. 

AIM’s vertical structure, which teaches one-third of the topics in each year, arranged 

so that by the end of three years, all topics in the curriculum have been covered, is 

shown at the right of Figure 1. Both approaches seek to reach the same outcome by the 

end of Year 9 but in different ways. 

       Yr 9            Yr 9 

 

 

       Yr 3            Yr 3 

             Year A       Year B          Year C            Year A    Year B             Year C 

 “USUAL” HORIZONTAL  GROWTH   MODULE-BASED VERTICAL GROWTH 

Figure 1. Normal/horizontal and module-based/vertical mathematics growth 

Horizontal programs that revisit topics iteratively (often more than annually) usually 

take a spiralling approach. Each time a topic is revisited, there is a review of past 

learning to refresh the students’ knowledge and provide links to the proposed new 

learning, followed by new work that builds on additional layers of knowledge and 

complexity. A vertical program based on modules, each of which develops a big idea 

from the foundations to advanced concepts, can be more time-efficient by eliminating 

the need to regularly revisit past learning, and because a good foundational knowledge 

of a big idea accelerates its future application. However, the use of modules results in 

only a small number of topics being taught in a particular year, with each of these topics 
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are taught up to the Year 9 level. In other words, growth in mathematics changes from 

enhancing learning of all topics across each of the three years to adding new topics to 

fill in the gaps.  

DESIGN OF INTERVENTIONS 

YDC achieved its mission by entering into partnerships with schools to provide 

training and support for the implementation of the program in the school. Teachers 

attended PD for six to eight days per year for two or three years, depending on project 

arrangements between YDC and client schools. The schools also received resources 

and support in the form of an AIM Overview book, 24 half-term teaching modules 

(eight per year) each with pre-post tests, an online website, school visits by YDC 

practitioners if required, and a coordinator to organise the PD and answer questions. 

The training focussed on the AIM pedagogy and how to implement it in schools, and 

encouraged the teachers to trial the modules using an action-research approach. 

The school AIM projects were design-based case studies (Cobb, Confrey, Lehrer & 

Schauble, 2003) using mixed methods data gathering techniques (observations, 

interviews, surveys, observations, teachers’ feedback, and class pre-post test 

responses). They were also based on the empowering outcomes decolonising 

methodology (Smith, 1999), with the research designed to benefit the researched. The 

trained teachers were encouraged to trial the AIM ideas in their classrooms and then 

undertake in-school training of other teachers. For the trials, the trained teachers were 

asked to give the pre-post tests in the modules to their students and provide de-

identified class responses to YDC staff. The data was considered using a case study 

approach. Within each case, the data was analysed to determine any changes in students’ 

mathematics knowledge and engagement. These changes were related to the 

characteristics of the case, PD activity, the trained teachers’ responses about teaching 

and training other teachers, and other teachers’ responses about teaching (where 

relevant), in order to determine the reasons for them.  

As discussed earlier, the goal of the AIM project was to develop, over three years, the 

mathematical knowledge and skills that would usually be covered in the first ten years 

of schooling. To achieve this, the AIM program provided 24 vertically sequenced half-

term modules based on big ideas that covered all mathematics up to Year 9. They were 

divided into three years, covering basics, multiplicative ideas, and generalisation, 

respectively.  

Like all YDM programs, AIM did not seek to provide a prescriptive ‘of the shelf’ 

teaching recipe. Instead, it aimed to expand teacher capacity through a multi-year 

program of training and support that included pedagogical approaches, mathematical 

content, teaching ideas, and activities, structured around the big ideas of mathematics. 

However, teachers were encouraged to make their own pedagogical decisions based on 

understanding of big ideas and knowledge of their students. 
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RESULTS AND DISCUSSION OF FIRST INTERVENTIONS 

The first interventions were trials of the eight first-year modules. They were (in order) 

whole numbers, decimal numbers, addition and subtraction, length-capacity-mass, 

multiplication and division, perimeter-area-volume, 2D and 3D shape, and tables and 

graphs. The first year was designed to prepare students for vocational education and 

training (VET) options (e.g., Certificate II in a trade). The module resources provided 

active teaching ideas that started from the context/culture of the students, moved 

through bodyhandmind activities and reflected back to the students’ world. The 

interventions were undertaken with nine secondary schools, summarised in Table 1. 

Six of the schools had more than 95% Indigenous students. Each school had at least 

one Year 8 class with greater than 25% Indigenous students in which all students were 

operating at mid-primary level in mathematics (there were 14 classes in all). At the 

time, Queensland secondary schools commenced at Year 8 (and not Year 7 as now). 

Table 1. Schools in AIM trials 

School System School type Remote Over 95% Indigenous 

1 Independent Boarding/Day No Yes 

2 Independent Boarding No Yes 

3 State Community school Yes-culturally Yes 

4 Catholic Boarding No Yes 

5 Catholic Boarding/Day No No – 25% 

6 Catholic Boarding/Day No No – 25% 

7 Independent Community school Yes-culturally Yes 

8 State Boarding/Day Yes-distance No – 25% 

9 State Community school Yes-culturally Yes 

 

The intervention results were affected by the schools’ characteristics, including (a) 

challenges in terms of behaviour and attendance, (b) rapid turnover of principals, 

teachers and students (particularly for the community schools), (c) continual changes 

from systems in the nature of the mathematics pedagogy, and (d) community activities 

changing school activity. The findings were also affected by the teachers’ 

characteristics such as (a) extent of change in teaching to meet the needs of AIM; (b) 

acceptance of and use of big ideas; (c) knowledge of mathematics and mathematics 

education (over 80% of the teachers in the AIM program were teaching out of field and 

had no tertiary training in mathematics or mathematics teaching); and (d) readiness to 

spend time ensuring pre-post tests were administered correctly. This paper focuses on 

four cases where the outcomes were relevant to big ideas pedagogical approach. 

Decimal results higher than whole numbers. One of the startling initial results was 

that, although pre-tests showed that students understood whole numbers better than 

decimals, the pre-post tests showed greater improvement in decimals, resulting in 

students’ knowledge of decimal numbers that was significantly better than of whole 
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numbers. In interviews, teachers agreed with this result, explaining that it was because 

the whole number work helped decimal number understanding. The whole and decimal 

number modules were built around the same five big ideas: notion of unit and part-

whole; additive structure and counting; multiplicative relationships; number line; and 

equivalence. Teachers reported that their students stated that the decimal work was “the 

same” as for the whole number, showing that they recognised the structural similarity. 

Thus, the whole number modules prepared the students for the decimal module and the 

organic nature of big ideas (Skemp, 1976) enabled assimilation and acceleration of 

learning.  

Additionally, AIM ensured that all learning in the whole numbers module was 

seamlessly sequenced with decimal numbers. For example, the multiplicative structure 

presented multiplying or dividing by 10 as the left or right movement of place-value 

positions (not adding and removing zeros). The extra work that this required in whole 

numbers was compensated by the acceleration of learning in decimals. This result was 

a strong validation for the AIM approach to acceleration and result confirmed the 

vertical curriculum as the AIM structure.  

Multiplication/division results not higher than addition/subtraction. Whilst the 

addition/subtraction and multiplication/division modules were also based on the same 

big ideas, there was not the same improvement in the later module, seemingly 

contradicting the whole number/decimal findings. In discussions, the teachers admitted 

to not following the big ideas approach of the modules. This was supported by PD 

leaders who advised that the teachers found these modules on operations too difficult 

and felt they could not teach them. The teachers considered that the modules contained 

too many different big ideas in which they lacked experience. The operations had been 

explained in terms of the big ideas of meaning (concepts), relationships/laws 

(principles) and separating into parts (strategies), but the teachers saw operations only 

in terms of computation. In the second year, the principle big ideas were moved to a 

new third year module on translating arithmetic principles to algebra. With only 

concepts and strategies to deal with, which could be related to computation, the 

teachers came to believe that they could teach the module and problems disappeared, 

demonstrating that program knowledge cannot outpace teacher knowledge. 

Enhanced capacity of teachers, including out-of-field teachers. There were 

significant increases in the teachers’ capacity to teach mathematics where there was 

staff stability. Teachers came to like teaching with AIM; becoming more motivated, 

confident and knowledgeable about mathematics and its teaching over time. In 

particular, this was true for out-of-field teachers, a finding supported by a Queensland 

Government audit of teachers in Queensland. The audit highlighted AIM as an example 

of a PD program that trained out-of-field teachers to be able to teach mathematics 

effectively. This was particularly important because AIM’s target schools have high 

numbers of out-of-field teachers (over 80% in this AIM intervention). AIM’s focus on 

big ideas and teacher capacity had a two-fold positive effect, on teachers as well as 

students.  
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Student participation in senior secondary improved. AIM pre-post test results were 

nearly always strongly positive for all modules, but the main objective of AIM was 

that students would be able to access senior mathematics subjects after three years. In 

the past, mathematically underperforming students dropped out or failed in Year 10 

and left school with low employability. However, this trend was reversed in those AIM 

schools that had stability in leadership, staff and students. Principals reported that 

students were continuing into Year 11 with good mathematics performance.  

One boarding school had the strongest success, with 13 of the 16 students who started 

AIM in Year 8 succeeding in University entrance mathematics courses in Year 11. This 

school taught AIM as a support to their normal mathematics subjects, using the 

resources to develop their own programs. Their teacher said that AIM had given the 

students confidence in their ability to continue studying mathematics. Teachers using 

the modules as a resource to improve their existing programs has become a major part 

of the latest AIM projects, with recent reports that AIM students are outperforming 

their non-AIM counterparts who were assessed as having higher initial knowledge. 

CONCLUSIONS 

These are only a small indication of findings of the analysis of AIM’s effects on 

underperforming students. Although effects on Indigenous and low SES schools are 

difficult to unpack, there is a strong belief that a mathematics programs based on big 

ideas and vertical sequencing enabled significant acceleration. The program must take 

account of teacher knowledge and student knowledge, but can provide two-fold 

outcomes. The evidence suggests that a big ideas approach works because it: (a) covers 

many mathematical ideas; (b) reduces need for rote procedures; and (c) is organic 

allowing later work to be assimilated. It also argues that vertical sequences work 

because the same ideas operate throughout the module and early learning provides the 

foundations for later learning. It also seems that big ideas and vertical sequences are 

particularly suited to students from Australian Indigenous and low SES backgrounds, 

the main targets of AIM. These learners tend to be holistic in learning style, moving 

from whole to parts, and not aligned with the traditional algorithmic teaching methods 

that move from parts to whole. 
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The presented study is part of a bigger design and research enterprise in the teaching 

of fractions as measures. We analyze extracts of a teaching session with a single fifth 

grade student, in which he flexibly compared the relative sizes of the lengths of three 

drinking straws, skillfully using unitary, proper, and improper fractions. We identify 

aspects of his prior instructional experiences that supported the emergence of his 

relatively sophisticated ways of reasoning. Findings suggest that supporting students’ 

reasoning about reciprocal relations of relative size can be a viable goal in an 

instructional agenda on fractions as measures.  

In this paper, we explore how to instructionally support the emergence of a form of 

mathematical reasoning that involves reciprocally quantifying the size of two 

magnitude values (Ramful, 2013; Thompson & Saldanha, 2003). Quantifying in this 

way is central to many scientific and everyday practices. For instance, in money 

exchange, the relative value of two currencies is determined in a reciprocal way, so 

that if the value of an Australian dollar is 16 Mexican pesos, the value of a Mexican 

peso is 1/16 of an Australian dollar (or 0.0625 AUD).  

A key aspect of reciprocal quantitative comparisons is that they always involve the use 

of rational numbers. In the example above, although the value of an Australian dollar 

relative to a Mexican peso can be quantified using only natural numbers, quantifying 

the reciprocal relation necessarily requires the use of fractions (or an equivalent 

rational expression). The relatively sophisticated fraction understanding that is 

required to conduct this kind of comparisons, makes them difficult to study in 

elementary years, where such levels of fraction understanding are seldom developed 

(e.g., Hannula, 2003).  

We analyze the reasoning of a fifth grade student, Pedro, who became skillful in using 

fractions to determine the relative size of up to three different magnitude values in a 

reciprocal way. In the analysis, we also identify aspects of Pedro’s reasoning that can 

be directly linked to specific instructional experiences. Based on the results of the 

analysis, we then consider the resources for classroom teaching that would need to be 

developed so that proficient teachers could support the development of similar ways of 

reasoning in regular classrooms.  

BACKGROUND 

Pedro attended an urban public school in Mexico, and was experiencing difficulties 

with learning mathematics. The first author worked with him, after school, in one hour 

weekly sessions, both to help him overcome his difficulties, and as part of a broader 
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research effort (Cortina, Visnovska, & Zúñiga, 2014a). This effort has centered on 

developing an instructional sequence on fractions as measures (Kieren, 1980), using 

the general methodological approach of design research (Gravemeijer & Cobb, 2006).  

In our instructional design, we follow the tenets of Realistic Mathematics Education 

(Gravemeijer, 1994), as well as the adaptations of this theory proposed by Cobb and 

colleagues (Cobb, Zhao, & Visnovska, 2008). We aim to (a) clarify the progression of 

forms of student reasoning that are likely to emerge as students engage in specific 

instructional activities, and (b) provide guidance for the teacher about how the 

emergence of these forms of reasoning can be proactively supported in classrooms.  

It is worth clarifying that we have developed the instructional sequence by working 

with groups of students in their regular classrooms. The first author’s involvement in 

Pedro’s remedial education was used as an opportunity to explore the continuation of 

the sequence, prior to its classroom testing. In this sense, the presented analysis belongs 

to the ‘preparing for a classroom experiment’ phase of design research and will be used 

to formulate the rationale of the extended sequence.  

The samples of Pedro’s reasoning that we analyze in this paper come from the 21st 

weekly remedial session. In sessions 8-20, the first author guided Pedro through a 

previously developed sequence of instructional activities on fractions as measures 

(Cortina et al., 2014a). The progression of Pedro’s reasoning during these weeks was 

consistent with prior findings. We include the overview of these developments to 

clarify the instructional approach taken, particularly with respect to how Pedro was 

supported to understand unitary and common fractions. Against this background we 

then introduce the activity of week 21, in which Pedro engaged in instructional activity 

that involved making reciprocal quantitative comparisons.  

SUPPORTING PEDRO TO REASON ABOUT FRACTIONS AS MEASURES  

Pedro was first asked to use parts of his body (e.g., hand span) to measure lengths and 

reflected on the advantages and disadvantages of gauging the lengths of objects in this 

way. He was then asked to measure lengths using a standardized unit, a wooden stick 

with no marks on it, about 24 cm long. In doing so, the issue of the remainder became 

a concern, as he realized that many objects did not measure a whole number of 

iterations of the stick. For instance, a table would measure three sticks and a bit more.  

In order to quantify the lengths of the remainders, Pedro was oriented to produce 

subunits of measure, the lengths of which corresponded to unit fractions of the length 

of the stick. Importantly, he was not led to construe unit fractions as quotients of 

a partitive division (i.e., the result of equally partitioning a whole into a certain number 

of equal size parts). Instead, he was supported to construe them as divisors in a 

measurement division, in which the reference unit is divided a whole number of times, 

with no remainder.  

To clarify the distinction we are making, asking a student to fold a plastic drinking 

straw of the length equal to a stick, twice, and think about the length of the resulting 
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four equal size parts, would correspond to construing 1/4 as a quotient of a partitive 

division. In contrast, Pedro was given a plastic drinking straw shorter than the stick 

and asked to cut it (i.e., to create the divisor) so that when using it to measure the stick, 

it would fit in exactly four times (see Figure 1). He did this through a process of trial 

and error in which he would cut the straw and test it to see if its length met the specified 

condition. If the straw turned out to be too long, he would cut it shorter. If it turned out 

to be too short, he would start afresh with a new straw. We believe that the distinction 

described made the difference to Pedro’s reasoning and return to it in the discussion 

section of this paper. 

 

Figure 1: 1/4 as the length of a subunit (a plastic drinking straw) that fits exactly four 

times in the length of a reference unit (a white wooden stick). 

Using the described procedure, Pedro produced straws of the following lengths: 1/2, 

1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9 and 1/10, in this order. Consistent with findings from 

prior experiments (Cortina et al., 2014a), by reflecting on the process of producing unit 

fractions in this way, Pedro came to develop a comprehensive understanding of the 

inverse order relation of unit fractions (i.e., the bigger the number in the denominator, 

the smaller the fraction size). 

Next, Pedro was oriented to interpret common fractions as measures that accounted for 

a length that corresponded to the iteration of a subunit a certain number of times. For 

instance, the fraction 7/4 would account for a length that corresponded to seven 

iterations of a subunit of length 1/4.  

Pedro was then supported to recognize how subunits, when iterated a specific whole 

number of times, rendered a length identical to that of the reference unit (e.g., 

4 × 1/4 = 1). Also consistent with prior findings, developing such an understanding 

allowed him to correctly judge any fraction as representing a length smaller than, as 

big as, or bigger than one (e.g., 2/3 < 1; 3/3 = 1; 4/3 > 1). It also allowed him to soundly 

and correctly convert improper fractions into mixed fractions and vice versa.  

When Pedro began to engage with the instructional activities that had not been 

previously tested in classrooms, the first author took photographs of his work, created 

detailed field notes after each teaching session, and debriefed Pedro’s learning with the 

second author weekly. The first problem related to assessing reciprocal relations was 

presented to Pedro in session 20, and his relatively seamless response motivated video 

recording of the subsequent session, which we analyze here.  

REASONING ABOUT RECIPOCAL RELATIONS OF RELATIVE SIZE 

The 21st session started by asking Pedro to cut a small straw of about the same length 

as his little finger. This straw was initially construed as having the measure one. He 

was then asked to produce two more straws, one that measured four (small) straws, and 
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another seven. Pedro chose to label the shortest straw as “A”, the middle one as “B”, 

and the longest one as “C” (see Figure 2).  

The teacher then asked Pedro to decide which of the two longer straws would now play 

the role of being “the stick” (i.e., the reference unit) and, thus, being attributed the 

measure one. The conversation below (translated from Spanish) then took place, where 

P and T refer to Pedro and teacher respectively. 

 

Figure 2: Straws A, B (4 times as long as A), and C (seven times as long as A).  

A1 P: B will be one so C will be two (chuckling)? 

A2 T: Let’s focus on A first. 

A3 P: A will be two. 

A4 T: Let’s see, why two? 

A5 P: No, A is going to be four (showing four fingers). 

A6 T: And what is bigger, one or four? 

A7 P: Four. 

A8 T: So is this longer than this (placing straw A next to straw B).  

A9 P: No. (Pause). Then it would be smaller? No? (Looking at the teacher). 

A10 T: Let’s see. If this is your stick (pointing at straw B), what is this (holding 
straw A)? 

A11 P: A fourth.  

A12 T: Ok. Why a fourth? 

A13 P: Because B is divided into four (gesturing with his hand along straw B), and 
since I have a fourth, then it is one, two, three, four (taking straw A and 
iterating it along straw B as he counted).  

A14  T: Ok, write it in the table (Pedro’s record of reciprocal comparisons). 

This first extract illustrates how Pedro came to reason quantitatively about the 

reciprocal of iterating the length of a unit, a whole number of times. With relatively 

little support from the teacher (see utterance A10), he seemed to have readily 

reinterpreted the situation as one in which the length of a subunit was to be quantified. 

He now interpreted the length of straw A in the way he had been oriented to construe 

the quantitative meaning of a unit fraction—in this case one fourth—as being the length 

of a subunit that would fit four times, exactly, in the length of the reference unit (see 

utterance A13 and Figure 1). Evidently, his reasoning was consistent with his prior 

instructional experiences in the remedial teaching sessions.  

Pedro was next asked to determine the length of C, relative to the length of B.  
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B1 P: Then, C would be bigger than B (looking at straws B and C)  

B2 T: Ok. 

B3 P: Four (likely meaning the length of straw B), they would be (touching straw 
C, closing his eyes and pausing to think) a seventh?  

B4 T: A seventh? What is bigger, a whole (referring to straw B) or a seventh 
(referring to straw C)? 

B5 P: A whole. 

B6 T: So this one (touching straw B) is longer than this one (touching straw C)? 

B7 P: Oh, no.  

B8 T: So how can C be a seventh of B? 

B9 P: Oh no. Then it would be one whole (closing one eye and pausing to think) 
three (short pause) fourths? 

B10 T: Why? 

B11 P: Because there are four here (gesturing with his hand along straw B), and 
there are four here (gesturing with his hand in the same way along part of 
straw C), but there are three more here (pointing at the rest of the length of 
straw C), so a whole has been formed, with three fourths (added to it).  

This second extract illustrates how Pedro reasoned about the size of a length (C) 

relative to size of a new reference unit (B). He initially seemed to focus on both the 

lengths of straws B and C as being a product of iterating the length of straw A a certain 

number of times. This might have led him to think first about the inverse of producing 

a length seven times as long as A (i.e., a seventh). However, prompted by the realization 

that C could not be one seventh of B, he seemed to have then realized that straw C, by 

being the product of iterating A seven times, would be three iterations of one fourth of 

B longer than B. Pedro seemed to have relied on his prior realization that the length of 

straw A was one fourth of the length of B, and on the fact that C was three iterations of 

A longer than B (see utterance B11). 

Here too, Pedro’s reasoning was consistent with his instructional history in the 

remedial teaching sessions. More specifically, it was consistent with how he had been 

supported to interpret the meaning of common fractions in the teaching sessions—as 

lengths produced by iterating a subunit a certain number of times.  

Finally in this problem, Pedro was asked to determine the lengths of A and B relative 

to the length of C. 

C1 P: Then, if C is one, it (meaning A) would be (pause) one seventh? 

C2 T: Are you just guessing?  

C3 P: No. That one would actually be a seventh (pointing at A).  

C4 T: A seventh, why? 

C5 P: Because it fits seven times in C. And B would have four sevenths.  

C6 T: Ok. Why? 
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C7 P: Because here (aligning straws B and C) if you measure it (meaning 
“with A”), there are four here (touching the B straw) and seven here 
(touching the C straw). But if you join them, there are four sevenths here 
(touching the B straw). So it is four sevenths.  

In this final interaction, Pedro engaged in the same kind of reasoning as earlier. He 

seemed to have readily reconceptualised C from being a length seven times as long 

as A, to being a reference unit into which the subunit A would fit seven times; and B, 

from being of a length four times as long as A, to being a straw as long as four iterations 

of a seventh of the length of straw C (see utterance C7).  

In the remainder of the session, Pedro engaged in similar reasoning with relative ease. 

He correctly compared the lengths of three other straws (1, 3, and 10) without 

physically creating them. Afterwards, he succeeded in establishing that his age (10 

years) was 10/13 of his sister’s, and his sister’s age was his plus 3/10 of his age. Finally, 

he determined the fraction of the student population of his school, in his classroom 

(32/407), as well as the size of the school population relative to the number of students 

in his classroom (407/32).  

CONCLUSION AND DISCUSION 

The analysis of Pedro’s reasoning provides a justification for extending the 

instructional sequence on fractions as measures, towards a goal of supporting students’ 

reasoning about reciprocal relations of relative size. As the findings indicate, Pedro’s 

relatively sophisticated ways of reasoning were tightly linked to his instructional 

experiences, and reflected how unitary and common fractions were conceptualised 

within the sequence. It is reasonable to expect that when using this sequence in a 

classroom, some of the students’ reasoning elicited by the reciprocal comparison tasks 

would be similar to Pedro’s. According to the theory of Realistic Mathematics 

Education, a teacher could then aim to advance the instructional agenda by making 

such reasoning the focus of collective analysis and discussion, while proactively 

supporting the sense making of all students.  

A classroom design experiment is required not only to trial this process, but to design 

appropriate resources for classroom teaching on which a teacher could build. Such 

resources would include (but are not limited to) accounts of the diversity of student 

reasoning in specific instructional activities, and symbolic and other means of 

supporting mathematical conversations in the classroom.  

Regarding a broader agenda on the teaching of fractions, the analysis illustrates the 

developmental advantages of supporting students to make sense of the quantitative 

meaning of unitary fractions, primarily as divisors in a measurement division. In 

a recent paper, Beckmann and Izsák (2015) propose a distinction between two 

quantitatively different ways of construing ratios in instruction, which they 

convincingly argue can have significant implications for how students come to 

understand this idea. The distinction they make is closely related to the difference 

between the measurement and partitive meanings of division, as well as between two 
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meanings for multiplication tightly linked to those two of division. We believe that 

a similar distinction could be important to consider in fractions instruction.  

In terms of multiplicative relationships (Beckmann & Izsák, 2015), our analysis shows 

that central to Pedro’s success in reasoning about reciprocal relations of relative size 

was his reconceptualization of the iteration of a given unquantified magnitude value 

A, from being a multiplication (nA=B) to being a measurement division (BA=n). 

Such a reconceptualization entailed the reinterpretation of the produced magnitude 

value B, from being a product n times as big as the original reference unit (when A=1, 

B=n1), to being a reference unit in its own right (B=1). In addition, it entailed 

reinterpreting the original magnitude value A, from being a multiplied reference unit 

(i.e., a multiplicand in B=nA), to being a divisor, of a measurement division, that 

would divide the new reference unit, B, n-times exactly (1A=n), and would thus be 

one n-th as big as the new reference unit (A=1/n  1).  

Despite the apparent complexity of the reasoning just described, it seems to have been 

readily available to Pedro. For us, this is unsurprising given his prior instructional 

experiences in the remedial teaching sessions. As we explain above, the image of a unit 

fraction Pedro was purposefully supported to develop was not the typical one used in 

initial fraction instruction—namely, that of the size of a part of an equally partitioned 

whole (Cortina et al., 2014a). Instead, it was that of the length of an object (a plastic 

drinking straw) that would exactly fit a whole number of times into the length of a 

rather arbitrarily defined reference unit of measure (a wooden stick; see Figure 1). Such 

an image is consistent with regarding a unit fraction as a divisor, in a measurement 

division, that divides a reference unit a whole number of times, with no remainder. 

Once Pedro conceived the originally iterated magnitude value A as having the value of 

1/n, it seems to have also been rather easy for him to reinterpret the iterations of this 

magnitude value as being iterations of a unit fraction. Thus, he could then soundly 

construe the iterations of the original magnitude value as iterations of one n-th of a new 

reference unit.  

The specialized literature is abundant with descriptions of how students struggle to 

make sense of fraction-related ideas, as well as with evidence that shows that very few 

children develop sound understandings of fraction notions that they are expected to 

master during their elementary education. By and large, fractions have been portrayed 

in the literature as conceptually complex, and making sense of them as quite difficult 

for most students. Elsewhere (Cortina, Visnovska, & Zúñiga, 2014b) we have 

advanced the conjecture that much of the documented difficulties in fraction learning 

can be regarded as a function of the trajectories that instructional designers, teachers, 

and researchers have expected students to follow in learning fractions. More 

specifically, we have conjectured that those difficulties can be a function of expecting 

students to develop an initial and basic quantitative meaning of a unit fraction as the 

size of a part of an equally partitioned whole.  



Cortina, Visnovska 

2–186 PME40 – 2016 

Pedro’s case illustrates how helping students to make sense of unitary fractions in an 

alternative way can make a difference. For Pedro, this alternative was very helpful 

when he came to reason quantitatively about the complex and challenging notion 

(Ramful, 2013) of reciprocal relations of relative size. Whether the proposed 

instructional sequence on fractions as measures would result in trajectories for 

students’ fractions learning that do not run into the detours of traditional difficulties is 

the focus of our ongoing research agenda. 
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This paper deals with the crucial issue of the first approach to algebra as a thinking 

tool. A relevant excerpt from a teaching experiment is analysed through the use of two 

complementary theoretical tools: Habermas’ concept of rational behaviour and the 

construct of Model of aware and effective attitudes and behaviours (MAEAB). This 

analysis is carried out with the aim of highlighting how the different roles played by 

the teacher during class discussions promote students’ rational behaviour. 

INTRODUCTION 

Many research studies point out that algebraic language should be presented and 

treated in classroom as a tool for representing, exploring relationships, interpreting and 

developing reasoning (see, as paradigmatic example, Arcavi, 1994). In tune with these 

research studies, both the authors have investigated the design and implementation of 

activities of proof construction through algebraic language (Cusi & Malara, 2009; 

Morselli & Boero, 2011) aimed at promoting algebra as a tool for thinking (Arzarello, 

Bazzini & Chiappini, 2001). 

Few studies have focused on the role played by teacher’s actions and interventions in 

fostering an effective and aware development of reasoning by algebraic language and 

on the interrelations between these roles and the thinking processes developed by the 

students. In this paper we will try to address these issues, integrating two theoretical 

tools (the construct of MAEAB and Habermas’ construct of rational behaviour) in the 

analysis of a class discussion from a teaching experiment performed in grade 9. 

THEORETICAL TOOLS 

The MAEAB (acronym for Model of Aware and Effective Attitudes and Behaviours) 

theoretical construct is the result of a study aimed at highlighting the delicate role 

played by the teacher in effectively guiding his/her students to the construction of 

reasoning through algebraic language. It has been conceived within a Vygotskyan 

frame to the study of teaching-learning processes (Vygotsky, 1978) and takes into 

account the fundamental aspects that are connected to students’ development of 

reasoning through algebraic language. A set of roles (summarised in the following 

table) have been identified (Cusi & Malara, 2009, 2013) to outline the approach of a 

teacher who consciously behave constantly aiming at “making thinking visible” 

(Collins et al., 1989), in order to make his/her students focus not only on syntactical or 

interpretative aspects, but also on the effective strategies adopted during the activity 

and on the meta-reflections on the actions which are performed. 
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A first group of roles 

are those performed 

when the teacher tries 

to carry out the class 

activities posing 

him/herself not as a 

“mere expert” who 

proposes effective 

approaches, but as a 

learner who faces 

problems with the 

main aim of making 

the hidden thinking 

visible, highlighting 

the objectives, the 

meaning of the 

strategies and the 

interpretation of 

results. 

Investigating subject and constituent part of the class in the 

research work being activated: when the teacher asks students to 

give suggestions about how to go on with the activity, intervening 

with the aim of making them feel involved in the activity as a 

group; 

Practical/ Strategic guide: when the teacher poses herself, in front 

of the problem, as an inquirer who aims at sharing the thinking 

processes and discussing the possible strategies to be activated; 

“Activator” of interpretative processes: when the teacher makes 

the students activated proper conceptual frames (Arzarello, 

Bazzini & Chiappini, 2001) to interpret the different algebraic 

expressions constructed when solving a problem; 

“Activator” of anticipating thoughts (Boero, 2001): when the 

teacher makes the objectives of the manipulation of algebraic 

expressions explicit and recall them during the discussion, in 

order to enable the students to share these objectives, monitor and 

control the activated strategies; 

The second group of 

roles refers to the 

phases during which 

the teacher becomes 

also a point of 

reference for students, 

to help them clarify 

salient aspects at 

different levels, with 

an explicit connection 

to the knowledge they 

have already 

developed. 

Guide in fostering a harmonized balance between the syntactical 

and the semantic level: when the teacher makes the students focus 

on the importance of controlling both syntactical and 

interpretative aspects and she discusses possible problems arisen 

when the syntactical or the interpretative level is not controlled; 

Reflective guide: when, in front of a student who proposes an 

effective approach to the resolution of a problem, the teacher asks 

him/her to make his/her thinking processes explicit, or she repeats 

what has been said by the student stressing on the reasons 

subtended to his/her approach, or she asks to other students to 

interpret what he/she said; 

“Activator” of reflective attitudes and meta-cognitive acts: when 

the teacher poses meta-level questions aimed at making the 

students evaluate the effectiveness of a strategy and reflect on the 

effects of a choice that was made during the resolution process.  

Table 1: Characterisation of the roles played by a teacher as a MAEAB  

The second theoretical tool to which we will refer in our analysis is Habermas’ 

construct of rationality. Drawing from this construct, Morselli & Boero (2009) propose 

that the discursive practice of proving encompasses:  

“- an epistemic aspect, consisting in the conscious validation of statements according to 

shared premises and legitimate ways of reasoning […]; 
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- a teleological aspect, inherent in the problem solving character of proving, and the 

conscious choices to be made in order to obtain the aimed product; 

- a communicative aspect: the conscious adhering to rules that ensure both the possibility 

of communicating steps of reasoning, and the conformity of the products (proofs) to 

standards in a given mathematical culture”. (p. 100) 

When proving by means of algebraic language, epistemic rationality consists of 

modeling requirements, inherent in the correctness of algebraic formalizations and 

interpretation of algebraic expressions, and systemic requirements, inherent in the 

correctness of transformation (correct application of syntactic rules of transformation); 

teleological rationality consists of the conscious choice and management of algebraic 

formalizations, transformations and interpretations that are useful to the aims of the 

activity; communicative rationality consists of the adherence to the community norms 

concerning standard notations, but also criteria for easy reading and manipulation of 

algebraic expressions (Morselli & Boero, 2011). The student must combine the 

adherence to syntactical rules on one side, and the goal-oriented management of the 

processes of formalization, transformation and interpretation, on the other. Still related 

to teleological rationality, the student must be aware of the fact that proving by 

algebraic language means deriving from algebraic manipulation a new algebraic 

expression, whose interpretation gives new information concerning the truth of the 

statement. In order to foster students’ awareness of this, two levels of argumentation 

are identified as relevant: the meta-level, concerning the constraints related to the three 

components of rational behaviour in proving, and the proof content level (Boero et al., 

2010). 

RESEARCH QUESTIONS AND RESEARCH METHODOLOGY 

In the following, we present our analysis of an excerpt from a class discussion, which 

was chosen because of the variety of argumentations at meta-level that are developed 

and because of the crucial role that the teacher plays. The analysis is carried out 

referring the theoretical tools previously introduced: (a) the construct of rational 

behaviour is used to analyse the students’ thinking processes during the discussion; (b) 

the MAEAB construct is used to analyse the roles the teacher plays to develop a meta-

level discussion focused on the ways of using algebra as a thinking tool. 

The aim of this twofold analysis is to study the interrelation between the teacher’s 

interventions (and the subsequent roles she plays during the discussion) and the 

students manifested thinking processes. Specifically, we focus on the following 

research questions: (1) how does the teacher deal with meta-level argumentations 

developed during the discussion? (2) what are the links between the teacher’s roles and 

students’ rational behaviour?  

AN EXCERPT FROM A CLASS DISCUSSION 

The discussion we are going to analyse was carried out during a teaching experiment, 

developed by one of the authors (Cusi & Malara, 2009), where an innovative 

introductory path to proof in elementary number theory (grades 9-10) was designed 
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and implemented with the aim of fostering an approach to teaching algebra with a focus 

on the control of meanings. The class-based work was articulated through small-groups 

activities, collective discussions and individual tests. The data being analysed were 

students’ written productions and the transcripts of the audio-recordings of both small-

groups and whole class activities. 

In this paper we will base on the transcript of a classroom discussion in grade 9, focused 

on the following task: The sum between one number and its square is always an even 

number. Is it true or false? Why? 

Different proofs could be constructed: (a) a proof in natural language, referring to 

implicit theorems; (b) a verbal-algebraic proof, drawing on the fact that the considered 

sum could be written as the product between a number and the consecutive one; (c) an 

algebraic proof, which requires to distinguish between two cases. Because of space 

limitations and since the main focus of the discussion is on the algebraic proof, we will 

analyse only the third one. 

The algebraic proof of the statement requires to activate the following anticipating 

thought: “in order to show that the expression n+n2 always represents an even number, 

it should be written as the product between 2 and a natural number”. The need of 

constructing an expression that could be transformed in the product between 2 and a 

natural number fosters the activation of the frame “even/odd”, distinguishing between 

two cases. If the number is even, the sum between it and its square could be written as: 

2x+(2x)2=2x+4x2=2(x+2x2). If the number is odd, the sum could be written as: 

(2x+1)+(2x+1)2=2x+1+4x2+4x+1=2+6x+4x2=2(1+3x+2x2). In both cases, the 

activation of the anticipating thought “the expression should be written as 2 multiplied 

by something” guides the treatments to be carried out, suggesting to carry out processes 

of transformation with the aim of taking out 2.   

Analysis of the excerpt 

After having worked in small groups, the students are involved by the teacher (T) in 

the analysis of the different approaches adopted by the groups of students to prove the 

statement. 

In the initial part of the discussion, the class agrees that the statement is true. Two 

groups of students (group A and group B) propose their justifications:  

(1) Group A’s justification: 52+5=30; (2) Group B’s justification:  x+x2=2y. 

S (who belongs to group B) asks to comment about his group’s answer. 

(11) S: We have done the same mistake we did before (he refers to a previous activity) 

…  we have re-written the exercise, but in algebraic language.  

… 

(14) T: S is saying that the problem is that we are only re-writing the statement, but we 

are not motivating why it is true…  And what do you think about P’s group 

proposal? 
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S’s intervention gives the first occasion for argumentation at meta level. S is able to 

recognize what was wrong in their solution. He is aware of the fact that the final aim 

is not re-writing the thesis of the statement (teleological r.). T revoices S’ intervention, 

with the aim of sharing this reflection with the other students (“Activator” of reflective 

attitudes). Using the pronoun “we” and asking the students to shift the focus on the 

other attempt of proof, T also acts as an Investigating subject and constituent part of 

the class.  

(15) F: It is right … but it is only an example. 

(16) T: Is it a justification?  

(17) M: No! 

(18) P: It is not generalised! 

(19) T: It is not a justification because this example says that the statement is true in 

this case, but it could be possible to find an other number for which the 

statement … 

(20) Chorus: ...is not true! 

An argumentation at meta-level on the value of numerical examples (epistemic r.) is 

developed. M and P recognize the only use of numerical examples could not represent 

a proof because it lacks in generality (epistemic r.). T acts again as an “Activator” of 

reflective attitudes with the aim of making students assess and control the processes 

that are activated. 

Later, G proposes the justification given by her group: “The square of an even number 

is always even, the square of an odd number is always odd.... So the sum is always 

even”. T involves the class in the analysis of this verbal proof of the statement. They 

discuss about how this “verbal approach” could be translated into algebraic language. 

One student, Max, proposes to start from the symbolic representation of an odd number. 

Afterwards, An says that she did something similar to what has been proposed by Max. 

T invites An to the blackboard, where she writes:  

2n+(2n)2=2n+4n2= 2(n+2n2) 

(2n+1)+(2n+1)2=2n+1+4n2+4n+1=6n+2+4n2= 2(3n+1+2n2) 

The proof proposed by An, complete and correct, takes into account both cases, 

highlighting how An effectively worked at the epistemic level. Moreover, the 

formalization and transformations are correct and possibly driven by the final aim (to 

find out divisibility by 2), and therefore highlighting that An also worked at the 

teleological level. This is a good occasion for another meta-level argumentation on the 

way of dealing with algebra as a proving tool. Then T involves the class in the analysis 

of An’s proof: 

(85) T: Is there someone who wants to explain what An has written on the blackboard? 

(86) Al: She calculated the expression!    E raises her hand. 

(87) T: E, do you want to say something? 
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(88) E: She has separated the two cases: the first time with even numbers, the second 

time with odd numbers … and the results should be … (hesitating) 

(89) T: And the result should always be … ? 

With the aim of making the students focus on the meaning of the expressions 

constructed by An and on the objectives of the transformations she performed (85), T 

acts as both an “Activator of Interpretative Processes” and as an “Activator of 

anticipating Thoughts”. E reacts to the teacher question (88) pointing out the final aim 

(“the result should be…”), highlighting teleological rationality. This is in contrast with 

Al’s intervention (86), who seems not to have caught the final aim, and therefore 

highlight a lack in teleological rationality. T revoices the final part of E’s intervention, 

focusing on the objectives of the transformation An has performed (“Activator of 

anticipating Thoughts”). 

(90) E: An even number! …  

(91) Chorus: Even! 

(92) E: So she has proved the thesis! 

(93) T: An, why did you distinguish between even and odd? 

(94) An: Because when we tried to use x and x2 we were not able to prove it. 

(95) T: An is saying “I have tried to write x+x2, but I was not able to show that this sum 

is 2 multiplied by something”. So she tried to distinguish between these two 

cases. Attention! We are considering two cases, so the proof is constituted by 

these two passages. 

E’s (90-92) recalls the objective of the transformation performed by An, recognising 

the effectiveness of her approach. To make all the other students focus on An’s 

approach to identify it as an effective strategic model from which inspiration could be 

drawn, T acts as a Reflective Guide. She, in fact, asks An to share the reasons why she 

adopted this approach (93), fostering a further moment of argumentation at meta level, 

on the way of proving with algebraic language. An is able to reconstruct her proving 

process, explaining why she changed the representation, in reference to the final goal 

(teleological r.). T reformulates An’s explanation with the aim of fostering a real 

sharing between all the students (95). 

(100) S: I did not understand. 

(101) T: So … let’s look at what An has done. We can try to repeat it. First of all she has 

considered the first case. If x is even, we can write it as 2n. So she has 

substituted 2n, obtaining 2n plus 2n squared. … Why did she take out this 2? 

(102) St: So it is 2 multiplied by something … 

(103) G: Because she wants to show that it is even. 

(104) P: She could have taken out 2n (instead of 2)… 

(105) T: Yes. But which was our objective? It was to show that the sum is … 

(106) St: An even number!!! 
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(107) T: So we can take out what we need. If we take out 2, we can see that it is an even 

number. (Then, they go on analysing the second part of the proof) 

When S declares that he did not understand, T choices again to act as a Reflective Guide, 

making the meaning of the expressions constructed by An explicit. To stress the 

reasons underlying the effectiveness of the transformations performed by An, T 

focuses again on the objectives of these transformations, playing the role of an 

“Activator” of Anticipating Thoughts. In this way, T is also acting as a Guide in 

fostering a harmonized balance between the syntactical and the semantic level: she 

both discusses the syntactical correctness of the performed transformations, referring 

to the two considered cases (epistemic r.) and the reasons why it is needed to 

distinguish between this two cases in relation to the final goal (teleological r.). 

We stress that T’s approach is particularly effective referring to the activation of the 

students’ teleological component of rationality. St and G are, in fact, able to recognize 

the final goal of symbolic transformations (102-103-106). 

CONCLUSIONS 

We scrutinized the short episode in order to study: how the teacher deals with occasions 

of meta-level argumentations; what are the links between teacher’s roles and students’ 

rational behaviour. We may say that occasions for argumentation at meta-level arise 

when both students intervene and speak about their own or the classmates’ proving 

processes, and when the teacher promotes them. When these occasions arise, the 

teacher adopts specific roles to foster meta reflection, so that students may become 

aware of their rational behaviour and share it with their mates. 

In our analysis we also highlighted the links between the roles activated by the teacher 

and the different dimensions of rationality. When the teacher acts as an “Activator of 

anticipating thoughts”, the teleological component of rationality is stimulated, since 

the goals of the syntactic transformations are shared and controlled. 

When she acts as a Reflective guide, students from on one side share the reasons 

underlying the effectiveness of specific approaches (teleological level), on the other 

side better control the proving processes (epistemic level). 

When she acts as a Guide in fostering a harmonized balance between the syntactical 

and the semantic level, she aims at making students develop new competencies in 

controlling the correctness of the activated processes (epistemic level) and in 

interpreting the meanings of the constructed expressions in relation to the problem 

situation (epistemic and teleological level). Also when she acts as an “Activator of 

Interpretative Processes”, she aims at making students activate the proper conceptual 

frames to correctly interpret the possible meaning of the constructed expressions 

(epistemic level). 

In the future, we will go on with this work, with the aim of improving our analysis and 

of developing an in-depth reflection on the links we have highlighted between the 

teacher’s roles and the students’ rational behaviour. 
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The paper analyses how connected classroom technologies can be exploited to foster 

formative assessment practices in the mathematics classroom. Referring to a three-

dimensional framework developed within the European project FaSMEd and to Hattie 

and Temperley’s levels of feedback (2007), an excerpts from a classroom discussion in 

grade V is analysed in order to show the complex dynamics between the different 

formative assessment strategies that can be activated. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Research in Mathematics education has focused on the use of digital technology to 

support the Mathematics teaching-learning for many years. Within the European 

Project FaSMEd (“Improving progress for lower achievers through Formative 

Assessment in Science and Mathematics Education”), we investigate the use of 

connected classroom technologies (CCT) as means for supporting formative 

assessment (FA) practices in the mathematics classroom.   

Within the FaSMEd Project, FA is conceived as a method of teaching where 

“[...] evidence about student achievement is elicited, interpreted, and used by teachers, 

learners, or their peers, to make decisions about the next steps in instruction that are likely 

to be better, or better founded, than the decisions they would have taken in the absence of 

the evidence that was elicited” (Black & Wiliam, 2009, p. 7). 

Following Wiliam and Thompson (2007), we adopt a model for FA in classroom 

context as consisting in five key strategies: (A) Clarifying and sharing learning 

intentions and criteria for success; (B) Engineering effective classroom discussions and 

other learning tasks that elicit evidence of student understanding; (C) Providing 

feedback that moves learners forward; (D) Activating students as instructional 

resources for one another; (E) Activating students as the owners of their own learning. 

This model identifies the three main agents (the teacher, the learners and their peers) 

and the three crucial processes in which the agents are involved: Establishing where 

learners are in their learning; Establishing where learners are going; Establishing 

how to get there. 

On the other hand, some studies provide evidence about how new technology can be 

used as an effective tool in supporting FA processes (Quellmalz et al., 2012). 

Specifically, CCT may: create immersive learning environments that give powerful 

clues to what students are doing, thinking, and understanding, make students take a 

more active role in the discussions, encourage students, through immediate private 
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feedback, to reflect and monitor their own progress (Roschelle et al., 2004), and enable 

the teachers to monitor students’ progress and provide appropriate remediation to 

address student needs (Irving, 2006). 

Within the FaSMEd project, the Wiliam and Thompson’s (2007) model has been 

extended in order to include the use of technology in FA processes. To this purpose, 

three different functionalities of technology have been identified: (1) Sending and 

sharing, when technology is used to support the communication among the agents of 

FA processes (for example: sending questions and answers, messages, files, displaying 

and sharing screens to the whole class or to specific students, sharing students’ 

worksheets). (2) Processing and analyzing, when technology supports the processing 

and the analysis of the data collected during the lessons (such as the statistics of 

students’ answers, the feedbacks given directly by the technology to the students, the 

tracking of students’ learning paths). (3) Providing an interactive environment, when 

technology enables to create interactive environments in which students can work on 

a task and explore mathematical/scientific contents. 

The result is a three-dimensional model taking into account three main dimensions 

(Fig.1): (1) the five FA key-strategies (Wiliam & Thompson, 2007); (2) the three main 

agents (the teacher, the student, the peers), and (3) the functionalities through which 

technology can support the three agents in developing the FA strategies. 

 

Fig. 1: Chart of the FaSMEd three-dimensional model  

Feedback given by the different agents plays a crucial role for FA. Hattie and 

Temperley (2007) identify four major levels of feedback: (1) feedback about the task, 

which includes feedback about how well a task is being accomplished or performed; 

(2) feedback about the processing of the task, which concerns the processes underlying 

tasks or relating and extending tasks; (3) feedback about self-regulation, which 

addresses the way students monitor, direct, and regulate actions toward the learning 
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goal; (4) feedback about the self as a person, which expresses positive (and sometimes 

negative) evaluations and affect about the student. 

In this paper, we use the FaSMEd framework and the four levels of feedback in order 

to investigate the FA processes that take place in the mathematics classroom context, 

thanks to the support provided by CCT and to the teacher’s choices. We also highlight 

the complex dynamical development between the different FA strategies activated by 

the agents involved. 

METHODOLOGY 

In Italy the FaSMEd project involves 18 teachers, from three different clusters of 

schools located in the North-West of Italy (from grade 4 to grade 7). Our hypothesis is 

that, in order to raise students’ achievement, FA has to focus not only on basic 

competences, but also on metacognitive factors (Schoenfeld, 1992). Accordingly, we 

planned and developed class activities with the aim of: (a) fostering students’ 

development of ongoing reflections on the teaching-learning processes; (b) focusing 

on making thinking visible (Collins, Brown & Newmann, 1989) and on students’ 

sharing of the thinking processes with the teacher and the classmates. For these reasons, 

we explored the use of a CCT, which connects the students’ tablets with the teachers’ 

laptop and allows the students to share their productions, and the teacher to easily 

collect the students’ opinions and reflections during or at the end of an activity. Each 

school was provided with tablets for the students and computers for the teachers, linked 

to IWB. In order to foster collaboration and sharing of ideas, students were asked to 

work in pairs or in small groups on the same tablet. 

The use of the CCT was integrated within a set of activities on relationships and 

functions, and their different representations (symbolic, tabular, graphic), adapting 

activities from the ArAl project (Cusi, Malara & Navarra, 2011) and the Mathematics 

Assessment Program (http://map.mathshell.org). In line with our hypothesis and aims, 

our adaptation consisted in the creation of different worksheets belonging to three main 

categories: (1) Worksheets focused on one or more questions involving the 

interpretation or the construction of different representations of mathematical 

relationships between two variables (e.g. interpreting a time-distance graph); (2) 

Helping worksheets, aimed at supporting students, who meet difficulties with the type 

1-worksheets, through specific suggestions (e.g. guiding questions); (3) Worksheets 

prompting a poll between proposed options. 

Usually the activity starts with a worksheet focused on one or more questions (type 1), 

sent from the teacher’s laptop to the students’ tablet. After facing the task and 

answering the questions, the pairs/groups send back to the teacher their written 

productions. The teacher can decide to send helping worksheets (type 2) to some 

groups, or the groups can ask for them. After all groups have sent back their answers, 

the teacher sets up a classroom discussion in which the students’ written productions 

are shown and feedbacks are given. The discussion is engineered starting from the 

teacher’s selection of some of the received written answers, to be shown on the IWB, 
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and aims at highlighting: (a) typical mistakes; (b) effective ways of processing the 

tasks; (c) the comparison between the different ways of justifying claims. Polls are also 

used to prompt the discussion, in different parts of the lessons. 

During the teaching experiments, one of the authors was always in the classes with the 

teachers, acting as a participant observer, namely taking notes, video-recording the 

lessons, and helping the teacher carry out the activities, for instance proposing 

interventions to foster fruitful discussions.  

In this paper we will focus on a classroom discussion in grade 5. Specifically, in the 

next section we will analyse an episode that was selected because of the different FA 

strategies that are activated and the plurality of feedback that is provided. A variety of 

data were collected. We rely, in particular, on the qualitative analysis of the video-

recordings, with the help of the written transcription of dialogues.  

ANALYSIS OF AN EXCERPT FROM A CLASS DISCUSSION 

The lesson is focused on time-distance graphs, introduced in the previous lesson 

through an experience with a motion sensor. The excerpt refers to the discussion of the 

first worksheet, reported in Table 1. As said, a researcher (first author of this paper) 

was present as a participant observer, and helped the teacher in managing the 

discussion. 

 

Worksheet 1  
Every morning Tom walks along a 
straight road from his home to a bus 
stop, a distance of 160 meters. The 
graph shows his journey on one 
particular day.  

What happens in the period of time 
between 50s and 70s? How did you 
establish it? 

Table 1: The worksheet sent to the students’ tablet 

From the mathematical point of view, the task and the discussion are aimed at: (1) 

Guiding the students in the interpretation of a time-distance graph; (2) Making the 

students focus on the processes underlying the correct interpretation of a time-distance 

graph, in particular with reference to the ascending/descending lines and to the 

information contained in the coordinates. 

Four different answers are selected and projected on the IWB. The teacher asks the 

students to comment on them. One student, Livio, starts the discussion and proposes 

to focus on the following answer, which he declares (erroneously) not to be correct:  

“Tommaso, in 20 seconds, was able to walk for 60 metres. We know that in 20 seconds 

he walked for 60 metres because we took 50s away from 70s, obtaining 20s, then we 

subtracted 60m from 100m and we obtained 40 metres”. 

Scheda'1'

 
'

Domanda'1:'Cosa'è'successo'nel'periodo'di'tempo'da'50s'a'70s?'

Come'hai'fatto'a'stabilirlo?'
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Livio and his groupmate Giacomo declare that, in the period from 50s and 70s, 

Tommaso walked for 40m, not for 60m. Another student, Stefano, agrees with them, 

saying that the point (70,40) in the graph guarantees that Tommaso walked back for 

40m. Almost all the students (even Vincenzo and Mirco, the authors of the answer) 

think that Livio and Stefano’s arguments are correct. Only Arturo says that, in his 

opinion, the written answer is correct. In managing this part of the discussion, the 

teacher chooses to first invite those students who think that the answer is not correct 

express their point of view; then she asks Arturo to explain why, on the contrary, he 

thinks that the answer is correct. 

145. Arturo: … if we look at the graph, he (Tommaso) arrives at 100m, then he goes 

back. 

146. Teacher: Do we all agree that he goes back? (A chorus of students answer “yes”) 

147. Teacher: Who doesn’t agree on the fact that he goes back? (None of the pupils 

raises his/her hand) 

148. Arturo: However, he goes back to 40m, not for 40m (stressing on the words ‘in’ 

and ‘for’). So we have to do the subtraction 100 minus 40. And the 

result is 60, not 40. So it (the answer) is correct. 

149. Teacher: So is it (the answer) correct? Do you agree with Arturo? (to the class) 

Silence. 

150. Researcher: Please repeat the words you used (speaking with Arturo), since they are 

very precise. Listen to them (speaking with the other students). 

Arturo repeats his reasoning, stating it slower and stressing the most important words, 

as asked. In particular, he explains that 60m is the result of the difference between 100m 

and 40m. At this point the projected answer is read again, and Vincenzo and Mirco (the 

authors of the answer) are addressed. 

166. Researcher: You (speaking to Vincenzo and Mirco) said that you wanted to change 

your answer. Would you still change it or would you keep it as it is? 

167. Mirco: We would keep our first answer. 

168. Researcher: Ok. I have one question for all of you (speaking to the whole class): 

what is missing in this answer? 

169. Mirco: That Tommaso went back! We did not write it. 

170. Researcher: You did not say that Tommaso went back. 

This part of the lesson exploits the Sending and displaying functionality of the 

technology: sending in a double direction, because the worksheets are sent to the 

students, who, in turn, send back their answers to the teacher’s computer when they 

finish; displaying because the answers of the students are projected on the IWB and 

form the base for the class discussion. Projecting the collection of students’ answers 

on the IWB enables the teacher, the researcher and the students to focus on different 

aspects, through the comparison of answers and justifications proposed by the students: 
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the Sending and displaying functionality appears to support the teacher (and the 

researcher) in activating the FA strategy B (Engineering effective classroom 

discussions and other learning tasks that elicit evidence of student understanding). 

One student (Livio) erroneously identifies one correct answer as wrong, and explains 

what he identifies as a mistake. When many students (even Vincenzo and Mirco, who 

indeed gave the correct projected answer) agree with him, the teacher asks them to 

express their point of view: in this way, mistakes and misinterpretations come to the 

fore, and so she can gain information about where the learners are in their learning. 

Only afterwards, she exploits Arturo’s disagreement to activate the FA strategy D: 

Arturo, in fact, is activated as an instructional resource for his classmates (lines 145, 

148). His explanation (line 148), which highlights how to determine for how many 

meters Tommaso walked back, represents both a feedback about the task and a 

feedback about the processing of the task: Strategy C (Providing feedback that moves 

learners forward) is activated at the peers’ level. 

Seizing the effective and precise distinction made by Arturo in order to highlight that 

40m, which is the distance from home, should not be confused with the walked 

distance, the Researcher (line 149) recognizes that the student has provided a correct 

argument, by asking him to repeat his words, and positively assessing them (“they are 

very precise”). In this way, she is activating Strategy C, giving students a feedback 

about the processing of the task, because she wants to make them focus on Arturo’s 

way of interpreting the graph in order to understand what 40m represents. Afterwards, 

in order to activate Strategy E (Activating students as the owners of their own learning), 

the Researcher (line 166) asks Vincenzo and Mirco if they changed again their mind. 

By accepting Mirco’s answer (line 167) without further questioning it or asking for 

additional justification (line 168), she is communicating, in an implicit way, that the 

answer is correct (feedback on the task). At the same time, she is prompting students 

to further focus on the same answer and look for something that is missing (again, 

feedback on the task). Mirco (line 169) shows that he really has activated himself as 

the owner of his own learning (strategy E) because he correctly identifies how his own 

answer can be completed. 

In summary, the Sending and Displaying functionality of the technology supported the 

teacher in activating different FA strategies (in this case strategies B, C, D and E). We 

point out that the teacher is not the only agent involved and active during these 

processes. The students themselves, in fact, activate some strategies, because they give 

feedback to each other (strategy C, activated by peers), becoming instructional 

resources for one another (strategy D, again at the peers’ level) and owners of their 

own learning (strategy E, activated by the students themselves). The following diagram 

(Fig. 2) illustrates the variety of these strategies, together with the agents and the 

functionality of the technology that is used. 



Cusi, Morselli, Sabena 

PME40 – 2016 2–201 

 

Figure 2: The FaSMEd three-dimensional model applied to the excerpt 

CONCLUSIONS 

The diagram (Fig.2) shows a global static picture of the episode, according to the 

FaSMEd framework. In our analysis we integrated this framework with the analysis of 

the levels of feedback, highlighting, in particular, feedback about the task and about 

the processing of the task. In other episodes from our teaching experiments we also 

gained evidence of feedback about self-regulation and about self as a person. As 

concerns the role of technology, the CCT we chose enables also to use the processing 

and analysing functionality through instant polls, which can be exploited by the teacher 

in engineering discussions rich in FA strategies (Aldon et al., in press). 

The excerpt can also be analysed from a dynamic point of view. The following diagram 

illustrates the dynamic structure through which the class discussion has been 

engineered (strategy B) to activate other FA strategies: 

The teacher asks to students 

to comment on a list of 

selected written productions, 

with the aim of activating the 

students as instructional 

resources for one another 

(strategy D). 

 

 

The students 

provides feedback to 

each others and the 

teacher, too, 

comments, 

providing further 

feedback  

(strategy C). 

 

 

The students, thanks also 

to the support provided by 

the teacher, exploit the 

provided feedback, 

activating themselves as 

owners of their learning 

(strategy E). 

Table 2: The dynamic evolution of FA strategies in the analysed excerpt 

In our view it is very important that strategy E is activated by the students themselves. 

From our results, it appears that working on strategies B, C and D (possibly A) is a 

promising road towards this goal. Further research is needed to confirm this hypothesis 

on firmer base.  
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Recent research on the phenomenon of improper proportional reasoning focused on 

students’ understanding of elementary functions and their external representations. So 

far, the role of basic function properties in students’ concept images of functions 

remained unclear. We add to this research line by investigating how accurate students 

are in connecting functions to their corresponding properties and how this accuracy 

depends on function types and representations. Results show that students succeeded 

rather well in making the right connections between properties and functions. Errors 

depended on the type of function for which the properties were evaluated, but also on 

the kind of representation in which the function was presented. These results highlight 

the importance of function properties in students’ concept images of functions. 

THEORETICAL AND EMPIRICAL BACKGROUND 

As a major mathematical model underlying various phenomena in real-life and in 

science and mathematics, proportionality justly receives a lot of attention in 

mathematics education worldwide. However, students’ growing experience with 

proportionality during their school careers may have a serious drawback: It may lead 

to a tendency to use proportionality “anywhere”, thus also in situations that are not 

proportional at all (Freudenthal, 1983). For example, many students believe that if the 

radius of a circle is doubled, its area is doubled too (De Bock, Van Dooren, Janssens, 

& Verschaffel, 2007) or that the probability to get at least one six in two dice rolls is 

two sixths (Van Dooren, De Bock, Depaepe, Janssens, & Verschaffel, 2003). In the 

last decades, systematic empirical research has confirmed students’ overuse of 

proportionality in a variety of mathematical subdomains, at distinct educational levels 

and in countries having different math educational traditions (for overviews and further 

analyses, see, e.g., De Bock et al., 2007; Van Dooren & Greer, 2010). Several 

explanations for students’ overuse of proportionality were provided and discussed. De 

Bock et al. (2007) organized these explanations into three categories that referred to 

(1) the intuitive, heuristic nature of the proportional model for students, (2) students’ 

experiences in the mathematics classroom and their beliefs toward mathematical 

modeling and problem solving, and (3) elements related to the mathematical 

particularities of the problem situation in which the proportional error occurs.  

This last category is intrinsically mathematical and deserves our special attention in 

the context of this research report. Students have difficulties in understanding 

particular mathematical concepts, and when these concepts model situations that have 

something proportional in itself, such as the concepts of similar enlargement or 
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probability (see the two examples given above), the overuse of proportionality to non-

proportional relations in the same context is easily made. This category of explanations 

is thus related to students’ lack of a thorough understanding of basic mathematical 

functions or models that underlie a given situation.  

Recently two studies focused on students’ overuse on proportionality in the domain of 

functions, particularly on the mode in which a (non-proportional) function is 

represented (De Bock, Van Dooren, & Verschaffel, 2015). In a first study, students’ 

ability to model textual descriptions of situations with different kinds of representations 

of proportional, inverse proportional, and affine functions. Results highlighted that 

students tend to confuse these models and that the representational mode has an impact 

on this confusion: Correct reasoning about a situation with one mathematical model 

can be facilitated in a particular representation, while the same representation is 

misleading for situations with another model. In a second study, students’ ability to 

link representations of proportional, inverse proportional, and affine functions to other 

representations of the same functions was investigated. Results indicate that students 

make most errors for decreasing functions. The number and nature of the errors also 

strongly depend on the kind of representational connection to be made. Both studies 

provide evidence for the strong impact of representations in students’ thinking about 

these different types of functions. 

Unfortunately, the two studies by De Bock et al. (2015) gave us no insight into the 

criteria that students used while making connections between the various models and 

representations. Without being able to formulate clear hypotheses in that respect, it is 

likely that students did not depart from formal definitions of proportional, inverse 

proportional, and affine functions while making the required connections, but rather 

made use of their concept images of these function types. Tall and Vinner (1981) 

introduced the term concept image to describe “the total cognitive structure that is 

associated with a concept, which includes all the mental pictures and associated 

properties and processes. A concept image is built up over the years through 

experiences of all kinds, changing as the individual meets new stimuli and matures” 

(p. 152). Typically, student’s individual concept images are not globally coherent and 

have aspects that are not included in the formal concept definitions. In the case of 

proportional, inverse proportional and affine functions, students’ personal concept 

images may include various properties they consciously or unconsciously associate 

with these functions and which they could deploy while making connections between 

these functions’ representations, or, as formulated more generally by Adu-Gyamfi, 

Stiff, and Bossé (2012), “it is not the representations of a mathematical concept that 

are translated, but rather the ideas or constructs expressed in them” (p. 159). 

In a recent study on processes and reasoning in representations of linear functions using 

task-based interviews, Adu-Gyamfi and Bossé (2014) found further evidence for the 

individual nature and lack of logical coherence in students’ individual concept images. 

They revealed that students, enrolled in a pre-calculus course emphasizing and 

encouraging multiple representations, could make transitions from a given external 
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representation of a linear function to another, but yet demonstrated little understanding 

of fundamental notions of (linear) functions. They concluded that, although all students 

in their study experienced the same classroom instruction, “some students 

demonstrated individual inconsistency within their own reasoning and used 

unconventional rationales in some scenarios and conventional rationale in others” 

(p. 189). In areas requiring representational versatility, i.e. the ability to work 

seamlessly within and between representations, and to engage in procedural and 

conceptual interactions with representations (Thomas, 2008), a new research 

perspective can shed a different light on students’ work and understanding. In that 

respect, research about how students are able to connect properties to functions given 

in different external representations could provide insights about the role of properties 

in students’ concept images of functions and about how students can employ these 

properties for solving related tasks.  

In operational terms, this led us to the following research questions: (1) “How accurate 

are students in connecting functions to their corresponding properties?”, and (2) “Does 

this accuracy depend on function types and representations?” To answer these 

questions, we set up a new empirical study in which we investigated the role of the 

kind of function and the representational mode on students’ accuracy of connecting 

properties to functions.  

METHOD 

One hundred and eighty tenth graders (15- to 16-year olds) from four different schools 

in Flanders (Belgium) participated in the study. All participants followed general 

education with, depending on their study stream, four or five hours of mathematics per 

week. According to the Flemish educational standards these students had studied 

elementary mathematical functions including their applicability and their basic 

properties. They also gained experience with different representations of functions and 

learned to switch between representations.  

Participants were randomly divided in three experimental groups and solved a written 

test. The test offered graphs, formulas or tables of four types of elementary functions 

(cf. infra), but every participant received these functions in only one of the three 

representations, depending on the experimental group he or she was assigned to. So 

each representation was included in one third of the tests. For each type of function 

participants had to evaluate the correctness of fifteen statements referring to function 

properties. These fifteen statements were classified into six clusters (see Table 1), but 

to the participants, they were presented in different random orders.  

The same types of elementary functions as in the studies by De Bock et al. (2015) were 

included in this study: proportional functions (“y = ax” with a > 0) and three types of 

non-proportional functions, namely inverse proportional functions (“y = a/x” with a > 

0), affine functions with positive slope (“y = ax + b” with a > 0 and b ≠ 0), and affine 

functions with negative slope (“y = –ax + b” with a > 0 and b ≠ 0). The non-

proportional functions share certain characteristics with proportional functions but not 
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all. Affine functions with positive slope for instance share with proportional functions 

the property that their graph has the shape of a straight line, and that the same increase 

Δx in x always results in the same increase Δy in y. But while in proportional functions, 

doubling x implies doubling y, this does not hold for affine functions with positive (or 

negative) slope. Still, students may nevertheless assume this. To allow a proper 

interpretation of possible confusions between function properties, the parameters a and 

b of the representatives of the four function types in the test were held constant, being 

respectively 2 and 3 (see Table 1). 

Responses were statistically analysed by means of analyses of variance, using the 

generalized estimating of equations (GEE) approach within SPSS (Liang & Zeger, 

1996), with “Type of function” as an independent within subject variable, 

“Representation” as an independent between subject variable and students’ “Accuracy 

score” as the dependent variable. These analyses were performed on the total scores, 

the cluster scores and the scores on the individual statements. Significant main and 

interaction effects were further analyzed by means of pairwise comparisons. 

Qualitative statements 

 (QU1) If x increases, then y increases too. 

 (QU2) If x increases, then y decreases. 

Additively increasing statements 

 (AI1) If x increases with one unit, then y increases with one unit too. 

 (AI2) If x increases with one unit, then y increases with two units. 

 (AI3) If x increases with one unit, then y increases with three units. 

Additively decreasing statements 

 (AD1) If x increases with one unit, then y decreases with one unit. 

 (AD2) If x increases with one unit, then y decreases with two units. 

 (AD3) If x increases with one unit, then y decreases with three units. 

Multiplicatively increasing statements 

 (MI1) If x becomes two times larger, then y becomes two times larger too. 

 (MI2) If x becomes three times larger, then y becomes three times larger too. 

Multiplicatively decreasing statements 

 (MD1) If x becomes two times larger, then y becomes two times smaller. 

 (MD2) If x becomes three times larger, then y becomes three times smaller. 

Statements referring to the intercept 

 (IC1) If x equals 0, then y equals 0 too. 

 (IC2) If x equals 0, then y equals 2. 

 (IC3) If x equals 0, then y equals 3. 

Table 1: Overview of the fifteen statements in their respective clusters 

Note. Codes between brackets were added to facilitate references to these statements 

in the next section. 
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RESULTS 

Table 2 gives an overview of students’ total scores (in %) for the four types of functions 

(proportional, inverse proportional, affine with positive slope, and affine with negative 

slope) and the three types of representations (graph, formula, and table). These scores 

reveal that students performed rather well in making the right connections between 

properties and functions: The total percentage of correct assignments in the whole 

sample amounted to 91.5% and none of the percentages was less than 85%. But still, 

percentages varied significantly across function types and representational modes. The 

GGE analysis on the total scores indeed revealed a main effect of “Type of function”, 

Wald X2(3, 180) = 103.163, p = .000: For the inverse proportional function the 

accuracy rate was lower than for the other three function types (p = .000) for which 

accuracy rates didn’t differ significantly. This analysis also revealed a main effect of 

“Representation”, Wald X2(2, 180) = 47.938, p = .000. This means that the accuracy 

rate of connecting properties to functions depended on the representational mode in 

which the function was given. The highest accuracy rate was observed for functions 

that were given in a tabular representation, which significantly differed from those 

given in a formula (p = .003) or graphical (p = .000) representation. The difference 

between these latter two was not significant. This result is in line with that of De Bock 

et al. (2015) and is likely due to the fact that tables provide a set of concrete function 

values which facilitate checking the correctness of function properties. Finally, a 

significant interaction between “Type of function” and “Representation” was observed, 

Wald X2(6, 180) = 17.952, p = .006: The effect of “Function type” was thus not the 

same in all representations (and vice versa). For the proportional and affine function 

with positive slope, both the tabular and formula representation elicited significantly 

more correct assignments than the graphical representation (p = .002 and p = .037), 

while for the affine function with negative slope, only the tabular representation 

elicited significantly more correct assignments (p = .017). For the inverse proportional 

function, no significant differences between representations were found. 

 Graph Formula Table Average 

Proportional 90.3 95.1 95.7 93.7 

Inverse proportional 85.0 85.8 90.6 87.1 

Affine (positive slope) 88.0 94.6 97.3 93.3 

Affine (negative slope) 89.2 89.8 96.1 91.7 

Average 88.1 91.3 94.9 91.5 

Table 2: Overview of students’ total scores (in %) 

Table 3 gives an overview of students’ scores (in %) for each statement and for each 

cluster of statements. Percentages of correct assignments for each cluster are high, but 

compared to Table 2, a lower minimum percentage (80.5%) and a higher maximum 

percentage (97.0%) – and thus also a higher range (16.5%) – is revealed. Qualitative 

statements as well as statements referring to the intercept elicited most correct 
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assignments, while both clusters of multiplicative statements elicited least correct 

assignments. In line with our study’s focus, we subsequently analyzed for each cluster 

the role of the kind of function and the representational mode on students’ accuracy to 

connect properties to functions. These analyses of variance showed that the effects that 

were observed in students’ total scores (main effects of “Type of function” and of 

“Representation”, as well as the interaction effect between these two variables), were 

also present in each of the six clusters separately. Because of space limitations, we will 

not elaborate on corresponding statistics and results of pairwise comparisons for all 

these main and interaction effects. Instead, we will limit ourselves to discussing the 

most notable results. First, in contrast with the results in the whole sample, the two 

increasing clusters elicited most correct answers for the two decreasing functions. So, 

students rather easily discovered that the increasing statements were not applicable to 

the decreasing functions, likely on the basis of the information about the general 

function behavior included in these statements. Second, the proportional function 

elicited fewest correct assignments in the multiplicative increasing cluster. Relatively 

many students were thus not able to correctly assign the “proportional properties”, as 

expressed in the multiplicative increasing statements, to proportional functions. This 

result is striking because these properties are most prototypical for proportional 

functions and also because students often over-rely on these functions and their 

properties. Third, it is notable that the cluster-specific results with respect to the 

representational modes were broadly the same as the ones found in the sample as a 

whole. More specifically, the tabular representation elicited most correct assignments 

in all clusters.   

Qualitative statements 
QU1 95.6 

96.0 
QU2 96.3 

Additively increasing statements 

AI1 91.4 

92.2 AI2 87.4 

AI3 97.5 

Additively decreasing statements 

AD1 92.4 

93.8 AD2 91.4 

AD3 97.1 

Multiplicatively increasing statements 
MI1 85.3 

84.9 
MI2 84.3 

Multiplicatively decreasing statements 
MD1 82.8 

80.5 
MD2 77.9 

Statements referring to the intercept 

IC1 94.6 

97.0 IC2 98.8 

IC3 97.2 

Table 3: Overview of students’ scores (in %) for each statement and for each cluster 

To deepen out the cluster-specific results, additional analyses were conducted on the 

level of the individual statements. As shown in Table 3: Accuracy rates clearly differed 
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between statements. Statement MD2 elicited fewest and statement IC2 elicited most 

correct assignments (respectively 77.9% and 98.8%), so the range amounted to 20.9%. 

A discussion of each statement separately is not feasible, so we limit ourselves to 

statement MD2 that elicited a minimal accuracy rate (a statistical analysis on the scores 

of statement IC2 that were extreme in the opposite direction, was not possible because 

of ceiling effects). The analysis of variance on the scores of statement MD2 only 

showed a main effect of “Type of function”, Wald X2(1, 180) = 40.978, p = .000. The 

inverse proportional function, for which this statement is correct, elicited the highest 

percentage of incorrect assignments. Clearly, students struggle with this formulation 

of the “inverse proportional property” (referring to tripling, while this type of function 

was represented in the test by y = 2/x).  

CONCLUSIONS AND DISCUSSION 

This study complements the studies by De Bock et al. (2015) by pointing to the 

mediating role of representations in students’ understanding of properties of 

proportional, inverse proportional and affine functions, but results also provoke new 

questions subject for further research.  

In response to the first research question, we observed that students perform rather well 

in making the right connections between properties and functions. This result suggests 

that the basic function properties are part of most students’ concept images of the 

above-mentioned functions. However, it helps little to explain why, in De Bock et al.’s 

(2015) studies, students often encountered difficulties when being asked to connect 

models and representations, on the contrary, it raises questions about the hypothesis 

that students employed function properties for making this type of connections. A 

plausible reason for the positive result in this study, compared with the results of 

previous studies, is that function properties were addressed explicitly, while in most of 

the previous studies as well as in current educational practices, these properties are 

often used in an implicit or even unconscious way.  

In response to the second research question, function types and representations affected 

accuracy rates, and in that sense, results of this study are largely in line with the ones 

reported in De Bock et al.’s (2015) studies. With respect to function types, the inverse 

proportional function proved to be most problematic for students. This result is likely 

due to the intrinsic difficulty level of this type of function, but might also be influenced 

by educational practices too in the sense that Flemish students study functions of the 

form y = a/x in Grade 10, but a systematic study of rational functions is 11th-grade 

subject matter. However, not only function types, but also representational modes, as 

a part of students’ concept image of these functions, affected accuracy rates.  

Although this study provides some clear answers to the two research questions, it also 

has its limitations related to its nature and design. A first limitation relates to the 

absence of qualitative data that could have shed a light on the kind of strategies that 

students employed to make the right connections between representations of functions 

and corresponding properties, strategies most of these students were able to apply in 
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the context of this study, but apparently not or not to the same extent in previous 

research in which these strategies could have been helpful too. A second limitation 

relates to the generalizability of the results that is negatively affected by the artificial 

nature of the task that students had to fulfil, a kind of task that clearly differs from 

genuine classroom tasks in which functions and their properties are involved.  

An implication that could be drawn for mathematics education practice is the need for 

drawing sufficient instructional attention to properties of functions and to explicitly 

discuss differences between properties of proportional and various types of non-

proportional functions. Exploring function properties in different representational 

modes can point to similarities, but also to crucial differences and thus strengthen 

students’ insights in these properties and their appearances.  
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Pre-service teachers approach their professional learning in mathematics with a 

complex set of needs and wants. These needs and wants are strongly affected by the 

tension deriving from the realisation of the gap between what an individual wants to 

become as a mathematics teacher (his/her ideal of mathematics teacher) and what 

he/she believes to be at present. Professional identity as a mathematics teacher can be 

seen as a continuous development arising from this gap. For these reason, both as 

researchers and as teacher educators, it appears significant to study what ideals of 

positive and negative mathematics teachers the future teachers have.   

INTRODUCTION AND THEORETICAL FRAMEWORK 

Pre-service teachers approach their professional learning in mathematics with a 

complex set of needs and wants. In particular, they approach their path trying to satisfy 

their own wants and needs in the light of their previous experiences as math students 

(Liljedahl, 2014).  

These previous experiences largely determine future teachers’ mathematical identity 

(Kaasila, 2007). According to Kaasila, we define mathematical identity as the set of 

narratives that pre-service teachers create to describe themselves as mathematics 

learners and teachers. In particular, identity as a mathematics teacher can be seen as a 

continuous development arising from the gap between the ideal of good mathematics 

teacher that a pre-service teacher has into his/her mind and the teacher the individual 

thinks to be at the present moment of his/her formation (Sfard & Prusak, 2005). 

In this framework the case of future primary teachers appears particularly interesting: 

several researches highlight that many of them lived hard experiences with 

mathematics, developing negative emotions towards mathematics and towards the fact 

that they will have to teach mathematics (Coppola et al., 2013). Therefore, there is 

often a strong tension between what the individual is and what he/she wants to become 

as a mathematics teacher (Krzywacki & Hannula, 2010). As underlined by Liljedahl et 

al. (2014), the management of tensions defines pre and in-service teachers’ wants and 

needs and affect their decisions (respectively in their approach to professional learning 

and in their school practice).  

The study of future primary teachers’ mathematical identity as mathematics teachers 

appears particularly significant to understand how they approach to opportunities 

offered them during the professional development (Lutovac & Kaasila, 2014). As 

Krzywacki and Hannula (ibidem) underline, pre-service teachers’ identity as 



Di Martino, Funghi 

2–212 PME40 – 2016 

mathematics teachers is strongly influenced by the real mathematics teachers met 

during the school period.  

For these reasons, as researchers in mathematics education, we believe that it is 

interesting to compare future primary teachers’ viewpoints about what school teachers 

need to teach mathematics effectively with the existing great amount of literature on 

that issue (Ball & Bass, 2000; Mason, 2008; Oliveira & Hannula, 2008). On the other 

hand, as teacher educators, it is crucial to offer to future teachers the opportunities for 

reflection on: their own learning, their experiences with understanding of mathematics, 

as well as on the approaches used by their teachers to introduce and discuss topics 

(William, 2001).  

Therefore, within a wider study about teachers’ mathematical identity, beliefs and 

emotions towards mathematics, we have developed a narrative study aimed at 

identifying which traits future primary teachers consider distinctive of effective 

mathematics teachers and which traits they consider distinctive of ineffective 

mathematics teachers.  

METHODOLOGY 

Procedure and population. The study developed through two different phases. In this 

paper we will focus on the second one, but we believe that, in this section, it is 

important to briefly sketch the study in its wholeness.  

The first phase involved 212 future primary teachers enrolled in the first year of the 

university degree for primary school teachers of six different Italian universities. They 

were asked to answer in anonymous way to a questionnaire composed by 7 open 

questions about their past experiences, beliefs and emotion towards mathematics, 

within 1 hour. In particular, Q2 was: “What has been your past experience with 

mathematics during the school period? Can you describe an episode occurred during 

your school period that you consider crucial in the development of your current 

relationship with mathematics?”. By the analysis of the collected data, it emerges as 

‘mathematics teacher’ is the most recurrent factor: we found 131 occurrences of 

teachers on 212 answers to Q2 (the 62% of the collected narrations). There are other 

recurrent aspects in the episodes narrated (such as successes or failures in math, 

specific topics, the transition from a school level to another one), but mathematics 

teacher results by far the most recurrent factor both in negative episodes and in positive 

one. This result affected the development of the second phase of our study, that it is 

the focus of this paper. We decided to investigate about which traits future primary 

teachers consider distinctive of effective (ineffective) mathematics teachers 

stimulating a reflection about the approaches used by their mathematics teachers, 

possibly recognizing both positive and negative model of mathematics teacher in their 

school experiences.  

The second phase involved 59 future teachers enrolled in the first year of the university 

degree for primary school teachers of seven different Italian universities: 44 of them 

(75%) answered to an online questionnaire composed by 11 questions (9 open-ended 
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and 2 close-ended questions) and 15 of them (25%) answered to a semi-structured 

interview concerning the same topics of the online questionnaire.  The interviews had 

not a settled time: it varied in a range from 25 to 65 minutes. The interviews were 

audio-recorded and then fully transcribed. 

In this paper, we focus on the future teachers’ answers to the questions Q6: “Think 

about your math teachers. Is there one you would like to become like? In what way? 
Why?” and Q7: “Think about your math teachers. Have you ever thought ‘I never 
should act with my students like s/he did with me’? Why?”. Questions Q6 and Q7 were 

included both in the questionnaire and in the oral interviews.  

Rationale. The choice of the research instruments is never neutral. In our case, the 

narrative approach is not only coherent with the definition of mathematical identity 

assumed: as Kaasila (2007) underlines, through this methodological approach, what 

pre-service teachers consider really important in their experiences comes to the fore. 

Individuals develop their sense of identity by describing themselves as protagonists of 

different stories: what creates the identity of the individual is the identity of the story, 

not the other way around. We chose to use both an open-ended questionnaire and 

interviews because we believe that the two instruments complement each other. As a 

matter of fact, the use of questionnaire permits to collect a wider range of answers and, 

according to Cohen et al. (2007), an open-ended question can catch the authenticity, 

richness, depth of response, honesty and candor which are the hallmarks of qualitative 

data. On the other hand, questionnaires have their limitations: they are still one-way, 

when compared with interviews. Moreover, Kaasila (ibidem) has highlighted the 

potential of narrative interviews for the study of pre-service teachers’ mathematical 

identity.  

Regarding the analysis of the narrative data collected, we refer to the work of Lieblich 

et al. (1998). They recognize two main choices related to two independent dichotomies. 

The first choice concerns the narrative unit of analysis: holistic (the narrative is 

analized as a whole) vs categorical (specific utterances are singled out from the 

complete narrative) analysis. The second choice concerns the traditional dichotomy 

between the attention to the content or the attention to the form of a narrative. Our 

analysis approach was mainly content-categorical oriented, being considered 

particularly suitable to study a phenomenon common to a group of people (Kaasila, 

ibidem). 

RESULTS AND DISCUSSION 

Not all respondents answer affirmatively to Q6 or Q7: some of them explicit that they 

did not recognize a positive or negative model of mathematics teacher in their school 

memories (FTQ194: “Actually I have never met great mathematics teachers: for one 

reason or the other, they have never fully satisfied me”). Within our sample, it emerges 

                                           
4 Here, as well as in the next excerpts, the letter Q refers to Questionnaire, the letter I refers to 

Interview and the number indicates the progressive numbering of the respondents. 
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a gap between the percentage of respondents that does not recognize positive model in 

their mathematics teachers (32%) and the percentage (only the 12,5%) of those who 

declared they have not memories of negative model of mathematics teachers (in these 

percentages, we had not considered positive or negative references to academics). In 

the light of these data, it seems that, reflecting on their experiences, future primary 

teachers have greater ease in recognizing the negative traits in the teaching styles their 

mathematics teachers used, rather than the positive ones.  

The analysis of the data collected through the questionnaire and interviews permits to 

describe a long list of traits that future teachers associate to their mathematics teachers 

(see table 1 below). The answers to Q6 and to Q7 permit to identify the traits associated 

respectively to positive models of mathematics teacher (positive traits) and to negative 

models of mathematics teachers (negative traits). 

 

Positive traits Negative traits 

Competence in math 

Competence in teaching math 

Clarity in explanation 

Interactive teaching methods 

Ability to show the link between 

math and real life 

Relational Approach  

Passion for math 

Passion for teaching math 

Serenity 

Severity 

Incompetence in math 

Incompetence in teaching math 

Ambiguity in explanation 

Frontal teaching method 

Inability or disregard in going beyond 

the content included in the syllabus  

Instrumental Approach  

Coolness for math 

Coolness for teaching math 

Aggression 

Severity 

Attention to students’ needs and 

difficulties 

Confidence in students’ capability 

Indifference for students’ needs and 

difficulties 

Doubts about students’ capability 

Ability to develop a good 

relationship with students 

Inability to develop a good 

relationship with students 

Table 1: Duality between positive and negative teachers’ traits. 

It clearly emerges a duality between positive and negative traits. There is a unique 

anomaly: severity. Some respondents consider severity as a negative trait that can 

contribute to create a bad climate in the classroom (FTQ9: “I don’t want to be like my 

primary teacher: she is rude and severe. I was intimidated by her, therefore I was stuck, 

I went into a panic”). Other respondents whereas underline their conviction that a 
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certain level of severity is needed to be a respected and effective teacher (FTQ15: “She 

was an excellent teacher: she was severe and very good in teaching”). 

Analysing traits in table 1, we can recognize some aspects included in the 

Mathematical Knowledge for Teaching model (Ball & Bass, 2000). We observe that 

the references to the common content knowledge are mainly stressed in the answers to 

Q7 rather than in the answers to Q6, and they are almost always combined to 

pedagogical aspects (FTQ37: “My secondary teacher was incompetent and unable to 

interact with teenagers”). Future primary teachers seem to be aware that having a solid 

content knowledge is a necessary but not a sufficient condition to be an effective 

teacher, in particular at primary school level. This is also evidenced by the greater 

number of recurrent traits related to pedagogical content knowledge or to affective 

aspects.     

A significant outcome of our survey is the attention given by future teachers to the 

view of mathematics their teachers offered. In his famous paper, Skemp (1976, p.6) 

stated: “I now believe that there are two effectively different subjects being taught 

under the same name, ‘mathematics’”, introducing the concepts of relational and 

instrumental mathematics. According to this classification, within our sample, we 

found a general appreciation for mathematics teachers that have proposed a relational 

approach to mathematics (FTQ42: “She always got in-depth when explaining. The first 

question was always “Why?” and never “How we have to solve it?”, FTQ22: “I have 

appreciated my mathematics teacher from the beginning because she tried to teach us 

to look beyond memorization of formulas”), and conversely a widespread criticism 

toward teachers with an instrumental approach to math (FTQ27: “I have had teachers 

that forced me to memorize formulas and to recite rules”).   

On the other hand, discussing why an instrumental approach to mathematics appears 

to be often so appealing for teachers and students, Skemp describes some apparent 

advantages of this approach to mathematics. In particular he underlines that within its 

own context, instrumental mathematics is usually easier to understand and the rewards 

are more immediate. The analysis of the interviews shows as the appreciation for 

“relational mathematics teachers” is often the result of a posteriori reflections, based 

on a greater awareness (FTI7: “For a long time I thought that mathematics was 

characterized by memorization. Probably I was focused on memorization rather than 

understanding (…) Now I’m understand that I have never found teachers that try to 

explain me the reasons beyond mathematical facts (…) many facts were simply 

assumed (…) but I was not able to understand: perhaps I needed further and different 

explanations”). Sometimes the awareness of the weakness of an instrumental approach 

to mathematics emerges from an a posteriori comparison with the educational results 

of a relational approach (FTI1: “My mathematical experience has been linear and 

planned (…) I was very relaxed and satisfied. My sister had a more troubled path, but 

this path permits to her and many of her classmates to develop the flexibility that I 

haven’t (…) Probably I have a more complete preparation in mathematics (…) but, 

when I have to manage with a new situation, a problem that goes beyond the 
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application of memorized schemas, I am disoriented, whereas she is more ready, 

prepared and reactive because of her flexibility”). 

As we anticipated, a great emphasis to affective aspects emerges in future teachers’ 

answers. In particular, passion and calm are considered crucial quality for an effective 

mathematics teacher. Passion for mathematics and passion for teaching mathematics 

are considered both essential to convey passion for mathematics to the students. 

However, these two passions are not always coincident (FTQ4’s answer to Q7: “my 

teacher surely loved mathematics, but he was not interested in its teaching at all”). A 

calm teacher's presence is considered a key element in order to have an appropriate 

classroom climate and to promote passion for mathematics (FTQ26: “She had 

charisma and she was so calm that I was enchanted during her math explanation”). 

Particularly interesting that, in the answers to Q7, all the future teachers’ memories 

involving an aggressive teacher are related to experiences at the primary level (FT15: 

“I've always promised myself that I won't behave like my primary teacher. I would 

avoid to result aggressive and intimidate pupils”). 

On the other hand, the most stressed traits in the affective side concern two aspects of 

the teacher’s attention to the students.  

The first one is the teacher’s confidence in students’ mathematical potential (FTQ37: 

“my teacher have always really appreciated my math ability. Therefore I would like to 

have this talent in showing the appreciation for student’s ability”). In particular, the 

richness of the data collected through interviews permitted to highlight the strong 

emotions elicited in students when they reach the awareness that teacher (and adults in 

general) has low confidence in their mathematical abilities. As underlined by FTI6, this 

awareness can persuade the student to be not able in math: “I was dealing with people 

who had no confidence in me. This fact demoralized me a lot. Judgments like ‘Okay, 

after all she is not able to understand’ or ‘Okay, after all she is not able to do the 

appropriate reasoning’ convinced me that I was not able to do math (…) When I met 

someone that believes in me, I gained confidence in my abilities (…) I believe that it 

is important to interact with a teacher that believes in you, in particular this support is 

fundamental at the primary school”. 

The second one is teacher’s attention to students’ mathematical difficulties (FTI31: 

“She had a positive attitude towards students’ difficulties, she was inclusive: when we 

had difficulties in assimilating some topics, she tried new teaching methods”; FTQ17: 

“She wasn't interested in the development of our cognitive processes but she only 

focused in finishing the curriculum. She just wrote on the blackboard and she did not 

consider our difficulties. When we asked her something, she always answered that she 

hadn't got time to reply”). 

To conclude, we want to underline that in the interviews future teachers find the time 

to describe the evolution of their convictions about positive and negative ways of 

teaching mathematics. Particularly interesting in this sense is the episode narrated by 

FTI13: “It happened that during my practicum I was paired with the primary teacher 
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that I have had when I was student. At that time, I liked very much her teaching methods 

and I liked the activities that she proposed to us. But in my practicum I have seen…I 

had a flashback: she proposed the same experiences that she used with us 15 years 

earlier. Identical! Identical! I have thought: ‘No, I don’t want to do this…ever!’”  

CONCLUSION 

There are a lot of papers in the field of mathematics education focused on what 

characteristics primary teachers should have in order to teach mathematics effectively. 

These studies have the ambition to affect the way teachers’ education programs are 

developed. We strongly believe that it is highly relevant to listen the voice of the future 

teachers about this issue. “Teachers do not approach their professional learning as 

blank slates” (Liljedahl et al., 2015, p. 193): their beliefs and opinions about their 

experiences affect their wants and needs in the professional development setting. 

Knowing these wants and needs and their relationship with future primary teachers’ 

experiences with mathematics is significant both as researchers and math educators.  

In our study, the request to produce a mathematical autobiography forced the 

respondents to re-enact and re-consider their own past experiences, in order to develop 

a new awareness about their own wants and needs. In particular, it emerges that future 

primary teachers go beyond the boundary delimited by mathematical knowledge for 

teaching in their reflections, placing a strong emphasis to affective aspects in their 

judgments about mathematics teachers.  

The goal is not to draw a more complete list of what primary teachers need to teach 

mathematics effectively. According to Mason (2008, p. 317), future teachers’ attention 

needs to be focused not on a list of prescriptions, but on noticing: “The aim of teacher 

education is to prepare the ground so that novice teachers will find themselves 

increasingly sensitised to noticing possibilities for initiating, sustaining or completing 

actions which they might not previously have had come to mind”. On the other hand, 

as Liljedahl (2014) underlines, the recognition of future teachers’ wants and needs 

should have an impact on how we view our role as facilitators.  

In particular, it appears fundamental to create bridges between the research results and 

the action for improving practices. Our study underlines the need to incorporate in a 

systematic way affect in the education program for future primary teachers. Some steps 

in this direction are being taken (Gómez-Chacón, 2008), but we believe that many more 

will need to be taken soon. 
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Answering the question as to what content knowledge (CK) mathematics teachers need 

is essential for designing teacher education programs as well as for investigating 

teachers’ professional knowledge. Hence, conceptualizing professional CK is a central 

topic in mathematics education. Existing conceptualizations of secondary teachers’ 

mathematical CK diverge, however, widely – in particular regarding the extent to 

which school mathematics or academic mathematics is a reference point. This 

theoretical paper traces different ideas to bridge the gap between academic and school 

mathematics and reviews prominent conceptualizations through this lens. The 

emerging need for considering a CK linking academic and school mathematics is 

addressed by the introduction of a construct called school-related content knowledge.  

INTRODUCTION 

Most studies of teachers’ professional knowledge use models that draw on the 

categories identified by Shulman (1986) (Depaepe, Verschaffel, & Kelchtermans, 

2013). In the case of mathematics education in particular the discipline-specific 

constructs content knowledge (CK) and pedagogical content knowledge (PCK) are in 

the focus. However, the question as to what discipline-specific professional knowledge 

teachers need has been addressed by scholars in mathematics education already before 

Shulman’s (1986) seminal work (e.g., the conference proceedings Bauersfeld, Otte, & 

Steiner, 1975). Fletcher (1975), for instance, argued that mathematics teachers need a 

special kind of mathematical knowledge: 

The mathematics teacher requires a general knowledge of mathematics in order to be able 

to communicate with other mathematicians and also to establish his credentials; but he also 

requires special knowledge of certain areas of mathematics, in the way that an engineer or 

an astronomer requires special knowledge. […] It is part of our problem that the teacher’s 

special mathematical knowledge is inadequately defined and insufficiently esteemed (p. 

206). 

About thirty years later Ball and her colleagues from the University of Michigan (e.g., 

Ball, Thames, & Phelps, 2008) did a job analysis of elementary mathematics teachers 

in the USA and identified the so-called specialized content knowledge (SCK) that these 

teachers need. This research, however, does not cover the conceptualization of 

secondary teachers’ CK, as in this case typically academic mathematics serves as a 

more important reference. Consequently, this article resumes currently unconnected 

ideas regarding a special kind of CK that secondary mathematics teachers need and 
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introduces a corresponding construct called school-related content knowledge, which 

may be particularly interesting with respect to pre-service teacher education. 

THE GAP BETWEEN ACADEMIC AND SCHOOL MATHEMATICS 

It is well-known that mathematics as a scientific discipline is usually very different 

from mathematics as a school subject (e.g., Bromme, 1994; Schweiger, 2006; Wu, 

2011). Although it may depend on culture-specific traditions of secondary mathematics 

how big the gap between academic and school mathematics is, they typically differ not 

only with respect to the contents and their degree of abstraction, but also regarding 

their epistemology (e.g., Bass, 2005; Bromme 1994; Wu, 2011): Mathematics as a 

scientific discipline is characterized by its axiomatic-deductive structure and generally 

marked by a high level of abstraction. Mathematics as a school subject usually puts its 

main focus on applying mathematics as a tool for understanding and facilitating 

everyday live. Hence, mathematical concepts are often introduced inductively by 

means of prototypes and bound to a certain context. 

In view of this gap, the question arises as to what kind of mathematics prospective 

secondary mathematics teachers should be taught. Is it school mathematics? Or 

academic mathematics? Or both? Or something else? This kind of questions were 

already asked by Otte (1979): “How in particular is his [the mathematics teacher’s] 

knowledge related to the content of the mathematics school curriculum and to 

mathematics as a science?” (p. 119). Considering the subject-specific parts of 

secondary teacher education in different countries shows a large variation in the extent 

to which school mathematics or academic mathematics is focused (Blömeke, Hsieh, 

Kaiser, & Schmidt, 2014). However, there is a broad consensus among researchers in 

mathematics education concerning the following: (i) school mathematical knowledge 

is not sufficient as CK of secondary mathematics teachers (e.g., Dörfler & McLone, 

1986; Shulman, 1986), (ii) teaching pre-service teachers academic mathematics does 

not necessarily enable them to make connections with the school mathematics they are 

supposed to teach (e.g., Klein, 1908/1932; Wu, 2011). Hence, both, school 

mathematics and academic mathematics play an important role for secondary teacher 

education, but it is not enough to treat them separately. Thus it was and still is a central 

question as to how the gap between these two kinds of mathematics can be bridged.  

Discussions about what CK teachers need emerged for instance in the context of the 

development of new curricula in the 1960s and 1970s. It was emphasized that teachers 

should not merely know school mathematics, but also about its structure, i.e. the 

curricular order of contents and their interdependencies (e.g., Fletcher, 1975). In order 

to understand this structure, there is, however, also knowledge needed about reasons 

for this curricular structure, which are rooted in fundamental ideas of academic 

mathematics (Bruner, 1960; Schweiger, 2006). Focusing on such fundamental ideas of 

mathematics (e.g., measuring, function) also facilitates bridging the gap between 

academic and school mathematics (Schweiger, 2006). However, from the perspective 

of academic mathematics, the structure of school mathematics remains inconsistent 



Dreher, Lindmeier, Heinze 

PME40 – 2016 2–221 

(e.g., Wu, 2011). Thus, even though the perceived gap between academic and school 

mathematics can be reduced by knowing about the structure of school mathematics and 

its legitimation rooted in fundamental ideas of academic mathematics, it cannot be 

closed entirely this way (Schweiger, 2006). In order to understand and deal with the 

inconsistencies between academic and school mathematics, teachers should be able to 

bridge the gap locally, i.e. on the level of specific contents. This can be done by making 

connections in top-down and in bottom-up direction (i.e., with academic vs. school 

mathematics as a starting point). Taking academic mathematics as a starting point, the 

question as to how such mathematical contents can be transformed for the mathematics 

classroom has always been central for scholars of mathematics education (e.g., Dörfler 

& McLone, 1986; Fletcher, 1975; Freudenthal, 1973). In view of these considerations, 

teachers should know how to reduce certain contents of academic mathematics for 

teaching purposes and in particular about consequences of such reduction. Since 

teachers often have to deal with already reduced mathematical contents they encounter 

in textbooks and learning environments, they also need to examine whether these 

contents have been transformed in a mathematically appropriate way. In this case 

school mathematics can be seen as a starting point and connections with academic 

mathematics must be made in bottom-up direction. Hence, teachers also have to know 

which mathematical definitions, theorems, and proofs lie behind the contents in school 

mathematics. Such bottom-up connections were considered for instance already in the 

1970s, when the concept of ‘mathematical background theories’ (German: 

‘Hintergrundtheorien’) of school content was introduced (e.g., Vollrath, 1979). 

According to Vollrath (1979) this notion (in a broad sense) was used to describe the 

complex of mathematical concepts, statements, interrelations, methods, and 

representations that lies behind a mathematics teaching sequence in class (p. 8 – 9). 

CONCEPTUALIZATIONS OF TEACHERS’ PROFESSIONAL CK 

In the past decades, many scholars and researchers suggested conceptualizations of the 

mathematical CK required for teaching in the mathematics classroom. As mentioned 

above, Shulman’s (1986) structuring of teachers’ content-specific professional 

knowledge lies at the heart of many models of teacher professional knowledge. 

Although his work is mainly appreciated for the introduction of PCK, he also 

emphasized the significance of CK. His conceptualization of teachers’ CK focuses on 

academic knowledge. Seeing the structure of the school subject as being derived 

directly from the structure of the academic discipline (Shulman, 1986), there seems to 

be no reason for a specific kind of teachers’ CK to bridge the gap between academic 

discipline and school subject. Bromme (1994), however, argued that the knowledge of 

the academic discipline and that of the school subject should be distinguished carefully. 

He, thus, suggested extending Shulman’s (1986) model by introducing the two 

subcategories content knowledge about mathematics as a discipline and school 

mathematical knowledge. Hence, Bromme’s (1994) model of teachers’ professional 

knowledge takes into account the gap between academic and school mathematics. 

Regarding the question as to what enables teachers to bridge this gap, Bromme (1994) 



Dreher, Lindmeier, Heinze 

2–222 PME40 – 2016 

argued that “the integration of knowledge originating from various fields of knowledge 

[…] is an important feature of the professional knowledge of teachers” (p. 86). 

However, it is not made explicit, how such integration takes place and what the 

resulting product of this process is. 

The CK that is addressed in the COACTIV study is intended to lie between “the school-

level mathematical knowledge that good school students have” and “the university-

level mathematical knowledge that does not overlap with the content of the school 

curriculum” (Krauss, Baumert, & Blum, 2008, p. 876). Therefore, this 

conceptualization targets the field of tension between academic and school 

mathematics. However, the released items and their sample solutions suggest that the 

addressed knowledge is rather close to the mathematical knowledge of the school 

subject. Similarly, the conceptualization of CK in TEDS-M picks up the distinction 

between academic and school mathematical knowledge according to Bromme (1994). 

However, knowledge bridging the gap in between is not taken into account explicitly 

in this conceptualization and from the released items only very few represent academic 

mathematics from a university context (Brese & Tatto, 2012). 

The conceptualization of CK by the Michigan group (e.g., Ball & Bass, 2003) consists 

of three parts: common content knowledge (CCK), specialized content knowledge 

(SCK) and horizon content knowledge (HCK). CCK is defined as “the mathematical 

knowledge known in common with others who know and use mathematics” (p. 403). 

Hence, Bromme’s school mathematical knowledge is apparently included in this 

category. Not entirely clear is, however, what more is encompassed, since very 

different professions require knowing and using mathematics of some kind, which may 

in turn be specific to the profession. In particular, one could ask whether the academic 

mathematical knowledge of a research mathematician is also part of CCK. Taking a 

look at the released items with which the Michigan group assessed CCK of primary 

mathematics teachers suggests, however, that CCK was construed as being mainly 

school mathematical knowledge (Hill et al., 2004). 

Contrasting CCK, the construct SCK was introduced as a kind of mathematical CK 

that is needed specifically for the work of teaching (Ball et al., 2008). Reviewing the 

authors’ explanations regarding SCK suggests that it may essentially be seen as 

knowledge needed to bridge the gap between school and academic mathematics: Ball 

and Bass (2003) emphasized in this context that “knowing mathematics in and for 

teaching includes both elements of mathematics as found in the student curriculum […] 

as well as aspects of knowing and doing mathematics that are less visible in the 

textbook’s table of contents – sensitivity to definitions or inspecting the generality of 

a method, for example” (pp. 8-9). Corresponding to their bottom-up approach, their 

examples for SCK are mainly concerned with making connections between academic 

and school mathematics in bottom-up direction: Ball and Bass (2003) explained for 

instance that teachers have to decide about the mathematical appropriateness of 

definitions they come across in textbooks. Describing aspects of SCK they also 

mention that the teachers’ (academic) mathematical knowledge needs to be 
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“unpacked” in order to teach mathematics at school (Ball & Bass, 2003), which can be 

seen as making connections in top-down direction. The construct HCK was described 

as “an awareness of how mathematical topics are related over the span of mathematics 

included in the curriculum” (Ball et al., 2008, p. 403). Thus, HCK includes knowledge 

about the curricular order of contents in school mathematics and their interrelations. 

Furthermore, the explanations regarding HCK by Ball and Bass (2009) suggest that it 

also encompasses knowledge about reasons for this curricular structure: “We see that 

teaching requires a sense of how the mathematics at play now is related to larger 

mathematical ideas, structures, and principles” (pp. 15-16). Ball & Bass (2009) argue 

that they “have known from the beginning that there is a kind of content knowledge 

that is neither common nor specialized” (p. 15). Thus, they indicated that HCK cannot 

be determined from the perspective of their distinction between common and 

specialized knowledge. Instead, it may be grasped through the lens of the need to bridge 

the gap between academic and school mathematics: HCK is apparently a kind of 

knowledge about interrelations of academic and school mathematics.  Hence, although 

the conceptualization of CK by the Michigan group does not explicitly take into 

account the distinction between academic and school mathematics, the domains that 

they uncovered may be nicely interpreted in view of such a distinction. It should, 

however, be noted that the model was developed for primary teachers and needs to be 

refined with a focus on secondary mathematics teachers, where academic mathematics 

plays typically a more important role. 

SCHOOL-RELATED CONTENT KNOWLEDGE 

So far we pointed out that there is a gap between academic and school mathematics 

and argued that mathematics teachers need a special kind of mathematical CK about 

interrelations between these two kinds of mathematics. In this regard, there are 

promising approaches in mathematics education, but not yet a comprehensive model 

of secondary teachers’ mathematical CK that targets this issue explicitly. 

Consequently, we introduce the construct school-related content knowledge (SRCK) 

in order to complement CK of school mathematics and CK of academic mathematics. 

We understand SRCK as a professional CK about interrelations of academic and school 

mathematics. Informed by early reflections on the relation between academic and 

school mathematics and the profession of mathematics teachers, SRCK was 

conceptualized to consist of three facets: (1) knowledge about the curricular structure 

and its legitimation as well as knowledge about the interrelations between school 

mathematics and academic mathematic in (2) top-down and in (3) bottom-up direction. 

In the following, these facets as elaborated in the previous sections will be illustrated 

by means of sample items that could be used for an operationalization of this construct. 

In each case the solution is indicated by crosses.  

As reasoned above, curricular knowledge in the sense of knowing about the curricular 

order of contents and their interrelations is not school mathematical knowledge, but 

concerns the structure of school mathematics on a meta-level. The item in Figure 1 

shows an example of how such knowledge may be tapped. For answering correctly it 
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is necessary to know what is involved in justifying that the number π is identical for 

all circles (interdependences of school contents) and also at which grade level the 

respective topics are treated (curricular order). 

 
Figure 1: Sample item “structure of school mathematics” 

 
Figure 2: Sample item “top-down direction” 

 
Figure 3: Sample item “bottom-up direction” 

Moreover, it was outlined above that teachers need to have knowledge about 

interrelations between academic and school mathematics in order to teach secondary 

school mathematics in a way that respects the integrity of academic mathematical 
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ideas. The sample items shown in Figure 2 and Figure 3 illustrate how such knowledge 

regarding the corresponding top-down and bottom-up direction may be 

operationalized. Starting with academic mathematical knowledge about different ways 

of constructing the real numbers from the rational numbers, the item shown in Figure 

2 requires knowledge about which of these ideas is compatible with school 

mathematics in the sense that it can be taught in the scope of the school curriculum. 

The item shown in Figure 3 addresses an interrelation in bottom-up direction: 

Answering the question correctly requires knowledge about which mathematical 

definitions of perpendicular in the sense of academic mathematics lie behind a folding 

activity described in a textbook. Such knowledge is seen to be needed to understand 

how the folding can be used to introduce the concept in the mathematics classroom. 

In this theoretical contribution, we introduced and illustrated SRCK as a linking 

construct between academic and school mathematical CK. It is of course an important 

question whether it is empirically separable from related constructs of professional 

knowledge, especially academic CK and PCK. The results of a study with 505 pre-

service teachers showed that the constructs are indeed separable (Loch, Lindmeier, & 

Heinze, 2015). The resulting model of the professional CK of secondary mathematics 

(pre-service) teachers is in particular relevant for designing and investigating 

secondary teacher education programs and it may also contribute to answering the 

central question as to what professional CK secondary mathematics teachers need. 

Moreover, we hope that the construct SRCK provides a new starting point to focus on 

a professional CK that is on the one hand characterized by a profound understanding 

of academic mathematics and on the other hand enables teachers to solve the evolving 

problems of teaching secondary mathematics.  
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 Colorado State University West Virginia University University of Maine 

 

In the United States, graduate students are involved in the teaching of undergraduate 

mathematics as discussion group leaders and as instructors. However, little is known 

about how departments evaluate the quality of the graduate students’ instruction or 

the efficacy of their professional development. We present a mixed-method analysis of 

a national study that sheds light on both of these topics. We found that graduate 

students and their professional development are most often evaluated based on student 

evaluations. Research continually indicates the ineffectiveness of student evaluations 

as measures of teaching, and so we take this result as a call to develop research-guided 

evaluation tools for graduate student professional development.  

INTRODUCTION 

In the United States (U.S.), graduate student teaching assistants and associates (GTAs) 

play a large role in undergraduate mathematics education (Belnap & Allred, 2009; 

Ellis, 2014), though typically have little to no prior teaching experience and receive 

minimal teaching preparation. It is well documented that more rigorous teaching 

preparation can result in expert-like beliefs, knowledge, and practices (Alvine et al., 

2007; Hauk et al., 2009; Kung & Speer, 2009; Luft, Kurdziel, Roehrig & Turner, 2004), 

making up for the lack of teaching experience of graduate student instructors compared 

to other types of instructors. In particular, a recent national study found the presence 

of a robust GTA professional development (PD) program to be characteristic of 

departments with successful undergraduate calculus programs (Ellis, 2015). Given the 

need for effective preparation of GTAs in teaching, there is also a growing need to 

understand how these PD programs are, and can be, evaluated.  

Typically a PD program for teachers is marked as successful based on a positive change 

in teachers’ knowledge, beliefs, instructional practices, or their students’ success 

(Sowder, 1997), and thus evaluating a PD program often involves evaluating at least 

one of these measures. A number of researchers have (separately) assessed multiple K-

12 PD programs and determined common characteristics of successful ones (Elmore, 

2002; Garet, Porter, Desimone, Birman, & Yoon, 2001; Hawley & Valli, 1999; 

Kilpatrick, Swafford, & Findell, 2001). These characteristics include, but are not 

limited to, programs occurring over long periods of time, a focus on content-specific 

understanding and student thinking and an opportunity for enactment of practices 

through teaching activities. Currently, there exists no comparable set of characteristics 

identified as common to successful GTA PD programs. The field of research on GTAs, 

including research on PD programs, is young and there is still much work to be done. 
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Belnap and Allred (2009) noted a need for “research that builds a knowledge base for 

not just telling us whether a program [of PD for GTAs] had a specific impact, but why 

and how” (p. 36, emphasis added). In this report we present findings from a U.S. 

national survey about what data graduate-degree granting (Master’s and Ph.D) 

institutions are using to determine the efficacy of their GTA PD programs. Two large-

scale projects (under the auspices of the Mathematical Association of America (MAA) 

and funded by the National Science Foundation (NSF)) will provide opportunities to 

examine the changing state of GTA PD and ways in which departments evaluate these 

changes. 

The work reported on here is the first step in the larger and longer-term effort to 

understand department change and GTA PD. Here we report on findings from analyses 

of data from a baseline survey that was designed to provide insights into characteristics 

of current programs in terms of their content, format and duration. In addition to being 

a basis for future comparisons, these data allow us to answer the following research 

question for this study: How are mathematics departments currently evaluating the 

success of their GTA PD programs? 

METHODS  

Project Background 

As further context for this work we briefly describe the two projects and their goals 

related to institutional change and GTA PD. The first project, Progress through 

Calculus (PtC) (NSF DUE-1430540), aims to document and facilitate institutional 

change related to the Precalculus-Calculus II sequence. This project is a continuation 

of the Characteristics of Successful Programs in College Calculus (CSPCC) study and 

is specifically focused on chronicling and supporting graduate-degree granting 

mathematics departments in implementing the characteristics found (in CSPCC) to be 

related to student success in calculus. As noted above, one such characteristic was a 

robust GTA PD program (Ellis, 2015). The second project, College Mathematics 

Instructor Development Source (CoMInDS) (NSF DUE-1432381), aims to support 

mathematics departments in developing and improving GTA PD programs by 

broadening access to instructional resources and providing support for individuals and 

departments in utilizing these resources as well as by connecting researchers and PD 

providers.  

Together, these two projects aim to increase awareness of the need for GTA PD, help 

institutions learn about different types of GTA PD programs, implement robust GTA 

PD in relation to other needs of their departments and have the instructional resources 

to successfully implement such programs. As a first step in documenting and 

understanding departmental change, the two projects have collaborated to understand 

the current national landscape of existing programs and the GTA PD-related needs of 

departments, including the ways departments are currently evaluating their programs. 

A future step will be to develop evaluation tools for that leverage our findings as well 

as existing tools and resources from K-12 PD.  
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Data Collection and Analysis 

A survey was sent to department chairs at all graduate-degree granting mathematics 

departments in the U.S. (n = 341). The survey was designed to document the current 

status of graduate-degree granting mathematics departments’ calculus programs, as 

well as any changes related to this program. Questions related to GTA PD were jointly 

designed by members of the CoMInDS and PtC teams. 

Department chairs were encouraged to have local departmental experts answer 

components of the survey with which they were most knowledgeable. For instance, for 

departments with GTA PD programs, facilitators of the programs would be ideal for 

answering questions on that section of the survey. The survey was administered using 

Qualtrics and distributed by the MAA with follow up emails and phone calls to 

encourage participation. Response rate was 68% (n=223) of all institutions, 75% 

(n=134) of Ph.D-granting and 59% (n=89) of Master’s-granting institutions. For this 

report we present combined data from Ph.D-granting and Master’s-granting 

institutions. Questions about GTA PD were multiple-choice and open-ended.  

Here we discuss responses to a subset of these questions, as shown in Table 1. These 

questions focus on context of the department’s GTA PD program, how they evaluate 

graduate students in their roles as GTAs, how they assess success of their GTA PD 

program, and what data they use as evidence in their program assessment. This subset 

of questions includes both multiple choice questions and open-ended responses 

questions, asking responders to explain or elaborate their choices to the main questions. 

In elaborating their selections to the multiple-choice questions, many institutions 

pointed to specific aspects of their GTA PD program as data for their choices. From 

these responses we are able to gain insight into how departments currently evaluate 

their GTA PD programs. We conducted basic descriptive analyses on the multiple 

choice question data and thematic analyses on open-ended responses to these questions 

(Braun & Clarke, 2006). Thematic analysis is a bottom-up qualitative approach, where 

themes are data-driven, though not developed in an “epistemological vacuum” (p. 84). 

Table 1 shows question numbers, and questions.  
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# Question (and multiple choice options) 

1. Is there a required, department-specific teaching preparation program for GTAs in 

your department?  

 Yes 

 No 

2. WHO is the primary audience for your department’s GTA teaching preparation 

program? Mark all that apply.  

 GTAs who act as graders 

 GTAs who act as tutors 

 GTAs who lead recitations 

 GTAs who are the primary instructor for a course 

 GTAs who assist with the in-class instruction for a course 

3. Which of the following activities, related to evaluating GTAs’ teaching, does your 

program FORMALLY include? Mark all that apply.  

 GTAs are observed by a faculty member while teaching in the classroom  

 Student evaluations required by the university or department 

 Student evaluations are gathered specifically for the purpose of evaluating 

GTAs (in addition to or separate from the student evaluations required by the 

university or department) 

3e.  Other (please explain):  

4. How well does your teaching preparation program prepare new GTAs for their roles 

in the precalculus/calculus sequence? 

 Very well 

 Well 

 Adequately 

 Poorly 

 Very poorly 

4e. Please elaborate on your answer above. 

5. Is the department generally satisfied with the effectiveness of the GTA teaching 

preparation programs currently in place?  

5e.   Yes 

 The programs are adequate, but could be improved. (please explain)  

 No (please explain) 

6.  What best characterizes the current status of your GTA teaching preparation 

programs? Mark all that apply.  

 No significant changes are planned 

 Changes have recently been implemented or are currently being implemented  

 Possible changes are being discussed  

Table 1: Overview of questions used for analysis and analytic techniques used per 

question. 
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RESULTS  

We first present results of the descriptive analysis and then results of the thematic 

analysis. Data from Question 1 indicate the number of institutions that report having a 

department-specific teaching preparation program for GTAs. Only departments that 

said “yes” to this question are included in the remainder of analysis. This was done 

because these departments have influence over the content of the GTA PD program (as 

opposed to a university-wide program) and can evaluate effectiveness with more 

insight. Two-thirds of the institutions who responded (148) reported having a 

department-specific GTA PD program. Of these, data from Question 2 show that the 

majority (65%) are targeted towards preparing graduate students as recitation leaders 

or instructors. In the U.S., these are the two main appointments of GTAs: as recitation 

leaders, they lead discussion sections (also called recitations) for small classes 

(typically 10-40 students) that also have a lecture component, often taught by a 

professor or instructor; as instructors, graduate students lead classes as the primary 

instructor, but often have more supervision than other instructors.  

Data from Question 3 provides the frequency of various activities used to evaluate 

GTA’s teaching. Over 90% of departments with their own program use the 

university/department-required student evaluations to evaluate their GTAs’ teaching, 

while about three-quarters use teaching observations by faculty members and one-

quarter use additional student evaluations that are specific to GTAs. Note that these 

percentages do not add up to 100% because responders could choose multiple 

activities. This finding indicates that student evaluations and teaching observation are 

used to evaluate GTA’s teaching, but does not indicate what is used to evaluate the 

GTA PD programs themselves. Findings also show that 57% of respondents report that 

their program prepares graduate students for their roles well or very well, 66% of 

departments are satisfied with their programs, and there are no changes underway at 

63% of the schools. This indicates that roughly 40% of graduate degree granting 

mathematics departments in the U.S. are less than happy with the current state of their 

GTA PD programs. It is these programs that PtC and CoMInDS are targeting and that 

will be in need of good evaluation tools as they move forward.  

Ninety-six respondents provided elaborations for responses to Question 4 (regarding 

how well the GTA PD program prepares GTAs). Thematic analysis revealed 11 themes 

in these responses related to what departments use to evaluate their programs. These 

themes are named and described in Table 2, along with their frequencies. Each 

response was coded with as many themes as were present.  
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Theme Description Frequency 

Student 

evaluations 

Department or university student evaluations used as data 

to rate GTA PD. 

7 

Prevented from 

teaching 

GTAs are prevented from teaching if they are not already 

determined to be prepared. This may be based on 

performance in teaching a lower level class, being a 

recitation leader, through an interview, or through practice 

teaching.  

6 

Compared to 

others 

The GTA PD program is evaluated in comparison to other 

departments in the same university or other university, the 

program is  

4 

Common Exams GTAs’ students’ performance on common exams is used as 

data to rate GTA PD. 

4 

Student Grades GTAs’ students’ course grades (or pass/fail rates) are used 

as data to rate GTA PD. 

4 

Observations GTAs are observed teaching or leading recitation and these 

observations are used as data to rate GTA PD. 

3 

Complaints The amount of complaints about the GTA is used as data to 

rate GTA PD. 

2 

Teaching Award GTAs’ receiving Department or University teaching 

awards is used as data to rate GTA PD. 

2 

Other This included alumni surveys, listening to the advice 

experienced GTAs give to new GTAs, reviews from 

faculty, retention of students, and student performance in 

subsequent courses.   

4 

Too vague The response included an evaluation of the program with 

no data, such as “could be improved” or “is a well oiled 

machine.” 

48 

Description of 

program only 

The response included a description of the program with no 

evaluation or data to point to.  

28 

Table 2: Description of themes from open-ended responses and their frequencies. 

As shown in Table 2, 76 of the 96 responses were coded as being either a description 

of the program without an evaluation, or an evaluation of the program with no data 

related to the evaluation. Of the remaining responses, the most often used data were 

student evaluations (7), followed by student performance on common exams (4), 

student grades (4), comparison to other known programs (4), teaching observations (3), 

teaching awards (2), and complaints (2). Four responses involved “other” data, 
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including alumni surveys, listening to advice experienced GTAs give to new GTAs, 

faculty reviews, student retention, and student performance in subsequent courses.   

DISCUSSION  

The above analysis show that a primary means of evaluation of graduate students as 

teachers and of their professional development is based on student evaluations. An 

abundance of research indicates issues with using student evaluations as an evaluative 

tool (Basow, 1995; Centra & Gaubatz, 2000; Krautmann, & Sander, 1999). Influences 

on student evaluations include gender bias, preference to easy graders and enthusiastic 

instructors. Therefore, it is problematic that student evaluation data is still the primary 

source used to evaluate novice instructors. Relying exclusively on such data may 

provide incomplete and/or inaccurate information which, in turn, may provide 

inaccurate information about GTA PD program impact.  

The results presented here reveal a number of other measures that mathematics 

departments are or could use to evaluate GTA’s teaching and GTA PD. These include 

other measures of student performance, such as course grades, grades on common 

exams, and grades in subsequent courses, as well as more direct measures of teaching 

performance, such as observations and teaching awards.  

Likely reasons for wide-spread use of student evaluations include their ease of use and 

historical acceptable in the academic arena. Our capacity to improve learning of 

undergraduate mathematics is tightly linked to our capacity to provide effective 

instruction. The community would benefit from insights into the effectiveness of GTA 

PD from robust, research-guided evaluations. Those data-driven insights could then be 

used to inform mathematics departments’ plans for improving the preparation 

instructors receive for their teaching responsibilities.  
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In this work we investigate the potentiality of carrying out synergic activities using 

manipulative and virtual artefacts for the purposes of constructing/conceptualizing 

axial symmetry and its properties. The research study is based on the design and 

implementation of a teaching sequence involving 4th grade students. Both the design 

and the analysis of data is framed by the Theory of Semiotic Mediation (Bartolini Bussi 

& Mariotti, 2008) According to the results of the study the combined, intentional and 

controlled use of manipulative and virtual artefacts seems to develop a synergy 

whereby each activity enhances the potential of the other.  

INTRODUCTION 

As promoted by Geometry Standards at primary school level, in Italy as in other 

countries, an interesting lens through which to investigate and interpret geometric 

objects can be offered by transformational geometry. The study of geometric 

transformations originates from the observation of phenomena and regularities present 

in real life, but takes on a particularly important role in the field of mathematics, both 

as a mathematical concept in itself and as a tool that can be used to describe geometric 

figures.  For transformational geometry to be used efficaciously in mathematics, 

however, it is necessary to be able to correctly mathematize real life observations.   

Moreover, we believe that learners' capacity to visualize geometric relationships can 

develop as they sort, build, draw, model, trace, measure and construct. Active student 

involvement in the use of manipulatives is, indeed, fundamental in geometry.  Such 

activities develop students' skills in visualizing and reasoning about special 

relationships. While the use of real objects and manipulative tools has long been known 

to be useful to support mathematics learning (Sowell, 1989), the advent of the new 

advanced technologies has enlarged the category of potential manipulatives.  Virtual 

objects have joined real objects, and virtual actions to manipulate virtual objects can 

now be used, as well as the physical actions of the hands (Laborde & Laborde, 2011).  

One example of this is the use of the dynamic geometry environment.  However, it is 

also well known that making use of any type of tool does not in itself guarantee that 

learners are constructing mathematical/geometric concepts.    

The Theory of Semiotic Mediation (TSM) (Bartolini Bussi & Mariotti, 2008) offers an 

effective reference framework within which to study the relationships among artefacts, 

the actions they allow one to accomplish, and how pupils using them are constructing 

mathematical concepts. In the present work, that fits into this research field, a sequence 
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of activities has been created, to be carried out using artefacts of different nature and 

aimed at promoting the construction/conceptualization of axial symmetry and its 

properties. The focus is on investigating a synergic use of artefacts.  The research 

hypothesis is that when passing from manipulative artefacts to virtual artefacts and vice 

versa, a synergic action will develop so that each activity boosts the learning of the 

others. In this report we present the design and implementation of a teaching 

experiment carried out with the participation of pupils attending the fourth year of 

primary school, and analyze some of the interactions that developed in the classroom.  

THEORETICAL FRAMEWORK  

As stated above, in this study we refer to TSM. The main aspect we focus on is the 

double semiotic relationship of the artefact with both the task and the mathematical 

knowledge; such a potential can be used by the teacher as a tool of semiotic mediation 

in order to make students construct mathematical meanings.  

In semiotic activities various signs are produced: the “artefact signs”, that often have a 

highly subjective nature and are linked to the learner's specific experience with the 

artefact and the task to be carried out; the “mathematics signs”, in other words the 

knowledge of mathematics to which the “artefact signs” must evolve; and finally the 

“pivot signs”, namely semiotic chains that illustrate the evolution between artefact 

signs and mathematics signs, through the linked meanings.   

Through a complex process of texture the teacher construct a semiotic chain relating 

artifact signs to mathematics signs, expressed in a form that is within the reach of students. 

In this long and complex process, a crucial role is played by other types of signs, which 

have been named pivot signs. […]they may refer to specific instrumented actions, but also 

to natural language, and to the mathematical domain. Their polysemy makes them usable 

as a pivot/hinge fostering the passage from the context of the artifact to the mathematics 

context (Bartolini Bussi and Mariotti, 2008, pag. 757). 

Finally, we must underline the importance of organizing the teaching so that it may, 

during this evolution, foster the collective production and development of signs 

through Mathematical Discussion (Bartolini Bussi, 1998). 

RESEARCH METHODOLOGY 

Four tasks involving manipulative artefacts (paper and pins, below denominated  P+P) 

were constructed, and four additional tasks, involving as virtual artefact an interactive 

book (IB), were designed. The pages of the interactive book were created by modifying 

a Cabri Elem Activity Book contained in the collection 123... Cabri (http://www.cabri. 

com/special-pages/bett2010/). The tasks were proposed to two pairs of children 

attending the fourth year of primary school. The teaching experiments were videotaped 

using two cameras, a fixed one facing the pupils and a second one focused on the 

artefact in use. Conversations were transcribed, that also took into account the specific 

actions taken with the artefacts. The videotapes and transcriptions were then used to 

analyse the teaching experiments. 



Faggiano, Montone, Mariotti 

PME40 – 2016 2–237 

In this paper we will refer only to data coming from the first two of these tasks and we 

will show, not only the unfolding of the semiotic potential related to each of the two 

artefacts, but also how a synergy between them can foster the construction of 

mathematical meanings. 

Description of the tasks  

In the first task the artefact used was the manipulative one (P+P): a paper with a line 

drawn on it along which the paper should be folded, and a pin to be used to pierce the 

paper. In the second task the artefact used was the virtual one (IB): the interactive book 

based on the dynamic environment Cabri Elem. Task 1 was constructed as follows. 

When given a paper with a figure drawn in black on 

it, a red line is drawn at the moment when the pupil 

receives the paper and s/he is asked (a) to draw a 

figure like the black one in red, symmetrically to the 

red line by folding the paper along the line and using 

the pins to identify the symmetrical reference points, 

pressing and then piercing the paper to mark them.  

After completing this assignment, on the same paper 

a blue line is drawn and the pupil is asked (b) to draw 

a blue figure like the black one, symmetrically to the blue line, in the same way as 

before. Figure 1 shows the paper as it appears at the beginning of this second 

assignment. In a third assignment (c) the pupil is asked to write, explaining why, how 

s/he drew the red and blue figures and what looks the same and looks different about 

them.  

Task 2 was constructed as follows. On the first page of the interactive book there was 

a red line and a point A, and the tools/buttons “Symmetry” and “Name”. The 

assignment was: “Using the button “Symmetry” construct the symmetrical point to 

point A with respect to the red line and call it C.”. Clicking on the arrow to continue, 

the tool/button “Trace” will appear, and then, one at a time, the assignments: “Activate 

tracing of point A and point C. Displace A. What moves? What doesn't move? Why?”; 

“Activate tracing of point A and point C. Displace the red line. What moves?  What 

doesn't move? Why”; “Finally, displace point C. What moves?  What doesn't move? 

Why?”.  The pupil is asked to write the answers to the questions in a summary table.   

Analysis of the semiotic potential and the schemes of use of the artefacts P+P 

and IB in relation to the described tasks 

According to the TSM, we assume that the meanings' construction and their emergence 

through signs' production is based on the development of utilization schemes related 

with both the artefact and the specific task (Bartolini Bussi & Mariotti, 2008, p. 748).  

The artefact P+P, related to Task 1, evokes three important mathematical meanings: 

firstly (1.1) the idea of the symmetry axis, expressed by folding the paper along a line; 

then (1.2) the idea of symmetry as correspondence of points, expressed by the holes in 

 

Figure1 
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the paper made by piercing it with a pin; finally (1.3) the idea that the symmetrical 

figure depends on the axis, expressed by comparing what changed and what didn't 

change in two symmetrical figures when drawn on different lines after folding the 

paper.   

The artefact IB, related to Task 2, evokes the following mathematical meanings: (2.1) 

the idea of symmetry as a correspondence of points, expressed by clicking on the 

tool/button “Symmetry”; (2.2) the idea that the symmetrical point depends on the point 

of origin, expressed by clicking on the tool/button “Trace” for the point of origin and 

the symmetrical point, and by dragging the point of origin; (2.3) the idea that the 

symmetrical point depends on the symmetry axis, expressed by clicking on the 

tool/button “Trace” for the point of origin and the symmetrical point, and by dragging 

the axis; finally (2.4) the idea that the symmetrical point depends on both the point of 

origin and the symmetry axis, expressed by dragging the symmetrical point. 

We emphasize that as regards the meaning (2.4), in the dynamic geometry environment 

used, unlike in Cabrì Géometrè, for example, it is possible to drag the symmetrical 

point obtained, and this in fact allows the whole paper to be “shifted”.    

ANALYSIS AND PRELIMINARY RESULTS 

Episode 1 – The pupils carried out Task 1. During the following Mathematical 

Discussion the teacher (T.) asked them to describe what they had done so that she could 

do it too.  The first part of the discussion focused on the choice of points to mark by 

piercing the paper.  Not all the pupils immediately realized that it would have been 

enough to mark the vertices of the figure, but at the end of the discussion none of them 

seemed to have any doubts about that. Then Flavia (F.) intervened and, as though 

demonstrating an important but obvious point, moved her open hand from right to left 

to simulate the fold, saying “we must fold the paper along this red line” pointing to it 

with her finger. At this stage the discussion (see Tab1) was concentrated on the use of 

the pin.  

This episode shows the unfolding of the semiotic potential, as expected, but it also 

illustrates a first evolution towards the mathematical meanings that are the aims of the 

teaching intervention. The intervention of the teacher is fundamental in inducing the 

pupils to express the personal meanings, and the different reformulations showed how 

such meanings evolved from the description of the action to the idea of a 

correspondence of points.   

Transcripts and gestures Analysis 

F. so with this pin, after folding...  we must 

here… see this point?... we must, how can I 

say?, pierce it with the pin... 

She takes the pin, shows it, gives it to the teacher, 

goes toward the paper on the desk and with her 

finger, presses on the point where the pin should 

be used to pierce the paper.   

When F. indicates the point with her hand, she 

presses on it as if she wants to simulate the 

piercing operation. 

The act of pointing and pressing her finger on 

the paper is an artefact sign that mimics the 

piercing act. 
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Transcripts and gestures Analysis 

T. like this? Shall I pierce it? ( Ita. “punto?”) 

She presses the pin on the vertex indicated by F. 

Here the teacher has the paper in front of her, 

folded along the red line with the black figure 

facing upward;  she asks for confirmation 

before proceeding, repeating the words used by 

F. The teacher reflects and accompanies the act 

of preparing to pierce with the word “point” , a 

pivot sign because (in Italian) the word 

(“punto”) invokes both piercing and pressing, 

as well as the mathematical sign “point”. 

F. Yeas, but hard, so that it comes out on the 

other side 

Here it can be seen that pointing and piercing 

with a pin can evoke the idea of a 

correspondence between the point of origin and 

the symmetrical point. 

T. Why must it come out on the other side?  

F. Yes, we need the point to come out on the 

other side ...to obtain the figure, to join the 

various  points and, at the end, make the figure  

 

The point-to-point correspondence obtained by 

piercing the paper with the pin at the vertices is 

therefore, in Flavia’s view, the thing that makes 

it possible to obtain a symmetrical figure. The 

meaning of correspondence among figures has 

emerged.   

D. …that if we do not make the points… that is, 

if we do not transfer the points on the other 

side, it is almost impossible to do it [the 

figure] 

The words “transfer” used by Davide (D.) 

reinforce the idea expressed by F. that the pin 

must pierce through the paper to the other side.  

The sign that emerged in relation to the use of 

P+P was evolving, thanks to the shared 

discussion.  In fact, “transfer” is a pivot sign, 

because on the one hand it expressed the action 

of piercing through to the other side and on the 

other, the mathematics transformation sign that 

we aimed to construct through understanding 

the meaning of symmetry as a correspondence 

of points.   

T. well, so… shall I pierce  (Ita. “puntare”) all the 

four vertices? …and when I have the four 

points, what I have to do?  

After asking all the pupils if they agreed, the 

teacher pierced the paper at all the points and 

then reopened the paper. 

F. we have, firstly, to identify the points… this 

one here corresponds to this one…  

She points with the index finger of the right hand 

at a vertex of the black figure and with the one of 

the left hand at the corresponding point  

The artefact sign “point” has evolved to the 

meaning of a point-to-point correspondence: F. 

uses the word  “correspond” 

Table 1. 

Episode 2 - This episode occurred during the Mathematical Discussion that was held 

after concluding Task 2 in which: the pupils had constructed the symmetrical point (C) 

of another point (A) with respect to a line, using the virtual environment tool 

“Symmetry”; they saw what moved and what didn't move while dragging the point A, 

the symmetry axis and the symmetrical point C. The analysis of video recording of the 

discussion show two phases. In the first phase we can recognize the unfolding of the 
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semiotic potential of the artefact IB; pupils recognize that point A can be freely moved, 

but also, thanks to the tool/button “Trace”, it become evident for them that point the 

symmetric point C depends on the point of origin A and on the axis.  For example, 

Flavia says: “I am only displacing A, but since there is a symmetry between the two 

points, C moves too”. In the second phase of the discussion the analysis shows 

evidence of the possible synergy between the use of the two artefacts, that is how the 

cross reference to the use of them both, foster the construction of the mathematical 

meaning of the functional dependency between points in a symmetry. Let us analyse 

the transcript of this second phase of the discussion (Tab 2). Aurora is dragging point 

C obtained by symmetry and consequently one can observe that both point A and the 

symmetry axis is moving. As stated above, the visual effect of dragging C is to cause 

a shift of the whole set of objects on the virtual paper.  When the teacher asks “What 

moves? And what doesn't move?” Flavia answers, perplexed “It all moves… what 

doesn't move… is nothing at all!”. 

Transcripts and gestures Analysis 

F. when we drag point A, point C moved but the 

line didn't!... I can't explain it… no, but why 

should it be normal… but perhaps because C 

was created by us so… so in the same way as 

we did with the paper… 

With her right thumb up she gestures behind her 

... point A is our black figure,… thanks to the 

line… since the line moved… first the red and 

then the blue… so C moved. Now… if C 

moves… everything moves… why?…  

F. has difficulties in understanding why the two 

points behave differently when she drags them. 

She mentally reviews the experience gained 

with P+P and draws a relation when she says  

“like we did on the paper”, associating her 

words with a movement of her thumb referring 

to what happened before. She associates the 

dragging of the line in the interactive book to 

the two lines, red and blue, that were used for 

the tasks on paper, synergically linking the 

meanings acquired during the two experiences.    

But then she needs to reflect further... 

T. let's do this: here is a paper with a line, a point 

A, and a pin… 

The teacher picks up on her mention of the tasks 

on paper and suggests to go further comparing 

the two experiences... 

Flavia takes the paper, folds it and presses on 

point A, pierces the paper, removes the pin and 

reopens the paper 

F. now we find the point on the other side… these 

are symmetrical… now let's pretend that A 

moves here 

She folds the paper again, presses the pin on 

another point on the paper, pierces and turns the 

paper with the pin still inside.  She sees that  the 

pin doesn't come out in correspondence with the 

previous hole (symmetrical to A) but in a 

different point and says 

so C moves. Now… if I move the line… 

She folds again, pierces on A and turns the paper 

A doesn't move, but only C does… 

Using the P+P artefact F. reconstructs the new 

situation proposed by the artefact IB. 

She has no difficulty in simulating the dragging 

of A, pressing the pin on another point on the 

paper, and she verifies the effect of this action 

by noting the position of the new hole, that is 

different from the previous position.  

This effect is translated into the sign “it moves”.   

Then in the same way she simulates dragging 

the line, making a new fold and pressing once 

more on A. She verifies the effect of this action 

on the position of the new hole, that is again 

different from the first position.  

The effect is translated into the sign “it's 

moved”.   
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Transcripts and gestures Analysis 

M. so we can say that if we move A then C will 

move, if we move the line then C will 

move…the only one that is dependent is  C… 

that depends on A and on the line. 

The word “dependent” used by Morena (M.) 

reinforces the idea expressed by F. that 

dragging free objects produces a movement on 

the dependent objects.  The signs that emerged 

from the synergic use of the two artefacts, P+P 

and IB, are evolving in the shared discussions.  

In fact, “dependent” is a pivot sign that on one 

hand expresses the effect of the dragging action, 

and on the other the mathematics meaning of 

functional dependence.   

T. Now, can you move C? At this stage the teacher draws attention back to 

moving the symmetrical point. 

Flavia presses the pin in at point C, without 

folding the paper, points with her finger to the 

line she has chosen and then folds the paper and 

pierces it at point A   

F. …no because… if I take this C there will 

surely be A already on the other side… so if I 

move C… C must have to move the line 

otherwise the same point will come out on the 

other side… oh, no! … So if it is necessary to 

move C it will all have to be moved because 

it's not possible to move just the symmetrical 

point! 

What F. does at this stage is essentially to 

reflect on inverse transformation.  She starts 

from the symmetrical point and associates point 

A to it.  She realizes that two distinct points 

cannot be obtained as the symmetrical of the the 

same point and so the line must necessarily be 

displaced. It is an indirect argumentation, 

extremely sophisticated,  based on the 

functional meaning of the symmetry, on its 

being univocal and on that each line defines a 

unique symmetry.     

Table 2. 

This second episode shows how when using the IB the meanings of the correspondence 

of points and of the symmetry axis emerge once more.  In addition, the excerpt in Tab2, 

and in particular the final argumentation by F., shows how the synergic use of the 

artefacts led to a consolidation of the mathematics meaning of functional dependence.  

A fundamental role is played in the process by the characteristic of this particular 

virtual environment whereby dragging the point of origin and dragging the symmetrical 

point produces a different behaviour. This behaviour initially destabilizes the pupils 

but then it induces them to go back to using the manipulative. Thanks to the teacher's 

intervention, when she gives Flavia the paper after she had mentally thought back to 

it, Flavia attempts to transfer the drag action and the trace function from the IB to the 

P+P, so creating a synergy between the two artefacts. The dependence is then linked 

not only to the drag movement, that is typical of a virtual environment, but also to a 

particular way of transferring this movement onto paper.  Ultimately, therefore, the 

meaning  emerges most strongly not through the unfolding of the semiotic potential of 

the two different artefacts, but through the synergy activated by the comparison 

between the experiences with them.   
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CONCLUDING REMARKS  

In this report we have shown how in passing from the use of manipulative artefacts to 

virtual artefacts and vice versa, a synergy is created so that each experience enhances 

the potential of the other. The study is still in progress but the results obtained 

encourage us to go forward and develop a long term teaching experiment to confirm 

them. In accordance with the TSM, and in particular with the didactic cycle model, we 

intend to verify the efficacy of the observed synergy in a longer sequence of didactic 

cycles. 

References 

Bartolini Bussi, M. G. (1998). Verbal interaction in mathematics classroom: A Vygotskian 

analysis. In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and 

communication in mathematics classroom (pp. 65–84). Reston, VA: NCTM. 

Bartolini Bussi M. G. & Mariotti M. A. (2008), Semiotic mediation in the mathematics 

classroom: Artifacts and signs after a Vygotskian perspective, in L. English (ed.), 

Handbook of International Research in Mathematics Education, (second edition), 

Routledge. 

Laborde, C. & Laborde, J-M. (2011). Interactivity in dynamic mathematics environments: 

what does that mean?, e-Proc. of the 16th Asian Technology Conference in Mathematics 

2011, http://atcm.mathandtech.org/EP2011/invited_papers/3272011_19113.pdf 

Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal of 

Research in Mathematics Education, 20, 498–505. 



 

2016. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.). Proceedings of the 40th Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 243–250. Szeged, Hungary: PME. 2–243 

THINKING RELATED TO ENACTIVISM AND NOTICING 

PARADIGM IN MATHEMATICS TEACHER EDUCATION 

Ceneida Fernández*, Laurinda Brown** and Alf Coles** 

*University of Alicante (Spain) 

**University of Bristol (UK) 

 

This paper focuses on the analysis of data from a Bristol project by both Bristol 

(enactivism perspective) and Alicante (noticing paradigm) teacher educators to 

support methodological discussion of samenesses and differences in our approaches. 

We have found the growth indicators (Jacobs, Lamb, & Philipp, 2010) have helped us 

to see teachers’ changes in noticing children’s mathematical thinking. However, the 

indicators and our discussion of them from our different perspectives have led us to 

note a significant shift (not captured in the growth indicators) from staying with the 

detail to a more general label. Our analysis shows that the articulation of this kind of 

movement supports future noticing. 

INTRODUCTION 

The Universities of Alicante and Bristol through their education departments are 

involved in mathematics teacher education. Their staff members are taking part in a 

long-term collaboration because, in discussions at international conferences, it became 

apparent that Alicante’s use of the noticing paradigm and Bristol’s use of enactivism 

led to interesting overlaps and differences in their practices of teacher education, 

particularly the way they work with teacher education students.  

This paper focuses on the analysis of data from a Bristol project by both Bristol and 

Alicante teacher educators to support methodological discussion of samenesses and 

differences in our approaches (the actual work of the teachers and outcomes for the 

Bristol project are not the main focus). Given that the Alicante group already used the 

framework of growth indicators, described in a list of six shifts (see next section), we 

decided to all use that framework for analysis. After discussions, we also decided that 

we would focus on fewer of the shifts to make the task manageable for the Bristol 

group (the first four indicators). The objective of our analysis was looking for evidence 

of any shifts in relation to developing noticing expertise in relation to the first four 

indicators proposed by Jacobs, Lamb, and Philipp (2010). We would take any such 

shifts as indicative of teacher change. 

We will discuss the Alicante perspective in detail in the next section on ‘Noticing and 

Teacher Change’. There are a number of accessible references to enactivism (ZDM 

47(2) Special Issue most recently) but for the purposes of this article enactivism accepts 

the biological basis of being where knowing is doing. What the Bristol group are likely 

to focus on in analysis of data is what is being done. 
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NOTICING AND TEACHER CHANGE 

Learning to notice is part of developing expertise (for an enactivist perspective on 

developing expertise see Brown and Coles, 2011). Noticing what is happening in a 

classroom is an important skill for teachers. However, noticing effectively is both 

complex and challenging. Although the skill of noticing has been conceptualised from 

different perspectives (Mason, 2002; van Es, & Sherin, 2002), all of them emphasise 

the importance of identifying the relevant aspects in teaching and learning situations 

and interpreting them to take teaching decisions. In fact, the noticing skill could be 

developed by moving from a focus on teachers’ actions to students’ conceptualisations 

and by moving from evaluative comments to interpretative comments based on 

evidence.  

Pre-service teachers who make sense of students’ thinking gain important insights into 

how students develop mathematical ideas. Therefore, paying attention to students’ 

thinking encourages teachers to determine what their students already know or do not 

know, supporting their decisions as teachers. Recently, some research has focused on 

how pre-service teachers notice children’s mathematical thinking providing contexts 

for the development of this skill (Bartell, Webel, Bowen, & Dyson 2015; Fernández, 

Llinares, & Valls, 2012; Jacobs et al., 2010; Schack, Fisher, Thomas, Elsenhardt, 

Tassell, & Yoder, 2013; Sánchez-Matamoros, Fernández, & Llinares, 2015).   

In Jacobs et al.’s study, findings indicated that the skill of noticing children’s 

mathematical thinking could be developed, providing growth indicators that can help 

professional developers identify, provoke and celebrate shifts in teachers’ professional 

noticing of children’s mathematical thinking (p. 196). Specifically: a shift from general 

strategy descriptions to descriptions that include the mathematically important details; 

a shift from general comments about teaching and learning to comments specifically 

addressing the children’s understanding; a shift from overgeneralizing children’s 

understandings to carefully linking interpretations to specific details of the situation; a 

shift from considering children only as a group to considering individual children, both 

in terms of their understandings and what follow-up problems will extend those 

understandings; a shift from reasoning about next steps in the abstract to reasoning that 

includes consideration of children’s existing understandings and anticipation of their 

future strategies; a shift from providing suggestions for next problems that are general 

to specific problems with careful attention to number selection. 

In the discussions between Alicante and Bristol, we are interested in the development 

of teachers’ noticing, particularly the development of teachers’ noticing of children’s 

mathematical thinking skill.  

THE DATA AND ANALYSIS 

Data were four audio-recordings of meetings between teachers on a project. In this 

project, one teacher from each of three schools met five times over an academic year. 

These were twilight meetings that generally lasted just over an hour and were often 

attended by a second member of staff from the school. One of the authors (Alf) 



Fernández, Brown, Coles 

PME40 – 2016 2–245 

convened this group and, in between meetings, visited the schools to observe and then 

lead sessions with the teachers’ classes. These sessions had a focus on running 

activities and class discussion in a way that allowed and supported student creativity. 

The focus of the group meetings was on teachers sharing the work they had been doing, 

which included strategies for developing creativity and tackling underachievement. 

These audio-recordings were transcribed.   

For the analysis, the three authors individually analysed the transcript of the first audio-

recorded meeting, looking for evidence of the aforementioned shifts (Jacobs et al., 

2010). We discussed agreements and disagreements as we shared what we saw as 

evidence for shifts. Through these discussions we identified common filters to use in 

looking at the data. Once we had shared our marked up texts and come to an agreement 

about what constituted evidence, we applied these filters to the rest of the teacher 

meeting data. We explain, below, what we consider to be evidence for each of the four 

shifts. 

A teacher gives a general strategy description (indicator 1) when he/she identifies a 

tool or mentions that the problem was solved successfully but omits details of how the 

problem was solved. If, later on, for example thinking about whole-number operations, 

the same teacher comments how children counted, used tools or drawings to represent 

quantities, or decomposed numbers to make them easier to manipulate, we would see 

a shift into the consideration of “mathematically important details”. Teachers may give 

general comments about teaching and learning (indicator 2), such as, “I learned that 

it’s important to allow students to use different tools to come up with mathematical 

problem solution” (Jacobs et al., 2010, p. 186). If, later, they make sense of the details 

of a student strategy and note how these details reflected what the children did 

understand, for example recognising the ability to count by 2s or the ability to switch 

between counting by 2s and 1s, we could identify a shift into giving comments 

specifically addressing the children’s understanding. A teacher overgeneralises 

children’s understandings (indicator 3) when they go beyond the evidence provided. 

For instance, saying, “children understand subtraction and addition — and which to 

choose when presented with a problem…” (Jacobs et al., 2010, p. 186). This broad 

conclusion is difficult to justify on the basis of the children’s performance on a single 

problem on which many may have used different strategies. If, later on, teachers make 

sense of the details of a student strategy and note how these details reflected what the 

children did understand in specific situations, we would say that there is a shift into 

linking interpretations to specific details of the situation. Finally, considering children 

as a group (indicator 4) is another characteristic of over-generalising children’s 

understanding and a shift is indicated by discussion of anything linked to individual 

understanding. 

Seeing the same 

In what follows, we show an example of our analysis on two sections of transcript from 

the beginning and end of the first meeting, through comparison of what each of us saw 
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as evidence of each of the four shifts that we will discuss after the excerpts. Teacher B 

(one of the teachers that participated in the project) refers to an EAL child, a child for 

whom English is an Additional Language. This teacher is describing that she had asked 

Alf to work with her class on fractions. The students had engaged in describing how to 

give instructions for someone to turn on the spot (which one student did at the front of 

the class). The students suggested the notation ‘q’ to stand for a quarter turn and ‘h’ 

for a half turn. They were then writing down different ways of making a full turn (for 

example, adding 4 ‘q’s).  

Teacher B (start of first meeting). So Alf came in and saw me working with them sort of 

moving around, getting to know the kids a little bit and then since then Alf has come in 

twice and done some sessions with them but again feeding in from what we’re doing. It’s 

been really nice for me to sit to one side and take down some observations. One thing that 

has come out already was the children who maybe seemed less confident earlier in the 

week with what we’ve been doing, suddenly had all the confidence in the world when you 

were there. I don’t know whether it was your explanations or your modelling or I really 

don’t know what it was but they really seemed to come out of themselves.  

Teacher B (end of first meeting). I was just looking back at my notes, the EAL child from 

my class that was coming up to write and spotting the patterns. So, it was really lovely to 

see. I think what was nice is when it went even further when they started to move on to 

two terms and some of them saying ‘Oh that makes eight quarters’ and I was like ‘ok!’ So, 

yes, really surprising. They could hold all that in their heads - I know that we have three 

quarters add two quarters add three quarters, oh that’s eight quarters, that’s two turns. How 

they were holding all that in their head, I thought that was brilliant. Really, really good. 

Given that the three of us each saw each of the four shifts, the ‘we’ in what follows 

refers to all three of us. In relation to indicator 1, across the first meeting we see 

evidence of Teacher B moving to consider mathematically important details (indicator 

1). At the beginning of the first meeting Teacher B’s talk is of general strategies and, 

towards the end, she describes an example of a pattern described by a student. Teacher 

B, initially, gave general comments about the teaching and learning situation. For 

example, she referred to the confidence of children before and after Alf’s lesson. 

However, we can see a shift into comments addressing the children’s understanding 

(indicator 2). Later in the same meeting, she says “the EAL child from my class that 

was coming up to write and spotting the patterns” linking a suggestion of the child’s 

understanding (that she had spotted patterns) with some specific details of the situation 

(indicator 3), in terms of her writing on the board.  

We observe that Teacher B initially focused on children as a group, “One thing that 

has come out already was the children who maybe seemed less confident earlier in the 

week with what we’ve been doing, suddenly had all the confidence in the world when 

you were there…”. Later, in the same meeting, she focused on individual children 

(indicator 4) in describing the work of the EAL child.  

With this analysis, we observe that the teachers who participated in the project showed 

evidence of shifts related to the way that they notice children’s understandings. The 
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growth indicators used in the analysis above have helped us to see the teachers’ 

noticing changes. However, the indicators and our discussion of them also raised 

differences in our perspectives leading us to see a significant shift not captured in the 

framework.  

Seeing differently  

In the next transcript, Teacher A describes work with Cuisenaire rods. These rods (also 

made popular by Caleb Gattegno) are wooden cuboids, all 1cm square in cross-section 

and ranging from 1 to 10cm in length. Each length is coloured differently. One task 

Teacher A used was to get students to try and ‘build’ a particular length using other 

rods. 

Teacher A (meeting 2). So, we’ve got this boy who actually I don’t know if you remember 

M in the first session and he sat, one of the first times when you came in, when he copied 

and he sat next to A who records really neatly. He didn’t know what was going on but he 

copied how she recorded, as in one number in each box. So, I was, he’s copied, he hasn’t 

done anything. But actually from that he’s recording on his own and recording in that way 

which is really nice. So here it was, they could each choose, they chose their own number 

and practising how many different ways they could make that number using the Cuisenaire 

rods, so he picked up the yellow. So, we worked out what number that was and it was 

‘five’. So, then he started building his five-wall and recording it and for him this is 

amazing. So, he is knowing that it all equals five. He is beginning to see well he’s adding 

them together even though it’s not in the 1 plus 2 plus 3. 

In this transcript, we see evidence of Teacher A considering mathematically important 

details although perhaps, as ever, there are more mathematical issues that could be 

raised. This teacher has given comments addressing the children’s understanding, and 

is not in the realm of giving general comments about teaching and learning. For 

example, she says “he picked up the yellow. So, we worked out what number that was 

and it was ‘five’. So, then he started building his five-wall and recording it…he’s 

adding them together even though it’s not in the 1 plus 2 plus 3”. We also observe that 

this teacher focused on individual children. In fact, she spent some time discussing 

child “M”, addressing the children’s understanding (indicator 4).  

However, the framework for growth indicators did not provide a useful tool when 

analysing the following excerpt of Teacher A in the same meeting (meeting 2) 

Teacher A (meeting 2). And I think it goes back to that very first session we did when 

you let J read those numbers because at that very beginning, it’s her trying to spot 

something and other children are spotting and to us it didn’t really make any sense. And it 

is like letting children like M for example going ‘I used a pattern, I did two, two, two, two, 

two’ because he’s added two every time and just allowing them to say that out and then 

gradually you see actually through this that they’ve then actually begun to spot patterns 

that they can use that are helpful.  

All the indicators say that the movement is from general to particular events in the 

transcript but in this excerpt the movement was from the particular to the general. 

Indicators 1 and 2 denote a shift from general descriptions to the particular of classroom 
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events. Teacher A, as we have shown, talked about individual children and events. She 

is generalising from these observations. We read her articulating a general move in her 

teaching to “letting children speak” about what they notice. The movement is from 

staying with the detail to a more general label. However, this kind of label “letting 

children speak” lets Teacher A develop new actions in the classroom based on children 

speaking and discovering and, supports Teacher A future noticing as we evidence in 

the following excerpt.  

Teacher A (meeting 3). Yesterday, he was in my group and they wanted to investigate 

three-digit numbers and what happened when you just took away the units and he found 

out that oh it had to be a 0 because it’s still a three-digit number, they were all doing it but 

because he was working with his own numbers he was just totally engaged and it was his 

own discovery and on talk chair at the end, he’s made this discovery, but he didn’t kind of 

click that most of the other people on his table had also made that discovery, he was like, 

it’s mine, and he then took that into thousands and he’d done 1023 take way three must 

equal 1020 because I know if I take away the units it’s going to be zero and he recorded 

his 1020 correctly 

Articulating this kind of more general label “letting children speak”, we see as 

significant in teacher learning (from an enactivism perspective, Brown, & Coles, 

2012). The movement is in the opposite direction since there is a move from staying 

with the detail to a more general label to what Jacobs et al. (2010) see as “growth” 

(from general statements to talking about children), yet we believe the articulation of  

this type of label supports future noticing. The label is an example of a “purpose” 

(Brown, 2005) that supports the development of new actions in the classroom, linked 

to the label.  

THINKING RELATED TO ENACTIVISM AND NOTICING PARADIGM 

We have found the growth indicators used in the analysis above have helped us to see 

more in the words of teachers. However, the indicators and our discussion of them from 

our different perspectives (enactivism and noticing paradigm) have led us to note a 

significant shift not captured by the indicators: Teacher A, from the detail of her talk 

about students, is able to articulate a more general statement about principles guiding 

her interactions and teaching. Articulation of such general statements supports future 

noticing and the accrual of teaching strategies (actions/doing) in the classroom linked 

to the statement (Brown, & Coles, 2012). In other words, there are times when a 

movement ‘back’ (from the detail to a more general statement) along a growth indicator 

and it is, for us, a mark of teacher development. This kind of articulation is perhaps 

also an example of what van Es and Sherin label: “making connections between 

specific classroom events and broader principles of teaching and learning” (2008, p. 

245). In Coles’s (2012) study of teachers’ responses to video, the suggestion was made 

that if discussion can be channelled into the detail of events by the facilitator then there 

is the opportunity for later generalisations and interpretations to lead to new labels for 

events which can potentially capture new insights and support further noticing (similar 

to van Es and Sherin’s (2008) connecting to broader principles). 
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One issue with the idea of a “growth indicator” is an assumption of a one-way direction 

of development. When it comes to making general comments about teaching and 

learning, compared to focusing on individuals, we see our work with teachers more as 

a cycle than an upward gradient. There is a need to support discussion of the detail of 

classroom events, as Jacobs at al. (2010) suggest – if discussion begins at a general 

level then opportunities for learning are limited since the words being used will be 

categories and labels that teachers already use to think about their classroom. However, 

we believe that growth is supported by a cycling back, from the particular to the more 

general, in order to arrive at the succinct articulation of principles or “purposes” 

(Brown, & Coles, 2012) that can be kept in mind, to inform future noticing and future 

actions. This is a similar process to the one we have gone through in exploring our 

different perspectives. It was important to get into the detail of analysing some data. 

This process allowed us to see differently. 

So, while we agree that there is an important movement away from general 

descriptions, and furthermore that this move often needs to be supported, we see an 

important next stage in which we arrive at a new generalisation, perhaps in the form of 

new labels or words for experiences, that support future learning. The process of 

dwelling in the detail of events and the arising of new syntheses and labels can become 

a way of being (or perhaps more accurately, a way of becoming) in relation to 

developing awareness about the processes of teaching and learning mathematics 

(Brown & Coles, 2012). 

There is a need for more research to investigate the proposed movements in noticing – 

can we gather evidence, for example, that teachers who make new syntheses in a 

meeting go on to make use of these ideas in their planning and teaching? This data was 

collected by an enactivist researcher also acting as facilitator at the meetings so was 

already in the form of asking for more detail of what happened rather than judgements 

or accounting for actions. It is therefore not surprising that the data revealed some 

differences to the growth indicators. The way that we collect data, including the role 

of the facilitator of group meetings in supporting shifts in noticing, will affect our 

developing sensitivities as researchers. 

Acknowledgements 

The research reported here has been financed in part by the Project GV/2015/115 of the 

Conselleria de Educación, Cultura y Deporte de la Generalitat Valenciana and in part by the 

project EDU2014-54526-R of the Ministerio de Educación y Ciencia (Spain).  

References 

Bartell, T. G., Webel, C., Bowen, B., & Dyson, N. (2013). Prospective teacher learning: 

recognizing evidence of conceptual understanding. Journal of Mathematics Teacher 

Education, 16, 57-79. 

Brown, L. (2005). Purposes, metacommenting and basic-level categories: parallels between 

teaching mathematics and learning to teach mathematics. Paper presented at the 15th ICMI 



Fernández, Brown, Coles 

2–250 PME40 – 2016 

Study Conference, http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html (accessed July 

21, 2006). 

Brown, L., & Coles, A. (2011). Developing expertise: how enactivism re-frames mathematics 

teacher development. ZDM Mathematics Education, 43(6-7), 861-873. 

Brown, L., & Coles, A. (2012). Developing "deliberate analysis" for learning mathematics 

and for mathematics teacher education: how the enactive approach to cognition frames 

reflection. Educational Studies in Mathematics, 80, 217-231. 

Coles, A. (2012). Using video for professional development: the role of the discussion 

facilitator. Journal of Mathematics Teacher Education. DOI 10.1007/s10857-012-9225-0. 

Fernández, C., Llinares, S., & Valls, J. (2012). Learning to notice students’ mathematical 

thinking through on-line discussions. ZDM. Mathematics Education, 44, 747-759. 

Jacobs, V.R., Lamb, L.C., & Philipp, R. (2010). Professional noticing of children’s 

mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. 

Mason, J. (2002). Researching your own practice. The discipline of noticing. London: 

Routledge-Falmer. 

Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2015). Developing pre-service 

teachers’ noticing of students’ understanding of derivative concept. International Journal 

of Science and Mathematics Education, 13(6), 1305-1329. 

Schack, E. O., Molly, F.H., Thomas, J.N., Eisenhardt, S., Tassell, J., & Yoder, M. (2013). 

Journal of Mathematics Teacher Education, 16, 379-397. 

van Es, E., & Sherin, M. G. (2002). Learning to notice: scaffolding new teachers’ 

interpretations of classroom interactions. Journal of Technology and Teacher Education, 

10, 571-596. 

van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the 

context of a video club. Teaching and Teacher Education, 24(2), 244-276. 

 

http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html


 

2016. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.). Proceedings of the 40th Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 251–258. Szeged, Hungary: PME. 2–251 

TRAVERSING MATHEMATICAL PLACES 

Francesca Ferrara, Giulia Ferrari 

Università di Torino, Italy 

 

This paper discusses a case study of grade 9 students who use a dynamic technology 

to model motion as a graphical approach to the concept of function. We draw on the 

notion of place (versus that of space), as offered by Nemirovsky, Ingold and Burbules, 

to analyse the ways that these students understand their mathematical experiences with 

the tool. We make use of this notion to talk of learning as a matter of creating and 

traversing mathematical places, striving to avoid representational visions of learning.   

INTRODUCTION 

In this paper, we present a case study of how some grade 9 students used a dynamic 

graphical computer-based technology to model motion and study graphs of distance 

vs. time as an informal approach to the concept of function. The technology consists 

of a software application, WiiGraph, that leverages two controllers of the Nintendo Wii 

game console, taking advantage of strategic thinking concerning game play with the 

controllers. We frame the analysis through the notion of place as it has been used and 

discussed from different authors in relation to learning and thinking (Nemirovsky & 

Noble, 1997; Nemirovsky, 2005; Burbules, 2006; Ingold, 2011). We have found it 

inspiring to take this notion to look at the nature of the learning process in a way that 

aims to trouble dichotomies between external and internal representations, outer and 

inner, perceptual and conceptual, body and mind, which are still frequently assumed in 

the literature. In the same time, the notion of place helps us to turn attention to dynamic 

aspects of the learning situation, including movement and time. In so doing, we also 

want to contribute to the current discussions about the role of the body and embodiment 

in mathematical tool use, highlighting how the barriers between the human body and 

the tool are always changing, being in a continuous process of becoming that shapes 

the mathematical activity.  

Our starting point is the idea of place as discussed by Nemirovsky and Noble (1997), 

following the work of Winnicott (1971) and his vision of “the place where we live” as 

the “potential space” where cultural experience and symbolising can be located. The 

place where we live is an intermediate area of experience between the individual and 

the environment, with an indeterminate internal/external nature, which grows 

throughout individual existence. In particular, Nemirovsky and Noble offer the idea of 

“lived-in-space” in relation to the context of mathematical experience, to refer to the 

creation of a place that is neither outside or inside the mathematics learner. Most 

importantly, they claim that “tool-use always take place in a lived-in-space” (p. 127). 

Starting from this view, we draw on more recent perspectives that use the notion of 

place in order to widen the vision of mathematical activity with tools as traversing 

mathematical places, or inhabited spaces, and we use the case of a classroom episode 

to exemplify this vision.  
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PLACE VERSUS SPACE: THEORETICAL HIGHLIGHTS 

In a very recent work, Nosrati (2015) offers the idea of temporal freedom as key to 

mathematical thinking. She uses the image of “mathematics as a space”, “a landscape, 

in which learners are placed. A learner’s understanding and overview of this 

landscape”, she says, “is constantly being constructed, invented, updated and 

changed.” (p. 32). Freedom is meant in terms of moving around, seeing where things 

lie in relation to each other, and so on. Nosrati adds that “If one is only allowed to 

move on a predesignated path at any given time, expanding one’s overview and 

understanding of larger parts of the landscape becomes difficult, if not impossible.” (p. 

32). For Nosrati, it is not freedom through space per se (as the notion of landscape 

might indicate), but through time. If the image of landscape helps us conceptualise 

freedom, she argues that the landscape of mathematics is not to be meant as “physical 

per se”: “in order to get to know it, it is not spatially that students must move, but 

temporally.” (p. 33). However, we still think that the landscape image might suggest a 

vision of mathematics as a static, fixed background where learners are ‘arranged’, yet 

implying an internal/external dualism between the bodies in the classroom and the 

body of mathematics. For this reason, we propose to enrich Nosrati’s idea of a space 

where students are free to move temporally, drawing on the notion of place. Ingold 

(2011), for example, challenges the idea of space with that of place, which calls for a 

space to be inhabited, not “occupied” or “filled with existing things” but “woven from 

the strands of their coming-into-being” (p. 145). For him, the notion of space is too 

abstract, empty and detached from the realities of life and experience, to describe the 

world we inhabit. He wants to reject the idea that life has been “installed” inside things 

(as an internal property of them), restoring “these things to life by returning to the 

currents of their formation.” (p. 68). Briefly speaking, he reverses what he calls the 

logic of inversion, for which “the field of involvement in the world, of a thing or 

person, is converted into an interior schema of which its manifest appearance and 

behaviour are but outward expressions.” (p. 68). For Ingold, lives “are led not inside 

places but through, around and from them, from and to places elsewhere” (p. 148): it 

is through this movement (wayfaring) and the entwinement of the inhabitants’ trails 

led by their movements that places are constituted. “Every entwining is a knot, and the 

more that lifelines are entwined, the greater the density of the knot. Places, then, are 

like knots, and the threads from which they are tied are lines of wayfaring.” (p. 148). 

It is re-injecting life into space, through movement, and thinking of inhabiting it, that 

makes a space a place, or using previous words, a lived-in space. The qualities of life 

and movement characterise places in contrast to locations: “places are always “for” 

someone.”, claims Nemirovsky (2005), “There are no places for an inert object because 

places are constituted by the living bodies for which the place is.” (p. 49). This vision 

is further refined in Nemirovsky and colleagues (2013), who describe the lived 

experiences of mathematics learners as saturated with feelings and puzzlements, in 

terms of “the temporal flows of perceptuomotor activities they inhabited bodily, 

emotionally and interpersonally.” (p. 407). The dimension of time is again essential: 

“it implies that any perceptuomotor activity is infused with past and future, so that 
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actions pursued at a certain moment cannot be isolated to whatever is physically 

“there” at that moment. Perceptuomotor activity is always permeated by expectations, 

recollections, fantasies, moods, and so on.” (p. 378). Burbules (2006) also considers 

the temporal dimension in/of place as important to distinguish it from space: “places 

emerge, change, and develop diachronically: a space may be a place at one point in 

time, but not earlier or later; or it may become a different kind of place.” (p. 49). For 

him, a place is a special, important kind of space, where things, memorable important 

things (whether pleasant or unpleasant), happen, “which mark the space as a place 

(“this is where it happened”). Places become familiar, acclimated to us as we are to 

them.” (p. 49). Both the space and those inhabiting it are changed in relation to each 

other, and the latter also stand in a different relation to the space, and to each other, for 

that they are there. A quality of immersion always characterises being in a place, 

supported by elements of interest, involvement, interaction and imagination, which 

actively shape and change the experience.  

In this paper, we propose to study how some mathematics learners come to inhabit 

their mathematical activity with a specific technology, reconfiguring spaces into 

places. This helps us to describe mathematics learning as animated by movement and 

time, striving to avoid discourses that bring up representational visions of learning. 

METHOD AND TECHNOLOGY 

The case study is part of a teaching-experiment in which a class of grade 9 students has 

been introduced to modelling motion experiences for a graphical approach to the 

concept of function through the study of spatio-temporal relationships (see Ferrara & 

Ferrari, 2015). The experiment lasted for a period of about 3 months, for a total of 9 

two-hour meetings. The regular mathematics teacher was present at each meeting, 

together with the two authors (the researchers, in the following), who constructed the 

activities for the students and were actively involved in observing and leading them. 

The experiences took place in a laboratory room offered by the school for scientific 

work. The students were asked to work according to different modalities: on individual 

tasks, in groups (of three people each) and in collective discussions led by one of the 

authors. All the moments were videorecorded and some groups were filmed from the 

beginning to the end of the experiment. Some technology was used in the experiment. 

In particular, the one, which is the focus of the study, is an interactive software 

application, WiiGraph, that has been released by Ricardo Nemirovsky and his 

colleagues at the Center for Research in Mathematics and Science Education of San 

Diego State University. WiiGraph uses two Nintendo Wii controllers (Wii Remotes or 

“Wiimotes”) to detect and graphically display the location of users as they move along 

life-size number lines. A Wiimote is a remote control for playing games with the Wii 

console, which supports motion sensing capability. Through the use of a sensor bar, 

WiiGraph is able to capture the position of the two controllers in an interaction space, 

where embodied exploration can occur. When each controller is suitably directed at the 

sensor bar, a corresponding circle appears on the screen, indicating that the software is 

ready to function and to capture the position/distance of the controller from the sensor. 
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This is the only constraint to commence a graphing session. In our experiment, the 

display area of WiiGraph (the so-called Graph Form, which contains the control panel 

plus a graph area) was always projected on an IWB, with the students sitting all around 

the interaction space, to share experiences and the screen. As WiiGraph starts working, 

two real time graphs, each associated to one Wiimote (each line coloured differently 

from the other line, by default one pink and the other blue), appear on the screen. The 

software provides several graph types, challenges and composite operations for 

learners to individually and collaboratively explore, including shape tracing, maze 

traversal, and ratio resolution. The graphs are generated in the graph area according to 

selected graph type, operations, ranges, time periods and targets. On the control panel, 

one can also choose other options, for example play, pause or refresh an experience, 

but even hide or reveal a specific curve. Regarding our case study, we are interested in 

the maze traversal, which is made available by the Line Graph type plus the choice of 

the “Make your Own Maze!” option, as we explain in the next section.  

MAKE YOUR OWN MAZE! 

The activity we consider here asked the students to deal with particular tasks using the 

“Make your Own Maze!” option of WiiGraph. The Line Graph type, which the students 

had used before, was selected, for having on the same Cartesian plane two distance 

versus time lines corresponding to the Wiimotes’ movements in front of the sensor bar. 

Being a and b the positions of the two controllers and t the variable for time, the two 

coloured lines are the graphs of a(t) and b(t) in a fixed time interval of 30 seconds by 

default (Figure 1a). Selecting the “Make your Own Maze!” option (MYOM) offered 

the possibility of having a new graph on the screen as a target and trying to traverse it 

with a(t) and b(t). The target is built with a certain number of inflection points, width, 

tension and layout, which determine a degree of complexity for the graph (Figure 1b). 

The closer the traversal is to the target the higher score a user achieves. The score is a 

measure of precision over the degree of complexity and appears at the end of the 

session for both users. The activity challenged pairs of students to get the best score, 

moving the controllers properly in front of the sensor. This case study focuses on the 

experience of Lorenzo and Alberto, who were asked to traverse the target graph in 

Figure 1c (with 42 as degree of complexity). Before them, only another pair of students 

took part in a challenge with a different target. 

 
a 

 
b 

 
c 

Figure 1. (a) Line Graph lines; (b) MYOM target; (c) Lorenzo and Alberto’s target 
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In the first part of their experience, Lorenzo and Alberto have started to move in front 

of the sensor, with the target graph visible to all the students on the IWB. Each staring 

at the screen and holding his Wiimote with two hands, the two students were both 

rigidly keeping their arms stationary in ways that the Wiimotes remained at the same 

height during the movement. However, Lorenzo was walking well-standing and 

keeping his feet close to each other, while Alberto was making big steps and moving 

back and forth with his torso, protruding himself towards the graph area, with his feet 

almost still (Figure 2a-b; Alberto is on the left, Lorenzo on the right).  

With the first trial, Lorenzo has achieved a score of 31/42, Alberto a score of 16/42. A 

second part of the experience is constituted of a brief consult with the group-mates, 

then the two students tried again to traverse the same target graph, with the aim of 

improving their score. Lorenzo received by his group-mates the suggestion of starting 

the movement farther from the sensor with respect to the first trial. The pair repeated 

the challenge, with the students moving again in two different manners, but with the 

same intensity and effort as before (Figure 2c-d). Lorenzo and Alberto were really 

attentive to their paces and to maintain their steps as regular as possible in order to 

improve their previous movement. The final scores corresponded for both to 29/42.  

 
a 

 
b 

 
c 

 
d 

Figure 2. Lorenzo’s and Alberto’s ways of moving to traverse the target graph 

The focus of our study is on the third phase of the activity, when the students took part 

in a collective discussion with their class-mates and one researcher. In particular, we 

see how Lorenzo and Alberto, in this moment, confront with their ideas about the 

qualities of movement and the expectations on the target graph, and how a couple of 

other students intervenes in the dialogue, enriching understanding of the experience. 

This phase is analysed in the next section, in which we centre on the interesting spaces 

for embodied kinaesthetic interactions that MYOM offered to the students.  

ANALYSIS 

As soon as the 29/42 scores appear on the screen, the spread emotion of the class is 

surprise, and many students pronounce: “Tie!”. The researcher asks for impressions by 

the two players, and the following discussion starts:  
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(R=researcher, L=Lorenzo, A=Alberto, F=Federico, G=Giulio; L/RH=left/right hand) 

1 R:  Feelings? None? Disappointed?  

2 L, A:     No! 

3 L:  I had understood what to do, the only problem was doing it! (The class 
laughs) 

4 R:  Why? What was the very problem in doing it, in trying to do it, for you at 
least? 

5 L:  To me, it was just moving at the right speed. 

6 R:  What do you say, Alberto? 

7 A:  I had some problems at the beginning, I wasn’t able to understand how to 
stay in the line (LH index finger pointing at it), then, I have understood it. 
But, the difficult thing was remaining at a constant speed so that our graph 
(LH index finger pointing at it) remained in (Mimes the shape of the target 
graph with his LH index finger, in the air in front; Fig. 3a) the graph 
(Repeats the previous gesture closer to his torso) displayed on the IWB. 

8 R:  Tell me, Federico. 

9 F:  To me the difficulty is not much, yeah also a bit that, but also looking that, 
instinctively, when we go under [the target] (Moves his RH index finger 
downward in the air; Fig. 3b), we are instinctively moved to go forward 
(Moves forward his RH as though to hold a Wiimote; Fig. 3c). Indeed, when 
they were a little out [of the target] (RH index finger pointing at the screen), 
instead of going backward (RH index finger, pointed at the interaction 
space, moving from right to left. Gazes at the interaction space; Fig. 3d) 
and entering the graph, they were going forward (RH moving forward again 
as though to hold the controller), because one is instinctively moved to go 
towards the graph (Repeats the previous gesture), and instead one is to stop 
the drive, and to go back (RH moving towards his torso), and enter the 
graph. 

10 G:  To me, instead, for what I have seen, the difficulty is starting with, well, 
from the right distance, and also starting suitably doing the graph, because 
then, seeing from there, they have much got the hang of it. Indeed, in the 
end, they have chased very well, but at the beginning, it is visible just that 
they had just to, I don’t know how to say 

11 R:  get the hang of it, get acquainted with it? 

12 G:  Yes, get the hang of it. 

 
a 

 
b 

 
c 

 
d 

Figure 3. (a) “remained in” (A); (b-d) “under”, “forward”, “backward” (F) 
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Lorenzo and Alberto immediately introduce in the discourse the question of speed as a 

crucial, problematic and difficult aspect of their embodied kinaesthetic experience. 

Lorenzo speaks of “moving at the right speed” (line 5), while Alberto talks about 

“remaining at a constant speed” (line 7). While Lorenzo feels this as the problem he 

encountered in his past movement, for Alberto it is more a matter of understanding the 

challenge, or “how to stay in the line” (line 7). In fact, Alberto makes explicit the 

connection between remaining at a constant speed and remaining “in the [target] 

graph” (even actualised through gestures; Figure 3a) with 'their' line (“our graph”), 

revealing how the traversal of the line on the screen and movement in the interaction 

space are inseparable. The use of the verb to remain for talking of both one type of 

movement and the other is part of the way that Alberto is now inhabiting at the same 

time the interaction space and the graphical space, of his creatively being (and living) 

at a single place where speed is a quality of the graph as well as the curvature of the 

graph is a quality of movement. Here, students are imaginatively free to move along 

multiple trails. Alberto also incorporates the presence of Lorenzo into this place, as 

suggested by his use of “our graph” to refer to the graph(s) on the screen, pointed at 

many times, that both students obtained through their motion experiences. The two 

graphs becoming one do elicit the emotional and interpersonal way of living the place 

by Alberto. Federico and Giulio, who have lived the challenge from their sitting 

position (“for what I have seen”, line 10), traverse the place shared by the two players, 

also thinking about the difficulty of the task. But attention is shifted from speed to 

distance. While Giulio feels that the starting moment is essential (“from the right 

distance”, “starting suitably”, line 10), for Federico it is more a question of how to 

“enter the graph” (line 9), which is related to the height of the graph (“when we go 

under”). Federico's entering the graph, both in words and with gestures and gaze 

(Figure 3b-d), is another way of seeing (from another trail) the traversal previously 

expressed by Alberto. Federico now focuses on the negative of the photograph took by 

Alberto, looking at the need of entering the target graph once one has turned up “a 

little” out of it. For him, the difficulty of being at the right place implies the temporal 

physical dimension of being there, in the challenge, holding the Wiimote with the hand 

(Figure 3c). This singles out the feeling of moving against instinct, which would move 

any player (“we”, “one”) in the 'wrong' direction (“instinctively moved to go forward”, 

“towards the graph”, line 9).  

CONCLUSIVE REMARKS 

The episode above has shown four students' ways of inhabiting at the same time the 

space where embodied interactions with the tool occur and the space of the screen in 

which graphs are displayed. The mathematical activity of the students is lived bodily, 

imaginary and emotionally across the thoughtful situations that each learner shares 

with others, telling stories about speeds that are curvatures and distances that are 

heights. It is where the lived-in spaces overlap, the recalled stories meet, the moving 

students encounter, that spaces become places, even a single place where movement 

and time constitute the inherent nature of the multiple paths that learner might cover. 
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From this perspective, mathematics learning is not representing or acquiring schemes. 

It is ways of talking, doing and feeling traversing old and new mathematical places, in 

an ever-changing creative move across and around recollections and expectations.  
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Analysing classroom situations regarding the use of representations is an important 

competence of teachers. There is hence a need for empirically evaluated assessment 

instruments. Although the format in which classroom situations are presented might 

play a role when assessing this competence, evidence about the role of different 

formats such as text, comic and video is still scarce. Consequently, we developed in 

this study a vignette-based test with six classroom situations and designed each 

situation in the three formats text, comic and video. N=162 teacher students were asked 

to evaluate the use of representations in the six vignettes. The results suggest that the 

competence of analysing conforms empirically to a one-dimensional Rasch model and 

that texts, comics and videos are comparably effective for assessment. 

THEORETICAL BACKGROUND 

Due to their abstract nature, mathematical objects are only accessible through 

representations, which can stand for them in many different ways (Goldin & 

Shteingold, 2001). Those multiple representations complement each other by 

emphasising specific aspects of the corresponding mathematical object without being 

the object itself (Duval, 2006). However, not only the mere existence of multiple 

representations in the classroom is crucial, but the way they are dealt with. As multiple 

representations have to be integrated by learners to develop a sufficiently rich concept 

image of a mathematical object (Ainsworth, 2006; Lesh, Post & Behr, 1987), changes 

between those different registers of representations become necessary (Duval, 2006). 

Changing representations, however, is cognitively complex and often leads to 

difficulties in understanding (Ainsworth, 2006; Duval, 2006). Consequently, students 

need to be supported when dealing with multiple representations by encouraging them 

to actively create connections between different registers of representations and to 

reflect their use (Duval, 2006; Bodemer & Faust, 2006). Teachers therefore have to be 

able to identify and interpret elements of classroom situations that are relevant for their 

students’ learning support regarding representations. This can be seen as a prerequisite 

for reacting adaptively and optimally to the learners’ needs (Sherin, Jacobs & Philipp, 

2011; Friesen, Dreher & Kuntze, in press). Such analysing of classroom situations 

requires connecting observations with relevant professional knowledge, which 

provides in particular criteria for interpretation (e.g. Dreher & Kuntze, 2015; Friesen, 

Dreher & Kuntze, in press). According to Weinert (1999), specific and context-

dependent abilities to cope with professional requirements can be described as 

professional competences. Analysing classroom situations regarding the use of 
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representations can thus be regarded as an important profession-related competence for 

mathematics teachers. This is also supported by studies showing that such analysing is 

an important characteristic of teacher expertise (Dreher & Kuntze, 2015) and is 

learnable in the context of professional teacher development (e.g. Friesen, Dreher & 

Kuntze, in press).  

Figure 1 shows the analysis of classroom situations regarding the use of representations 

as a knowledge-based process: the identification of a relevant situation aspect 

regarding the use of representations is supposed to initiate the process of analysing. In 

the process, identified situations are critically evaluated and interpreted based on 

theoretical criteria. The articulation of the analysis results might contribute to the 

connection between professional knowledge and situation observations as well. The 

process of analysing is thus not seen as a strictly linear process but may also contain 

jumps between the steps or even simultaneous processes (Friesen, Dreher & Kuntze, 

in press).  

 

Figure 1: Analysing classroom situations as a knowledge-based process  

VIGNETTE-BASED TESTING 

When it comes to assessment, the contextualised nature of teacher competence should 

be taken into account (Weinert, 1999). Accordingly, short classroom sequences called 

“vignettes” are considered to be particularly suitable to assess competence in close 

relation to professional requirements of teachers (Oser, Salzmann & Heinzer, 2009). 

Vignettes can e.g. be realised by using written cases, photo stories or video recordings 

(Herbst & Kosko, 2013). Many studies argue methodologically for the use of video-

based vignettes in order to provide the test takers with meaningful job situations 

allowing the perception of real-life situations (Blömeke, Gustafsson & Shavelson, 

2015; Seidel et al., 2011). Video-based testing has the potential to facilitate knowledge 

activation and has been shown to be motivating for test takers (Sherin, Jacobs & 

Philipp, 2011; Seidel et al., 2011). However, studies by Herbst & Kosko (2013) and 

Herbst, Aaron & Erickson (2013) have risen the methodological question of using other 

vignette formats than video such as e.g. animations. In a comparison of N= 61 pre-

service teachers’ noticing of teacher actions and the accuracy of this noticing, there 

were no significant differences between the responses to an animation and to a video 
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(Herbst, Aaron & Erickson, 2013). Keeping in mind the high expense involved in the 

production of staged video vignettes and video recordings, these results encourage the 

development of other vignette formats and call for further research.  

To describe how various types of vignettes can differ, Herbst & Kosko (2013) propose 

the categories of temporality and individuality. Accordingly, video vignettes often 

reproduce the passing of time and preserve the individual features of people and places 

in the presented classroom events. Texts, however, neutralise individuality and 

temporality to a high degree by using symbols and expressions such as “the teacher” 

and expand or collapse the duration of the presented events by providing options like 

skimming or revising. The position of comics might be somewhere in between: while 

the individuality of the classroom and the presented persons is reduced to some degree 

(e.g. boys and girls cannot be distinguished), the facial expression of individual 

characters can still be observed.  

From the perspective of assessing teachers’ competence of analysing the use of 

representations in the mathematics classroom, these aspects might play a role of 

potential distractors (e.g. added context information in comics and videos have to be 

processed, the temporality might be an obstacle for analysis) or conversely facilitate 

analysis (e.g. as context information might support the understanding of the classroom 

situation). However, to our knowledge, there is hardly any quantitative empirical 

research which explores the role of vignette formats such as texts, comics and videos 

for the analysis of classroom situations in a corresponding test instrument. This leads 

us to the following research interest and research questions.  

RESEARCH INTEREST AND RESEARCH QUESTIONS 

The research interest of this study is to explore whether the competence of analysing 

classroom situations regarding the use of representations can be assessed in a vignette-

based test instrument taking into account different vignette formats (text, comic, 

video). In particular, the research questions are the following: 

Is it possible to describe the competence of analysing classroom situations regarding 

the use of representations empirically with one competence dimension using different 

vignette formats? 

Are there differences in the empirical difficulty for different vignette formats (text, 

comic, video)? Is it possible to identify any systematic patterns? 

DESIGN AND SAMPLE 

In order to assess the teacher students’ analysing regarding the use of representations, 

we developed six classroom sequences situated in year 6. All classroom situations have 

a similar structural design showing group work in the context of fractions. 

Accordingly, each classroom situation starts with the teacher being asked for help by 

a group of students who have already started to solve a given problem using a certain 

representation (algebraic or pictorial). The situations were designed by purpose in such 

a way that the teachers’ support of the students is not in line with the theory regarding 
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the use of representations as outlined above. In order to support the students’ 

understanding, the teacher shifts away from the representation the students have 

already been using and changes to an additional representation. However, this change 

of representations remains unreflected and unexplained as the teacher fails to connect 

that additional representation to the representation the students have already been 

using. Due to the lack of connections between the used registers of representations, the 

teacher’s reaction could potentially lead to further problems in the students’ 

understanding rather than supporting it.  

In order to explore validity after the vignette design, the classroom situations were 

presented to N=5 expert teachers who also teach pre-service teachers in their induction 

phase. According to their ratings, we selected six sequences for the test instrument in 

which the support given by the teachers was identified as potentially impeding for the 

students’ understanding due to unexplained changes of representations. In addition, the 

experts rated those classroom sequences as highly authentic and representative for 

dealing with representations in the content area of fractions.  

To investigate the teacher students’ responses to different vignette formats, we 

implemented each of the six classroom situations as text, comic and video vignettes 

(see Figure 2). The texts were used as blueprints to design the comics and the comics 

provided the storyboards for the video recordings. In order to avoid dependencies 

between the video vignettes, each video was recorded in another classroom showing 

six different teachers and learning groups. After editing the video recordings, we 

adapted the comics and the texts, so that the conversations in the classroom situations 

would have the same wording in each vignette format and the representations used by 

students and teachers would look similar. 

 

Figure 2: Vignette # 5 as text, comic and video; comic drawn by Juliana Egete 

The sample of this study consists of N=162 mathematics teacher students (66.9% 

female; Mage=21.55, SDage=2.38). As they were at the beginning of their professional 

education (Msemester=1.80; SDsemester=1.40), they formed a satisfactorily homogeneous 

group regarding the progress of their studies. In order to assess their competence of 

analysing regarding the use of representations, we asked them to evaluate the teachers’ 

support in the six classroom situations responding to the following open-ended item: 

How appropriate is the teacher’s response in order to help the students? Please 
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evaluate regarding the use of representations and give reasons for your answer. The 

different vignette formats were randomly assigned to the test takers, so that every 

teacher student would respond to two texts, two comics and two video vignettes. The 

videos lasted about 1.5 minutes each and could be paused or watched several times.  

DATA ANALYSIS AND SELECTED RESULTS 

The answers of the teacher students were coded by two independent raters reaching a 

good inter-rater reliability with κ=0.85 (Cohen’s kappa). The top-down coding scheme 

was derived from the theory regarding the use of representations as outlined above. 

Table 3 shows the code descriptions and sample answers to classroom situation number 

five (see also Figure 2). The distribution of the three codes (see Figure 3) show that 

only in 25.1% of the teacher students’ answers the unexplained change of 

representations was identified and interpreted as potentially problematic (code 2).  

code description sample answer 

0 refers only to representations used 

by the teacher without making any 

connections to the students’ 

question/representation 

“The representation (pizza) is easy to 

understand and can also be used in other 

contexts.” (#1/20/v5) 

1 refers to representations used by 

both students and teacher; does not 

mention that the unexplained 

change of representations might be 

problematic 

“The teacher’s explanation and 

representation illustrate the students’ 

problem and the solution very well and 

helps the students to understand.” 

(#1/1/v5) 

2 refers to representations used by 

both students and teacher; mentions 

that the unexplained change of 

representations might be 

problematic  

“There is no explanation why five pizza 

slices form one pizza. The teacher explains 

how to solve the problem but she does not 

respond to the students who have already 

started dividing 13 by 5.” (#4/14/v5) 

Table 1: Sample answers and application of codes 

 

 

Figure 3: Teacher students’ answers: distribution of codes, relative frequencies 
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Considering the vignette formats, the results of a chi-square test revealed no significant 

association between the format of the vignettes (text, comic, video) and the teacher 

students’ analysis regarding the use of representations in the represented classroom 

situations (χ2(4) = 7.09).  

Contributing to the research questions of the study, we applied a Rasch model to the 

data. In order to reflect the coding of the answers (see Table 1), we used a partial credit 

model (PCM) which is considered to be highly applicable when partial marks are 

awarded in an ordered way, each increasing score representing an increase in the 

underlying ability (Bond & Fox, 2015). In line with that, we took the six vignettes in 

the three formats as one item each, resulting in 18 items altogether and applied the 

partial marks as shown in Table 1. The Rasch analysis revealed good fit values for all 

18 items (0.91 ≤ wMNSQ ≤ 1.16; - 0.6 ≤ T ≤ 1.0) indicating that they sufficiently fit 

the Rasch model (Bond & Fox, 2015). Related to the first research question, these 

results suggest that the Rasch requirement for unidimensionality holds up empirically 

as each item contributes in a meaningful way to the competence of analysing being 

investigated. The EAP/PV reliability appears to be rather low (0.45) which might be 

due to the comparatively small number of items (Bond & Fox, 2015). 

Related to the second research question, we investigated the association of item 

difficulties and vignette formats. The Wright map (see Figure 4) shows both persons 

and items located on the same map with the highest values located on the right of the 

logit scale and the lowest values located on the left.  

 

Figure 4: Wright map of the Rasch model (PCM) 

As the items were scored polytomously (codes 0, 1, 2; see Table 1), two difficulty 

thresholds are plotted in the map: above threshold estimate 1, scoring code 1 is more 

likely than scoring code 0 and above threshold estimate 2, scoring code 2 is more likely 

than scoring code 1 (Bond & Fox, 2015). The item difficulty estimates show for all 18 

items that the step between code 0 and 1 is easier (mostly negative logit scores) than 

the step between code 1 and 2 (mostly positive logit scores). The person distribution 

does not extend beyond the range of the most difficult thresholds, which is in line with 

our expectations regarding the sample of teacher students who were still at the 

beginning of their professional education (see Figure 4, compare to Figure 3). As the 

difficulty estimates can be interpreted as interval data (Bond & Fox, 2015), we carried 

out an analysis of variance in order to investigate the association of item difficulties 
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and vignette formats. In line with the results described above, the comparison of texts 

(items 1-6), comics (items 7-12) and videos (items 13-18) again did not reveal any 

significant differences between the three vignette formats (F=0.047, df=4; p= .996). 

DISCUSSION 

In this study, we intended to explore if format matters in the assessment of a 

competence which we expected to be unidimensional. The results suggest that when 

teacher students’ competence of analysing the use of representations is assessed with 

vignettes in text, comic and video format, the test items fit to a one-dimensional Rasch 

model without exception. As the analysis of the data did not show any significant 

differences neither with respect to the codes of the student teachers’ answers nor 

concerning the estimated item difficulties, the results suggest that in this study the 

competence of analysing could be measured independently from the different vignette 

formats. Consequently, the vignette formats text, comic and video appear to be 

comparably effective to tap teacher students’ competence of analysing regarding the 

use of representations. These findings may be interpreted as evidence supporting the 

validity of the test instrument: they suggest that the teacher students’ competence of 

analysing was not influenced by item design factors such as temporality, individuality 

or the context information that were implemented to different degrees in the three 

vignette formats. In addition to that, our findings are in line with studies comparing 

e.g. animations and videos carried out by Herbst et al. (2013), contributing to an 

external validation of our study. Bearing in mind the high expense involved in the 

production of staged video vignettes and video recordings, the findings encourage 

further research on the development of alternative vignette formats in order to assess 

professional teacher competencies. Moreover in further research, pre-service teachers 

at an advanced level and in-service teachers should be taken into account as they might 

perceive the vignette formats in a different way due to their different professional 

knowledge and teaching experience.  

Acknowledgements 

This study is supported in the framework of the project EKoL supported by the Ministry of 

Science, Research and the Arts in Baden-Wuerttemberg. 

References 

Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with 

multiple representations. Learning and Instruction, 16, 183–198. 

Blömeke, S., Gustafsson, J.-E. & Shavelson, R. (2015). Beyond dichotomies: Competence 

viewed as a continuum. Zeitschrift für Psychologie, 223, 3-13. 

Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple 

representations. Computers in Human Behavior, 22, 27–42. 

Bond, T. & Fox, C. (2015). Applying the Rasch Model. Fundamental Measurement in the 

Human Sciences. New York: Routledge.  



Friesen, Kuntze 

2–266 PME40 – 2016 

Dreher, A. & Kuntze, S. (2015). Teachers’ professional knowledge and noticing: The case of 

multiple representations in the mathematics classroom. Educational Studies in 

Mathematics, 88(1), 89-114. 

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of 

mathematics. Educational Studies in Mathematics, 61, 103–131. 

Friesen, M., Dreher, A. & Kuntze, S. (in press). Pre-Service Teachers’ Growth in Analysing 

Classroom Videos. CERME Proceedings 2015. 

Goldin, G., & Shteingold, N. (2001). Systems of representation and the development of 

mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The role of representation 

in school mathematics (pp. 1–23). Boston, Virginia: NCTM. 

Herbst, P., Aaron, W. & Erickson, A. (2013). How Preservice Teachers Respond to 

Representations of Practice: A Comparison of Animations and Video. [Paper presented at 

the 2013 Annual Meeting of the AERA, San Francisco].  

Herbst, P. & Kosko, K.W. (2013). Using representations of practice to elicit mathematics 

teachers’ tacit knowledge of practice: a comparison of responses to animations and videos. 

Journal of Mathematics Teacher Education, 17(6), 515-537. 

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations 

in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of 

representation in the teaching and learning of mathematics (pp. 33–40). Hillsdale, NJ: 

Lawrence Erlbaum. 

Oser, F., Salzmann, P. & Heinzer, S. (2009). Measuring the competence-quality of vocational 

teachers: An advocatory approach. Empirical Research in Vocational Education and 

Training 1, 65-83. 

Seidel, T., Stürmer, K., Blomberg, G., Kobarg, M., & Schwindt, K. (2011). Teacher learning 

from analysis of videotaped classroom situations: Does it make a difference whether 

teachers observe their own teaching or that of others? Teaching and Teacher Education, 

27, 259-267. 

Sherin, M., Jacobs, V., Philipp, R. (2011). Mathematics Teacher Noticing. Seeing Through 

Teachers’ Eyes. New York: Routledge. 

Weinert, F. E. (1999). Concepts of Competence. Munich: Max Planck Institute for 

Psychological Research. 

 



 

2016. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.). Proceedings of the 40th Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 267–274. Szeged, Hungary: PME. 2–267 

SHARED OBJECT AND STAKEHOLDERSHIP IN 

TEACHER-RESEARCHER EXPANSIVE LEARNING ACTIVITY 

Sharada Gade & Charlotta Blomqvist 

Umeå University, Umeå, Sweden & Grisbacka Primary School, Umeå, Sweden 

 

Cultural historical activity theory (CHAT) perspectives are used to shed light on an 

extended teacher-researcher collaboration, at a Grade 4-6 school in Sweden. 

Beginning with participant observation and emerging forms of engagement like co-

authorship of research reports, the collaboration is understood as expansive learning 

activity. Treating the practices of teaching and research as distinct yet collaborating 

activity systems within this, provides an opportunity to analyse the manner in which 

joint conduct of project related instructional interventions became shared object. This 

also enabled teacher and researcher to become active stakeholders in each other's 

practice. Dialectical realisation of stakeholdership and shared object led to 

reconceptulaisation and transformation of the very horizons of our work.  

INTRODUCTION 

In his plenary address at the 35th annual PME conference, Konrad Krainer (2011) 

sought for teachers to become stakeholders in mathematics education research and 

researchers to become stakeholders in classroom practices, not only to allow for mutual 

trust but for respective knowledge bases to overlap in reflective rationality. As teacher 

and researcher, in this paper we shed light on one such instance of stakeholdership, 

elaborated elsewhere as a case of expansive learning activity (Gade, 2015). Such 

activity elaborated upon in following sections, exemplifies our collaboration, first with 

a six month pilot at a Grade Six classroom, followed by year-long project related work 

to promote communication in mathematics at Grade Four. During this time, our initial 

engagement as teacher and researcher observer gave way to analysis of intervention 

related data as well as co-authorship in scientific reporting, such as this research report. 

Enabling us to build trust and share knowledge over time (Krainer, 2011), such 

engagement exemplifies the motive, purpose or object of what Engeström (2001) 

identifies as expansive learning activity: 

 The object of expansive learning activity is the entire activity system in which the 

 learners are engaged. Expansive learning activity produces culturally new patterns of 

 activity. Expansive learning at work produces new forms of work activity. (p. 139) 

While project related interventions formed the central backbone of our collaboration, 

in this paper we step back and reflect on the evolving nature of the object we shared in 

our extended collaboration. Such an eventuality enabled us to work across school and 

university confines, our respective practices of teaching and research and become 

stakeholders. In what manner did the shared object in teacher-researcher expansive 

learning activity, allow for stakeholdership in teacher-researcher collaboration?  
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Prior research points to poorly understood relationships between practices of teaching 

and research. Writing to the theory-practice issue which remains problematic to this 

day, Elliott (1991) speaks from action research traditions and points out that teachers 

feel threatened by theory, produced by outsiders who claim to be experts. Such theory, 

couched in generalised terms, denies teachers their everyday experiences. From teacher 

education research, Cochran-Smith (2005) has more recently argued in favour of 

building a theory for social change by university-based researchers drawing on 

educational scholarship, while collaborating with school-based teachers who are 

activists. Within mathematics education research, Schoenfeld (2013) has spoken to the 

paucity of studies which detail classroom ecologies, while also addressing major 

problems of practice. Laying down principles of action that could ensure success in 

mathematics for all, Leinwand, Brahier and Huinker (2014) articulate professionalism 

of teachers in terms of their ability to enter into partnerships with knowledgeable 

others, so as to question the existing status quo. Speaking from lesson study research 

Corcoran (2011) shows how lesson plans say, could be viewed as boundary objects in 

communities of practice in which teachers needed to constantly "become". Engaging 

with these issues, in this paper we treat our individual practices of teaching and 

research as two separate yet collaborating activity systems, with the shared object of 

each being our joint conduct of project related instructional interventions.  

THEORETICAL UNDERPINNINGS 

In his version of cultural-historical activity theory, also known as CHAT, Engeström 

(2001) extends the Vygotskian premise that the human mind develops with meaning 

mediated by cultural artifacts acting as tools or instruments. To overcome the divide 

between the Cartesian individual and prevalent societal structures, Engeström forwards 

a triangular activity system as analytical unit, which incorporates a selection of societal 

elements. While other scholars have sought for explicit inclusion of emotion while 

studying human development (Roth & Lee, 2007), and dwelt insightfully on its 

transformative aspects (Stetsenko, 2008), in this paper we take Engeström's activity 

system as point of departure. We analyse teacher-researcher collaboration in terms of 

two separate yet collaborating practices of teaching and research, which we consider 

as activity systems, whose realisation over time led to expansive learning activity 

(Gade, 2015). In understanding the shared object of such expansive activity, one which 

led to stakeholdership in our collaboration, we draw upon five principles laid down by 

Engeström (2001) which underpin his analytical framework: (1) that an activity system 

in its network of relations with other activity systems, be treated as unit of analysis; (2) 

that activity systems be conceived as multi-voiced, incorporating views, traditions and 

interests of the wider community; (3) that development of activity systems be studied 

historically, over lengthy periods of time; (4) that the role of contradictions and 

structural tensions between activity systems, be studied as the source of change and 

transformation and (5) that the object and motive of expansive learning, with their 

qualitative transformations, be understood in terms of how radically new horizons and 

modes of activity are reconceptualised. 
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In line with Engeström we represent the practice of teaching and research as two 

triangular activity systems, as in Figure 1. This schematic also depicts collaborative 

activity between Lotta (as Charlotta is known) and Sharada with respect to our joint 

conduct of instructional interventions to meet with Lotta's project related aims. The 

evolving nature of either activity system over time, led us to share project related aims, 

reconceptualise the very horizons of teacher-researcher collaboration and allowed us 

to become stakeholders in each other's practice. 

 

 

 

 

 

 

Figure 1: The practices of teaching and research depicted as two collaborating 

activity systems, with their object being shared (Engeström, 2008, p. 4) 

Following non-dualist perspectives of CHAT, we conceive the practices of teaching 

and research as a network of relations, in both independent and collaborative ways. In 

line with this view, Lotta was subject in her own activity system for which she utilised 

various physical and intellectual artifacts to mediate teaching within her classroom 

(e.g. the textbook, her pedagogy). Directed primarily at students her activity system 

drew on her practical action or praxis and her practical wisdom or phronesis (Gade, 

2014). Sharada likewise was subject in her own activity system, for which she deployed 

artifacts in educational research (e.g. academic literature, analytical perspectives). 

Directed at both Lotta and her students, her activity drew on conducting disciplined 

inquiry within research.  In Table 1 below we outline both independent and commonly 

shared aspects of each activity system.  

Activity system Practice of teaching Practice of research 

Instruments Of classroom Of research 

Subject Teacher Researcher 

Object Conduct of project related instructional interventions  

Outcome Sharing of object and stakeholdership 

Rules Of praxis, phronesis Of disciplined inquiry 

Community School students Students and their teacher 

Division of labour Primarily of teaching Primarily of research  

Table 1: Comparison of the practices of teaching and research, conceived as activity 

systems, in the study of teacher-researcher collaboration 
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CHAT perspectives conceive the purpose or object of any activity system to be their 

motive as well (Leont'ev, 1978). Our conduct of instructional interventions was both 

object and motive for each of our activity systems, guided by Engeström's (2001) five 

principles of expansive learning activity. In deploying two activity systems in our 

analysis, we investigated the nature of relations which constituted our ongoing 

functioning, besides the wider network of relations that we were able to enter into 

(principle 1). These activity systems were far from water-tight and responded to inputs 

received by way of opinions and interests of both Lotta and her students (principle 2). 

With both activity systems being multivoiced, we were able to take on each other's role 

while ensuring democratic participation for all. Achieving multi-voicedness in our 

study enables this paper to shed light on how our activity systems evolved gradually 

over time (principle 3) and became expansive learning activity (Gade, 2015). Such 

conduct provides our study detailed understanding of classroom ecologies (Schoenfeld, 

2013) and knowledgeable partnerships which have potential to question the existing 

status quo (Leinwand et al., 2014).  

Rather than personally experienced conflicts, CHAT perspectives treat contradictions 

as tensions between activity systems and the drivers of societal change and human 

development (principle 4). For example, in the first of three instructional interventions, 

Sharada's presence as researcher in Lotta's classroom led us to rectify the faulty use of 

the mathematical '=' sign by Lotta's students (Gade, 2012). Towards the end of our 

collaborative work, Lotta likened her experience to a professional development course 

conducted in her classroom, in contrast to her earlier experience with researchers 

visiting her classroom as spectators, providing her teaching with little insightful 

feedback. Through promoting students' development in line with CHAT, our 

interventions were able to overcome the realisation of a generalised manner of theory 

which denied teachers their everyday experiences (Elliott, 1991). Our interventions 

drew on educational scholarship and contributed to wider social change (Cochran-

Smith, 2005). Our conduct of project related interventions can also be seen as 

responding to tensions faced in Swedish society in relation to falling educational 

standards as reported in International tests, since Lotta's project was one of many 

funded nationwide by The Swedish National Agency for Education. These societal 

events provided fillip to the teacher-researcher collaboration and enabled us to respond 

to local needs in Lotta's classroom, wherein we reconceptualised prevalent pre-existing 

norms and relations (principle 5). Our need to report on our project related work then 

led us to enter into and utilise new forms of engagement and work, which characterised 

our expansive learning activity (Engeström, 2001). Born from our motives within 

teaching and research, such activity resulted in our crossing the institutional confines 

of school and university. The newer modes of engagement which we realised were 

neither clear to us prior to entering into collaboration, nor predetermined in any 

manner. Our realisation of expansive learning activity was an open ended exercise 

which drew on our joint conduct of project related instructional interventions, which 

became the object, purpose and motive of our extended teacher-researcher 

collaboration (Leont'ev, 1978).  
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METHODOLOGY AND METHODS 

Our collaboration extended across a pilot conducted by Sharada in the first half of 2009 

in Lotta's classroom and a year-long project during 2009-2010 for which Lotta  

received funding (Dnr 2009:406). We consider the CHAT methodology that 

underpinned our study to be tool-and-result (Newman & Holzman, 1997). Unlike 

designated tools used for obtaining specific outcomes, in this approach a researcher 

accompanies any subject's use of tools in activity to draw inferences on the human 

development possible. Recognised as developmental education (van Oers, 2009), 

classroom interventions in line with this methodology, include teachers and also peg 

instruction to lead, advance and proceed ahead of students' development within 

instruction. Conducting our instructional interventions in line with this approach, we 

drew also on the CHAT theory of explicit mediation wherein students' participation in 

activity was not invisible, internal and implicit; but spoken, audible, visible and made 

explicit within instructional activity (Wertsch, 2007). Detailed at length elsewhere, 

these included Lotta's students overcoming their faulty use of the mathematical '=' sign 

(Gade, 2012), their posing of mathematical problems by making use of textbook 

vocabulary (Gade & Blomqvist, 2015a), and their use of talk to explore their current 

understanding of everyday measures, leading also to articulating their nascent and 

emerging theories of measure (Gade & Blomqvist, 2015b).  

Each of our interventions, aimed at promoting students' communication as they learnt 

mathematics, was conducted at timely breaks within Lotta's teaching to limit their 

strain on her curricular routines. They were also conducted with students grouped in 

pairs or dyads. We collected empirical data in the form of students' inscriptions, 

Sharada's field notes of classroom proceedings and audio recordings of Lotta's whole 

classroom instruction. It was thus possible for us to carry out multiples levels of 

triangulation between our three data sources, as well as draw on our experiences of 

conducting the three interventions as teacher and researcher. This approach informed 

our analysis and prepared the ground for our scientific reporting of each intervention. 

The historical progression of such manner of collaboration provided the ground for 

instructional interventions to become the shared object of both of our activity systems, 

as further outlined below. In doing so and in line with CHAT, rather than limiting 

ourselves to methodological individualism, we understood the human mind as actively 

taking part in ongoing events and practices, geared towards realising specific end 

products, within instruction, in a non-dualistic manner.  

SHARED OBJECT IN EXPANSIVE LEARNING ACTIVITY 

To outline the manner in which our conduct of instructional interventions became the 

shared object of teaching and research as activity systems, we trace our teacher-

researcher collaboration from inception beginning with Sharada's pilot study in Lotta's 

Grade Six. In this study Sharada invested in one-to-one relationships with Lotta's 

students, in order to examine students' narratives as they went about learning 

mathematics. Upon observing satisfactory realisation of these within her classroom, 
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Lotta began sending students who had completed their assigned classroom tasks, to 

work at puzzles which Sharada had at hand. Soon after, Lotta requested Sharada to 

work with a student who was weak, with the consent of the student's mother. The 

history of these events exemplifies the manner in which we built trust, the first step in 

the expansive learning activity. The manner in which Lotta acted on this trust leads us 

to the second step, exemplified by her beginning to take Sharada's presence and input 

for granted while applying for project funding whose aims were those she thought 

appropriate as a teacher. We argue these actions mark the nascent beginnings of what 

became our shared object of collaboration with Lotta's Grade Four students in the year 

ahead. This sharing took root in yet another pilot in which Lotta conducted an 

intervention based on the CHAT theory of explicit mediation (Wertsch, 2007). Such 

conduct had two benefits. First, Sharada was able to study the implementation of 

CHAT theory within Lotta's instruction. Second, Lotta sought and read the research 

literature on which the pilot was designed and implemented. Such a theory/practice 

CHAT approach became our bedrock for conducting further interventions. 

Singled out as a contradiction earlier on, Lotta's seeking Sharada's expertise to rectify 

her students faulty use of the '=' sign, made our collaboration gain agency. In line with 

action research perspectives, we drew upon our reflexivity to design, conduct and 

sustain a four-stage action cycle in which Lotta's students offered mathematically 

appropriate statements (Gade, 2012). Aiming for students to pose mathematical 

problems as well as reflect on written language, we next had them use vocabulary we 

chose at random from their textbook. Lotta participated in pair work, standing in for a 

student who had swimming lessons, and also conducted blackboard work for students 

to discuss vocabulary which they thought was utilised within mathematics (Gade & 

Blomqvist, 2015a). Our final intervention was in Lotta's teaching of the topic of 

measurement. In line with the project aims, we had students use talk to explore their 

understanding of everyday measures, articulating their nascent and emerging theories 

of measure. Even as Lotta conducted this intervention by choosing a pedagogical 

category she thought was appropriate, it was our joint transcription of Sharada's audio-

recording and its subsequent analysis which lent itself to our reporting of the landscape 

study (Gade & Blomqvist, 2015b). In recognising the greater role Lotta began to take 

on in the trajectory of research being conducted, we point out that while Lotta was 

anonymised in the first reporting, by the second and third Lotta having contributed to 

analysis and interpretation of data, was co-author of its content.  

From initial steps of our building mutual trust, the process we outline here sheds light 

on how our teacher-researcher collaboration became expansive learning activity. In 

line with Engeström (2001), the project-wide activity of teacher-researcher 

collaboration was motivated by our conduct of project-related instructional 

interventions. Towards the same we utilised new patterns and forms of work, from 

building trust, interpreting data, to co-authorship. The conduct of project related 

instructional interventions was also the object to which teaching and research as 

activity systems were subordinated (Leont'ev, 1978). 
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TEACHER-RESEARCHER STAKEHOLDERSHIP 

We conclude by juxtaposing two aspects which inform the notion of stakeholdership 

which Krainer (2011) sought, so that our knowledge base as teacher and researcher 

could engage in reflective rationality. The first is, wider research in education which 

seeks it's realisation in instructional practices. The second is, CHAT research which 

allows for its realisation by attending to human development. The need for teachers 

and researchers to realise stakeholdership is informed from many fronts - to meet 

demands that teachers have in their everyday (Elliott, 1991), to build theory for social 

change (Cochran-Smith, 2005), to grasp classroom ecologies (Schoenfeld, 2013), and 

to question prevailing status quo (Leinwand et al., 2014). In realising stakeholdership 

in our study and speaking to how these objectives have potential to be met via CHAT 

perspectives, we point to it's non-dualistic approach which seeks the study of the 

human mind as culturally and historically situated, distributed or networked in wider 

society. This premise led to our treating the practices of teaching and research as 

interacting activity systems (Engeström, 2001), whose motive and purpose lay in the 

kind of object that was being immediately pursued (Leont'ev, 1978). This involved 

adopting a tool-and-result approach in our extended conduct of collaborative research 

(Newman & Holzman, 1997), wherein we conceived teachers as partners and pegged 

instruction to advance students' development (van Oers, 2009). Such a stance leads us 

to our next point, that a focus on human development entails that researchers work with 

various stakeholders in concrete instructional realities and guide the progression of 

outcomes which may not be envisaged by anyone beforehand. In such conduct the 

growth of the shared object of the activity systems which collaborate, has potential to 

overcome contradictions and bring about instructional change. 

Finally, we consider our collaboration to exemplify how instructional interventions 

became the shared object of teaching and research. We found that our pursuance of this 

shared object evolved dynamically and resulted in our becoming stakeholders in each 

other's professional practice. Dialectical realisation of both these aspects enabled us to 

reconceptualise our existing relationships and radically transform the status quo, 

besides the historical reality and very horizons of our work.  
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The results of standardized tests such as PISA and the Italian INVALSI, point out the 

existence of a gender gap in mathematics. This gap is deeply studied in mathematics 

educations literature. In this paper we analyse two INVALSI items of grade 10 in which 

male and female answers have distinctly different behaviour. Our aim is to observe if 

this different trend of male and female answers is influenced in particular by effects of 

didactic contract. In this analysis we integrate quantitative and qualitative methods. 

The quantitative analysis is based on IRT models and it allow us to highlight the trend 

of the correct and wrong answers, distinguishing between male and female. The 

qualitative analysis involves interviews to students and confirm that the choice of a 

particular response is influenced by didactic contract effects. 

INTRODUCTION 

The INVALSI tests are national standardized tests administered every year in different 

grades of primary and secondary schools in order to have systematic checks on 

students' knowledge and skills in maths and Italian. The increasing importance given 

to standardize tests such as INVALSI and PISA, provides new opportunities not only 

in the evaluation of educational systems’ performances, but also in the educational 

field. If 10 years ago the usage of PISA results in mathematics education was still 

limited (Sfard, 2005), in the recent years, many researchers began to use standardize 

assessments for their studies. For instance, the results of PISA and INVALSI tests 

showed the existence of a gender gap in mathematics in favour of male and gave the 

opportunity of study this issue in large populations using also specific statistic tools. In 

our analysis, we observe that the gender gap is not uniformly distributed on all the 

items of a test: only some of the tasks present a marked gender gap (in terms of 

percentage of correct answer of male and female). Moreover, according to recent 

studies on INVALSI tests (Cascella, 2015), the psychometrical analysis of the item 

functioning reveals that some items present different performances for male and 

female.  

In this paper, we focus our attention on two INVALSI items of grade 10 in which male 

and female populations have a strictly different behaviour. We select these two items 

also because we suppose that two wrong choices (we are dealing with multiple choice 

tests) are related with didactic contract effects. Our purpose is to investigate if, in this 

particular case, the gender gap and the different behaviour revealed in the quantitative 

analysis, can be influenced also by a different response to didactic contract for male 

and female. The first part of our study is a quantitative analysis of the two items based 

on Item Response Theory models and evidences the different trends related to gender. 
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The second part is purely qualitative and consists in interviews with the purpose of 

understanding the processes that led students to choose a particular distractor. 

THEORETICAL LENSES 

In the recent years, national (INVALSI) and international (such as PISA) assessments 

pointed out that in mathematics male and female have different performances: boys 

outperform girls at all school levels and in almost all the countries. This issue has been 

debated for several years and a large number of studies has focused on the determinants 

of gender-gap (Forgasz et al., 2010). Standardized assessment, and in particular PISA 

studies, have given an increasing importance to investigation on gender differences in 

academic achievement.  Various studies highlight the importance of social factors to 

explain gender-gap in mathematics, evidencing that in more gender-equal cultures this 

gap disappears (Guiso et al., 2008). This hypothesis is also supported by the fact that 

this gap is not present at the early stage of school but it raises during the school years. 

In this research we endorse this idea and, in particular, we assume that education is the 

main cause of gender differences. A recent study based on PISA 2009 results 

confirmed this hypothesis and reveals also that “In addition, gender role attitudes 

within the family environment […] is found to affect girls’ performance positively.” 

(González de San Román & De La Rica, 2012).  

This research hence fits into a constructivist perspective in which cognitive functions 

are formed according to the context, and are described as products of social 

interactions. The learning process cannot be separated from this interactive context 

defined on the bases of three components: student, teacher and knowledge (Chevallard, 

1985).  In this paper, we use the idea of didactic contract defined by Guy Brousseau as  

behaviour of the teacher expected from the pupil and the behaviour of the pupil expected 

from the teacher constitute the didactic contract. (Brousseau, 1980). 

The didactic contract imposes rules of behaviour and it is the key to analyse the 

students response to the items analysed in this paper. The relations established between 

students and teacher, within the milieu, could be also studied in detail through other 

theoretical constructs, such as the concepts of coutume didactique and 

sociomathematical norms (for a comparison of these concepts and an example of how 

they can network, see Ferretti et al.,; Ferretti, 2015). Moreover our aim is to study if 

didactic contract, as a product of social context, have a different influence on male and 

female and, therefore, on gender gap in maths. At first, it’s interesting to notice that, as 

we have already seen for gender gap in mathematics, also didactic contract seems to 

be not present in pre-scholar pupils (Baldisserri et al., 1993) but it origins in primary 

school. 

METHODOLOGY 

In this research, we use both quantitative and qualitative analysis. The first part of the 

analysis is purely quantitative and give us the opportunity to observe the behaviour of 

the items in a large-scale assessment and to make assumption about that behaviour. 
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The second part of the analysis has the purpose of validate these assumptions through 

interviews to a restricted group of students. 

Quantitative analysis 

The two items investigated in this study belong to 2011 and 2012 INVALSI tests of 

grade 10. For each test, the data analysed are those of INVALSI’s sample. This sample 

consisted of approximately 40.000 students and it is representative of the population 

of Italian grade 10 students. The INVALSI team proved the consistency of both tests 

by using the Classical Test Theory tools and made a first analysis using IRT models 

and in particular the Rasch Model (INVALSI, 2012b; Rasch, 1960). The Rasch model 

is a simple logistic model and it is useful to analyse a standardized test such as 

INVALSI because it allows joint estimation of two kind of parameters: a difficulty 

parameter for each item and an ability parameter for each student. More specifically, 

this model express the probability of choosing the correct answer in an item as a 

function of the item’s difficulty and the ability of the students in the whole test and this 

function is called Item Characteristic Curve. In this way, it is possible to use Rasch 

parameters to represent also the empirical data and, in particular, we can represent the 

trend of each possible response as a function of the students’ ability. Those specific 

graphs are named Distractor Plots. 

In the INVALSI National Annual Report 2011, gender differences in math tests are 

identified on the basis of total medium score observed for male and female (INVALSI, 

2011). This gap is perceived in both of the tests analysed and it is statistically 

significant (INVALSI, 2011; INVALSI, 2012a). 

Starting from these INVALSI results and the same dataset, we compare percentages of 

male and female answers, then we use the Rasch Model to study distractor plots for 

male and female separately. Distractor plots allow us to study gender differences in 

relation with the ability level of the students and, in particular, we can observe if there 

are differences not merely in choosing the right answer but also in trends of the 

incorrect ones. 

Qualitative analysis 

The second part of our study is purely qualitative and consists in interviews of a 

restricted group of students about the items analysed in this paper. For this purpose, we 

administer in two classes of the same high school a brief questionnaire, consisting in 5 

mathematical items including one of the two items studied in this research (Fig. 3). The 

other items are designed to contextualize the studied task into a mathematical test and 

to evidence if a student face up the test seriously. Just after the correction of the 

questionnaire, we select 22 of the 49 students for the interview. We select them on the 

basis of their response to the task studied and their maths score provided by the teacher. 

In particular, we choose to interview principally students good at maths (school mark 

> 6.5/10) who didn’t answer correctly to the item. The interviews are semi-structured, 

task based and in couples. We decide to interview together students that had selected 

different options and ask them to explain to the classmate the reasons of their decision. 
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At a later stage, we present them the other item and ask to compare it with the first one. 

Each interview takes about 20 minutes and is audio taped. At last, we transcribe the 

interviews and analyse the transcriptions. 

ITEMS ANALISYS 

In this research, we focus our attention on two similar items: the question intent is the 

same, both concern the same content (powers properties) and the answers are 

analogous. Both tasks are multiple-choice questions with only one correct answer but 

one is set into an algebraic context (Fig. 1) and the other into an arithmetical context 

(Fig. 3). Moreover, in both items we register a remarkable difference in male and 

female performances.  

 

 

 

Figure 1: Item from the grade 10 INVALSI test administered in 2012 [1] 

The correct answer is C and it is chosen only by 35% of students. Option A, in which 

the base is the sum of the basis and the exponent is the sum of exponents, is chosen by 

19% of students. Option B and D are similar because the resulting power has the same 

base of the original ones but the resulting exponent is the sum of two exponent in option 

B and the product in option D. The 26% of the respondents select answer B, which is 

the most attractive wrong answer and option D is chosen by 16% of students. In 

addition, only 3% of students do not respond to this question and this may mean that 

students are fairly confident about their answers. In the table below, we can also 

observe that male responded better than female: 38% of male give the right answer 

compared with 31% of female. 

 Total Male Female 

A 19 % 19 % 20 % 

B 26 % 27 % 26 % 

C 35 % 38 % 31 % 

D 16 % 14 % 19 % 

Missing 3 % 3 % 3 % 

 Table 1: Results of item (Fig. 1) from INVALSI test administered in 2012.  



Giberti, Zivelonghi, Bolondi 

PME40 – 2016 2–279 

Observing the table (Tab. 1) of percentage, we can also see that the response D is more 

attractive for girls. These and others particularities of these item responses are more 

visible using the results of Rasch analysis to graph distractor plots.  

 

 

 

Figure 2: Distractor plots of the first item [1]: comparison between the right answer 

and the other options (the right answer is the one with increasing trend). 

Distractor plots reveal that the trend of the correct answer is almost the same for male 

and female, although the different percentage seen before. This means that girls and 

boys with the same ability level choose the correct response with the same percentage, 

the gender gap observed before in the correct answer (Tab. 1) arises from the fact that 

female reaching highest ability levels are fewer than male. In Figure 2 we can notice 

that also the trend of the answer A is almost the same for both male and female but the 

differences are evident in the behaviour of the other two options. As we observed 

before, answer D is more attractive for female at all ability levels and, obviously, 

especially for the lower ones in which it is chosen by a higher percentage of students. 

Furthermore, boys at all levels of competency prefers the response B compared to girls. 
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These results become more relevant compared with those of the second item analysed. 

Indeed, the evidence observed before are all confirmed analysing the second item (Fig. 

3) in which the sum of power is analogous but given in an arithmetical context. 

 

 

 

Figure 3: Item from the grade 10 INVALSI test administered in 2011. 

This second item results more difficult than the first one and the percentage of correct 

answers is only 22%. Furthermore, the gender-gap is still present and more relevant 

than before: only 18% of female choose the correct answer in comparison with the 27% 

of male. It is very interesting to notice that the trends observed in the distractor plots 

of the first item, are the same that we can notice in this question, despite the fact that 

the first one has an higher percentage of correct answers. 

STUDENT’S INTERVIEWS  

The interviews reveal that most of the students facing with these items are immediately 

led to identify and apply some kind of rule, in particular those who choose a wrong 

option. This is a typical didactic contract behaviour. Many students say clearly that, 

when they see two powers with the same bases they directly think to have to apply 

powers properties and the reason of this behaviour is inherent into didactical practice: 

1  S1: I had in mind powers rules, I was confused. I didn’t even think to option C. 

2 I:  So when you see powers you immediately think... 

3 S1:  I think to rules. I think: “It will be something with rules”. 

4  I: Why? 

5 S1:  I don’t know, it is what we’ve always done in the exercises. 

Students who choose options B and D remember more or less correctly power 

properties and for this reason, they expect that the result have the same basis. Then 

they exclude option A because of the base. Moreover, we observe that options B and 

D are attractive also for students who know properly powers’ properties. In the 

interview below, for example, the student remember the properties for the product and 

therefore he excludes option B, but even more he is led to find some other rules to solve 

the exercise. 
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1  I: Why students choose 1037∙38 ? 

2 S2:  Maybe there was a rule according to which to sum powers with the same 
basis you have to multiply the exponents. 

3 I:  And this one? Why did they select 1075? 

4  S2: Also for this one because there was a rule that says to sum the exponents, 
but this (rule) is when there is a product! This (answer) is not right because 
this rule is valid when there is a product! 

Students who choose options B and D, often explain their decision on the basis of some 

kind of rules that derive from their school experience and, in particular, from their 

relation with the teacher and the milieu habits. Those responses can be related with 

didactic contract: students choose answers B and D believing that when they solve an 

exercise that include powers with the same bases they have to apply powers’ rules. 

This behaviour is also observed in students who know powers properties. Moreover, 

we observed that this attitude belongs to the classroom habits and routine, therefore we 

can refer this phenomenon to didactic costume seen as the habits picked up in didactical 

practice during mathematical lessons. 

CONCLUSIONS AND FUTURE PERSPECTIVES 

This paper presents a study of gender-gap in mathematics from a two-fold point of 

view: we study the behaviour of male and female facing a mathematical task using 

specific statistic tool and, in particular, distractor plots. The results of standardized tests 

analysed using Rasch Model enable us to observe gender differences not only in the 

whole test, but also focusing on a particular item, objet of our study. Moreover, 

distractor plots evidence the different behaviour of male and female in choosing each 

possible answer related their ability in the whole test. The two items analysed in this 

paper presented the same interesting evidences comparing male and female 

performances. The gender-gap (in terms of percentage of correct answer) is remarkable 

in both the tasks. Moreover, distractor plots reveals that, in both the items, Option A 

have the same trend for male and female, male prefer Option B and female prefer 

option C at all levels of competency, also for the highest ones. The interviews allow us 

to interpret these results on the base of students responses and underline that answer B 

and D can be explained using the construct of the didactic contract. Indeed, the students 

interviewed always refer to classroom practice, relation with the teacher and the milieu 

habits. Integrating all these information, we notice that the gender gap, in these 

particular tasks, is influenced by didactic contract effects: indeed, Option A and the 

missing percentages are the same for male and female in both the items and therefore 

the gap in the correct answer percentages, is due to options B and C which are related 

to didactic contract. We also assume that, in this tasks, male and female are influenced 

in a different way by didactical contract because, even though both options B and D 

are related with this construct, the first is preferred by male and the second by female. 

This different behaviour of male and female could be analyse deeper in future studies, 

including more interviews.  
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Finally, the structure of this research could be used also to analyse other items or to 

study differences not only between male and female but also for other groups of 

students. Indeed, the Rasch analysis and, in particular, the study of distractor plots shall 

can provide numerous others evidences that can be interpreted using qualitative 

analysis and interviews. 
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USE OF A MIXED-METHOD DESIGN TO STUDY CREATIVITY 

DEVELOPMENT THROUGH MODEL-ELICITING ACTIVITIES 

Talya Gilat, Miriam Amit 

Ben Gurion University of the Negev (Israel) 

 

This paper presents one part of a comprehensive study examining the implications and 

consequences of model-eliciting activities (MEAs) on students' development in several 

dimensions. This part aims, using a mixed methods research design for analysing 

qualitative and quantitative data, to explore the effect of an MEA teaching unit on 5th 

-7th grade students' creative thinking, and to reveal the creative abilities that are 

involved in the mathematical modeling processes. Findings indicated that engaging 

students at MEAs improved their creative potential according to the Torrance Tests of 

Creative Thinking (TTCT) figural test. They also revealed three core categories—

appropriateness, ‘mathematical resourcefulness’ and originality—of students' creative 

abilities. These findings may give a better understanding of the larger concept of 

creativity involved in solving mathematical heuristics tasks such as MEAs. 

INTRODUCTION 

According to the OECD’s (2013) report about the challenges facing education, “skills 

have become the global currency of twenty-first century economies” (p. 11). This 

report states that countries’ competitive advantage depends largely on the development 

and promotion of certain skills, such as creativity and innovation. The promotion and 

development of such skills entails in-depth exploration using a mixture of qualitative 

and quantitative methods, and approach the effectiveness and strength of which have 

been recently acknowledged by many researchers (Creswell & Plano Clark, 2011).  

The development and promotion of students' abilities to solve problems creatively have 

been explored by many educators and education researchers in a variety of domains, 

using a variety of different approaches (Torrance, 1974; Chamberlin & Moon, 2005). 

Model eliciting activities (MEAs) give students opportunities to deal with non-routine, 

open-ended “real-life" challenges. These authentic problems encourage students to ask 

questions and be sensitive to the complexity of structured situations while developing, 

creating and inventing significant mathematical ideas (Lesh & Caylor, 2007; Gilat & 

Amit, 2014). The implications and consequences of such model problem-solving on 

the development of students' creative thinking, however, have only been addressed in 

a few studies (Chamberlin & Moon, 2005). The current paper presents a realistic 

mixed-method approach to exploring the effect of model-eliciting activities (MEAs) 

on students' creative thinking. The quantitative inquiry explored the effects of a 

specially designed modeling teaching unit on the development of students’ creative-

thinking skills, while the qualitative one explored the mathematical modeling process 

in order to provide further insight into the creative abilities applied and activated by 

the students as they engaged in MEAs of “real-life” challenging situations. 
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Creativity and Model Eliciting Activities  

Guilford (1967) described the creative process as a sequence of thoughts and actions 

resulting in a novel production, and defined creativity as divergent thinking, consisting 

of four mental abilities: fluency, flexibility, originality, and elaboration (Torrance. 

1974). According to Kruteskii (1976), mathematical creativity appears as flexible 

mathematical thinking, which involves “switching from one mental operation to 

another qualitatively different one” (p. 282), and depends on openness to free thinking 

and exploration of diverse approaches to a problem. Leikin (2009) argued that "solving 

mathematical problems in multiple ways is closely related to personal mathematical 

creativity" (p. 133). Other theorists have suggested defining and evaluating creativity 

based on the apparent outcomes and production results of the creative problem-solving 

process (Sternberg and Lubart, 2000; Sriraman, 2009). Sriraman (2009) revealed the 

common characteristics of mathematical creativity through the Gestalt model of the 

creative process, defining mathematical creativity as the ability to produce a novel or 

original solution to a non-routine problem. Sternberg and Lubart's (1999) widely 

accepted definition asserts that creativity is "the ability to produce work that is both 

novel and appropriate" (p. 3). 

Model Eliciting Activities (MEAs) provide the student with opportunities to deal with 

non-routine "real-life" challenges. These activities are designed according to six 

principles: reality, model construction, self-evaluation, documentation, sharability and 

reusability, and an effective prototype (Chamberlin & Moon, 2005; Lesh & Caylor, 

2007). This thoughtful design not only engages students in multiple cycles of modeling 

development, in which they are given the opportunity to construct powerful and 

creative mathematical ideas relating to complex and structured data (Gilat & Amit, 

2014), it also makes it possible to follow students’ thinking and reasoning and requires 

students to represent a general way of thinking instead of a specific solution for a 

specific context.  

Research questions  

This paper describes both the design and uses of the mixed-method exploration that 

sought to answer the following two questions:  

1. To what extent, if at all, does experience in MEA workshops develop and improve 

students' creativity? 

2. What are the mathematical creative abilities that are involved in, promoted and 

encouraged by the modeling process? 

Research design 

The mixed-method inquiry (Creswell & Plano Clark, 2011) presented in this paper was 

part of a multilayered exploration aimed at revealing the significant implications of an 

MEA teaching unit  on students' creative and innovative thinking. This unit lasted one 

academic year and included four workshops based on different MEAs reflecting “real-

life” situations, which were worked on by small groups of 3–4 students. Each MEA 
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workshop consisted of three weekly 75-minute meetings and had three parts: a warm-

up activity, a modeling activity and a poster-presentation session. The modeling task 

asked students to solve a mathematically complex “real-life” problem for a 

hypothetical client. Participants in this research included 157 "high-ability" and 

mathematically gifted students in the 5th through 7th grades who are members of the 

"Kidumatica" math club. The “Kidumatica” program provides a framework for the 

cultivation and promotion of exceptional mathematical abilities in youth from varied 

socioeconomic and ethnic backgrounds.  

The quantitative analysis utilized the standardized TTCT-Figural form (Torrance, 

1974) to assess students' creative potential. This test is one of the most commonly used 

measures of creativity in education and educational research, and has been translated 

into over 35 languages (Torrance, 2008). The test has two forms: A and B, which were 

used as pre and post-tests, respectively, and scored according to the Streamline Scoring 

Procedure (Torrance, 2008). The participants were split into a control group (74 

students) and an experimental group (83 students who participated in the teaching unit). 

Both groups were given TTCT pre- and post-tests before and after the program. The 

TTCT results were analyzed using repeated measures ANOVA with post-hoc analysis.  

The qualitative analysis relied on principles derived from analytical induction 

(Sriraman, 2009) as well as techniques suggested by Strauss and Corbin (1998) to 

explore the qualitative data obtained from 12 focal groups (31 students out of 157 

participating in the overall research) engaging in different MEA workshops. The data 

included students' modeling products, video-recordings and classroom observation. 

Data analysis involved several analytical phases in which data were repeatedly 

described, interpreted, compared and coded until a coherent interpretation was 

obtained. 

Results and Discussion  

The quantitative results revealed significant differences between post- and pre-tests—

F(1, 157) = 47.37, p < 0.000, = 

0.23, and between the groups 

and time (pre-test to post-

test)—F(1, 157) = 28.85, 

p < 0.000, = 0.15 (Figure 1). 

This indicates that although 

both groups started with 

almost the same creative 

potential according to the 

TTCT, after the MEA teaching 

unit, the experimental group 

showed greater improvement 

than the control group. 

Figure 1: Experiment and control groups' scores on 

TTCT-Figural pre and post-tests 
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The qualitative results provided further insight into the mathematical creative-thinking 

abilities that contributed to and constituted the creative modeling process and its 

significant outcomes. Three categories and subcategories were formed in light of the 

theoretical framework and empirical data (see Table 1). Examples illustrating the 

meaning of the categorization are provided below, using research data from the 

"Treasure-Chest" MEA of one group of three 7th-grade students (see Figure 2). This 

MEA was designed specifically for this study, based on a well-known "image-

registration" problem that has many applications in different domains. In this modeling 

task the students were asked to help two boys who had found an old image of their 

school yard (See Figure 1) with a sign marking the location of a treasure box that is 

rumoured to have been hidden in the schoolyard decades ago. In order to find the exact 

location of this treasure box, one of the boys suggested getting an updated image of the 

school from the Google maps application (See Figure 1). The students were asked to 

help these two boys to find the exact position of the treasure box and develop a 

mathematical model that would allow them to transfer the exact position of the treasure 

from the old image of the school to the updated Google image. They received a ruler 

and two images: the old image of school with the sign of the treasure and the updated 

Google image of the school (see Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The two images of the school yard ("Treasure-chest" MEA) 

The following Ways of Thinking sheets (Chamberlin, 2004) contain the documentation 

of the students' MEA along with the researcher’s mathematical interpretation of their 

work (see Figure 3). 
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WTS – Ways of thinking sheets 

Excerpts from students’ work 

 

Students' modeling process description and its formal interpretation 

These students went through several development phases, taking measurements 

between equivalent "stabled" datum points that exist in both the treasure and the 

google map.  

In the first phase they used only vertical measurements, and realized that the vertical 

identified ratio is different from the horizontal one.  
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In the second phase they used both horizontal and vertical measurements to calculate 

the two equivalent ratios.  

In the third phase they decided to average the 'ratios' in order to obtain stable 

transformation.  

In the final phase: Their first model used the scale of the treasure map. Then they 

decided to use two linear transformations that convert vertical/horizontal distances 

in the treasure map to vertical/horizontal distances in the google map and use the 

Google scale. According to their verbal explanation during their presentation it 

"makes more sense", to use a single scale (Google given scale see Figure 2), 

converting any distance (vertical or horizontal) in the old map to actual distance in 

their school, and providing an illustration of the path with the exact cardinal 

directions to the treasure box. 

Formal interpretation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: WTS documenting 7th-grade students’ “two-dimensional” model 
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Table 1: Description and examples of each establish category and its sub-categories 

Final remarks 

This paper highlights the significant advantages of using both qualitative and 

quantitative approaches (Creswell & Plano Clark, 2011) to explore the development of 

students' creative abilities through MEAs. The quantitative results revealed the positive 

effect of the MEA teaching unit on the promotion of students' creative abilities, 

supporting other educational studies and explorations (Torrance, 1974; Levav-

Waynberg & Leikin, 2012) that showed that significant training in creative problem 
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solving can develop students' creativity. The following qualitative examination 

provided us with deeper insights into what is involved in the creative mathematical 

process of young students engaging in non-routine, “real-life”, structured problem-

solving (Sriraman, 2009) through MEAs. These results underline the significant role 

of mixed-method design in educational studies aimed at exploring multifaceted and 

complex phenomena, such as the development of students' creative abilities, following 

Creswell & Plano Clark (2011) who argued that "the combination of quantitative and 

qualitative data provides a more complete understanding of the research problem than 

either approach by itself" (p.8). 
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Diagrams and in general the use of visualization and manipulative material play an 

important role in mathematics teaching and learning processes. Although several 

authors warn that mathematics objects should be distinguished from their possible 

material representations, the relations between these objects are still conflictive. In 

this paper, some theoretical tools from the onto-semiotic approach of mathematics 

knowledge are applied to analyse the diversity of objects and processes involved in 

mathematics activity, which is carried out using diagrammatic representations. This 

enables us to appreciate the synergic relations between ostensive and non-ostensive 

objects overlapping in mathematical practices. The onto-semiotic analysis is 

contextualised in a visual proof of the Pythagorean theorem. 

INTRODUCTION 

The use of different representations, visualizations, diagrams, manipulative materials, 

are proposed to favour mathematics learning by assuming that such materials make up 

representations of mathematics concepts and of the structures in which they are 

organised. It is supposed that the use of material representations is necessary, not only 

to communicate mathematical ideas but also for their own construction. However, the 

relations between representations, objects and construction of meanings are still 

conflictive. This issue is key for mathematics education since “any didactic theory, at 

one moment or another (unless it voluntarily wants to confine itself to a kind of naïve 

position), must clarify its ontological and epistemological position” (Radford, 2008, p. 

221). 

Researches in diagrammatic reasoning and about the use of visualizations in 

mathematics education do not usually deal with the type and diversity of mathematical 

objects. In this paper, this problem is faced using some theoretical tools from the onto-

semiotic approach (OSA) (Godino, Batanero, & Font, 2007; Font, Godino, & Gallardo, 

2013). Mathematical objects are considered to be abstracts whereas diagrams are 

specific and perceptible. It is necessary not confuse them, but the relationship between 

both types of objects are not dealt with explicitly. This situation is not strange since to 

clarify what abstract objects are, and their relationship with the empirical world, is a 

full-scale philosophical and psychological problem, which is addressed from different 

paradigms and theoretical frameworks.  

In the OSA it is assumed that mathematics is a human activity (anthropological 

postulate) and that the entities involved in this activity come or emerge from the actions 
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and discourse through which they are expressed and communicated (semiotic 

postulate). The epistemological, semiotic, and educational problem that interests us is 

to clarify the relationship between the visual, diagrammatic or iconic representations, 

and the non-ostensive mathematical objects that necessarily are involved.  

In the following section, some characteristic features of the diagrammatic reasoning 

that point out the problem mentioned are described, that is the gap between the 

representation and the mathematical object represented. Then, the notion of 

ontosemiotic configuration of practices, objects and processes is summarised. This 

theoretical tool is used to analyse the diagrammatic reasoning in a visual proof of the 

Pythagorean theorem. In the final section, some reflections about the type of 

understanding that the onto-semiotic approach to mathematical knowledge might 

provide to diagrammatic reasoning are included. 

DIAGRAMMATIC REASONING  

In mathematics education, talking of diagrammatic reasoning means entering into the 

field of Peircean Semiotics (Dörfler, 2005; Bakker & Hoffmann, 2005; Rivera, 2011), 

although the use of diagrams as a resource of thought and scientific work is also found 

in other fields and disciplines (Shin & Lemon, 2008). 

A double conception about the notion of diagram is found: one wider conception, in 

which any type of inscription that makes use of the spatial positioning in two or three 

dimensions (right, left, forward, backward, etc.) is a diagram (geometric figures, 

graphs, conceptual, etc.). Another more restricted conception requires being able to 

carry out specific transformations, combinations or constructions with these 

representations, according to certain specific syntactic and semantic rules. In this 

research report, it is justified why this second approach should be retained. 

Diagrammatic reasoning involves three steps (Bakker & Hoffmann, 2005, p. 340):  the 

first step is to construct a diagram (or diagrams) by means of a representational system; 

the second step is to experiment with the diagram (or diagrams); the third step is to 

observe the results of experimenting and reflecting on them. 

Duval (2006) attributes an essential role not only to the use of different systems of 

semiotic representation (SSR) for mathematics work but also to the treatment of the 

signs within each system and the conversion between different SSR:  

The role that signs play in mathematics is not to be substituted for objects but for other 

signs! What matters is not representations but their transformation. Unlike the other areas 

of scientific knowledge, signs and semiotic representation transformation are at the heart 

of mathematical activity. (Duval, 2006, p. 107) 

Dörfler (2005) recognises that diagrams can make up a register of autonomous 

representation to represent and produce mathematics knowledge in certain specific 

fields; however, it is not complete. It requires to be complemented by conceptual-

verbal language in order to express notions like: continuity and differentiability; 
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impossibility that specific objects exist; using the quantifiers ‘for all’, ‘each one’ and 

‘there are’.  

For our purposes here, it is very important to make a clear distinction between "diagrams" 

and all kinds of representations, visualizations, drawings, graphs, sketches, and 

illustrations as widely used in professional mathematics and in mathematics education as 

well. Although these might be diagrams in the specific sense used here, this is mostly not 

the case. This is due to the lack of the constituting operations by which an inscription or 

visualization becomes only a diagram. (Dörfler, 2005, p. 58) 

Shin & Lemon point out another problem related to the use of diagrams: 

A central issue, if not the central issue, was the generality problem. The diagram that 

appears with a Euclidean proof provides a single instantiation of the type of geometric 

configurations the proof is about. Yet properties seen to hold in the diagram are taken to 

hold of all the configurations of the given type. What justifies this jump from the particular 

to the general? (2008, section 4.1) 

Sherry (2009) adopts an anthropological perspective on the role of diagrams in 

mathematics argumentation, which involves an objectification of the empirical reality. 

This perspective differs from the Peircean semiotic, according to which diagrams are 

an essential means in the process of hypostatic abstraction. Sherry analyses the role of 

diagrams in mathematics reasoning (geometric and numerical – algebraic) without 

resorting to the introduction of abstract objects and relying on a Wittgensteinian 

perspective of mathematics. “Recognizing that a diagram is just one among other 

physical objects is the crucial step in understanding the role of diagrams in 

mathematical argument” (Sherry, 2009, p. 65).  

In this position, the author avoids recurring to abstract conceptions which are 

conceived in an empirical-realistic way (hypostatic abstraction) in order to understand 

them as socially agreed grammatical rules, about the use of languages through which 

we describe our worlds (material or immaterial). 

I have emphasized that diagrammatic reasoning recapitulates habits of applied 

mathematical reasoning. On this view, diagrams are not representations of abstract objects, 

but simply physical objects, which are sometimes used to represent other physical objects. 

(Sherry, 2009, p. 67) 

ONTO-SEMIOTIC CONFIGURATIONS  

In the OSA framework, it is proposed that six types of objects intervene in mathematics 

practice, which can be contemplated from five dual points of view (figure 1) (Font et 

al., 2013). The non-ostensive (immaterial) entities: conceptual, propositional and 

procedural, are conceived as rules. The Wittgenstein’s anthropological view is 

assumed, according to which concepts, propositions and mathematics procedures are 

empirical propositions, which have been socially reified as rules. Sherry clearly and 

synthetically describes this Wittgensteinian conception of mathematical objects:  

In order for an empirical proposition is harden into a rule, there must be overwhelming 

agreement among people, not only in their observations, but also in their reactions to 
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them. This agreement reflects, presumably, biological and anthropological facts about 

human beings. An empirical proposition that has hardened into a rule very likely has 

practical value, underwriting inferences in commerce, architecture, etc. (Sherry, 2009, 

p 66) 

 

Figure 1: Objects that intervene in mathematical practices (Font et al., 2013, p. 117) 

Both the dualities and the configurations of primary objects may be analyzed from the 

process/product perspective. The objects of a configuration (problems, definitions, 

propositions, procedures and arguments) emerge through the respective mathematical 

processes of communication, problematization, definition, enunciation, development 

of procedures (algorithms, routines, etc.) and argumentation. For their part, the 

dualities give rise to the following cognitive/epistemic processes: institutionalization-

personalization; generalization-particularization; analysis / decomposition - synthesis 

/ reification; materialization / concretion - idealization / abstraction; expression / 

representation - signification.  

Behind diagrammatic reasoning, and the use of manipulative teaching materials, there 

is an implicit adoption of an empirical – realistic position about the nature of 

mathematics. This position does not recognize the essential role of language and the 

social interaction in the emergence of mathematical objects. To a certain extent, it is 

supposed that the mathematical object “is seen”, it is hypostatically detached from 

empirical qualities of things collections. Against this position, the anthropological 

conception of mathematics proposes that concepts and mathematical propositions 

should be understood, not as hypostatic abstractions of perceptual quality, but as 

regulations of the operative and discursive practices carried out by people in order to 

describe and act in the social and empirical world in which we live.  

This anthropological way of understanding abstraction, that is, the emergence of 

general and immaterial objects forming mathematical structures, has important 

consequences for mathematics education since mathematics learning should take place 

through students’ progressive participation in the mathematics language games. For 
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example, in the current introduction of dynamic software in school is necessary to 

evolve their use according moments of exploration, illustration and demonstration 

(Lasa & Wilhelmi, 2013), which allow an understanding, reuse and construction of 

new mathematical knowledge. In this way, dialogue and social interaction take on an 

important role, in comparison with the mere manipulation and visualization of 

ostensive objects. 

ONTO-SEMIOTIC CONFIGURATION IN A VISUAL TASK 

In this section, the types of practices, objects and processes put at stake in the statement 

and demonstration of the Pythagorean theorem are analysed. Usually it is presented as 

a visual or "without words" demonstration. It is shown that, indeed: “picture-proofs 

don’t show their results on their sleeve, as it were; it’s necessary to study them for a 

while, before they reveal their treasure” (Sherry, 2009, p. 68). 

Task 

What is the relationship between the areas of the figures shaded A and B? 

 

Figure 2: A visual proof of the Pythagorean theorem 

The following sequence of operative and discursive practices is one possible answer5: 

1.  We assume that the representations in Figure 2 are squares and right triangle, and 

the lengths of their sides are indeterminate: a, b, c (Figure 3). 

2. The quadrilaterals formed by the outer segments of the figures A and B are congruent 

squares because the sides have equal length, (a + b).  

 

Figure 3: Metrics hypothesis needed 

3. The representations of right triangles in A and B are congruent because their sides 

are of equal length. 

4. The shaded region in Figure A is equal to the shaded region in Figure B. This is 

because two squares of equal area are formed of four equal triangles. 

                                           
5 Explanatory proof (Cellucci, 2008). 
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5.  The shaded area in Figure A is the sum of the squares area of sides a and b, 

respectively, a2 + b2. 

6. The shaded area in Figure B is the square's area of side c, c2. 

7. The shaded regions are interpreted as areas of the squares whose sides are the legs 

and hypotenuse of the triangle, respectively (Figure 4). 

 

Figure 4: Determination of the Pythagorean theorem 

8. Then, the area of the square on the hypotenuse is equal to the sum of the squares 

areas on the other two sides: c2  = a2 + b2. 

 

Configuration of objects and meanings 

In the first column of the Table 1, the expressions in ordinary language (sequential) is 

summarised; such expressions are added to the diagrams to produce the justification 

and explanation necessary of the theorem. In the second column, the system of ‘non-

ostensive objects’ is included. In addition, how the ‘ostensive / non-ostensive’ duality, 

and the “example / type” (particular / general) duality are linked to the intervention of 

concepts, propositions, procedures, and arguments are shown. 

Our analysis agrees with and supports Sherry´s position about the use of diagrams in 

mathematics work: rather than building an accurate diagram, what matters is the 

mathematical knowledge involved, which is not visible anywhere; it is not in the 

diagrams themselves. In the case of using dynamic software, it is essential to progress 

from moments of illustration (where objects can be manipulated with great precision) 

to moments of demonstration (where objects are not essential, rather the construction 

process of diagrams). This way, features of specific examples can progress towards the 

corresponding structural type. In general, the diagram supports or makes possible the 

necessary process of particularization of the general rule; it makes the conceptual 

object intervene in order to participate in a practice from which another new conceptual 

object will emerge (in our example, Pythagorean theorem). 
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OSTENSIVE OBJECTS 

(Means of expressions) 

NON - OSTENSIVE OBJECTS  

(Concepts, propositions, procedures, 

arguments) 

Task statement: 

What is the relationship between the 

areas of the figures shaded A and B? 

(Figure 2) 

Concepts: area (extension of a plane region), 

sum of areas; comparison of areas. 

Particularization: these concepts are 

particularized to the case of the figures given. 

The squares, triangles and the relationships 

between the areas, are generic. 

1. We assume that the representations in 

Figure 2 are squares and right triangle, 

and the lengths of their sides are 

indeterminate: a, b, c (Figure 3). 

 

Concepts: square, right triangle, side, 

indeterminate measurement of length. 

Particularization: these concepts are 

particularized to the case of the figures given. 

The figures refer to square and triangle 

generics. The lengths are generic. 

2. The quadrilaterals formed by the outer 

segments of the figures A and B are 

congruent squares because the sides are 

of equal length, (a + b). 

Proposition: the two exterior squares are 

congruent. 

Argumentation: because the sides of the 

squares have the same length. This is (a+b). 

The proposition is general; it is valid for the 

“examples” (figures) and for any “type”. This 

is an essential hypothesis in the explanatory 

process. 

...  

8. Then, the square's area of the 

hypotenuse is equal to the sum of the 

squares areas of the other two sides:  

c2  = a2 + b2. 

Proposition: thesis (Pythagorean theorem) 

Justification: steps 1 to 7. It is geometrically 

interpreted (comparison of areas). It is also 

interpreted in arithmetic / algebraic terms 

(numerical relationships). 

Table 1: Configuration of objects and meanings 

FINAL CONSIDERATIONS 

The function that we attribute to the diagrams helps to surpass ingenuous empiricist 

positions about the use of manipulatives and visualizations in the processes of 

mathematics teaching and learning: there is always a cohort of intervening non material 

objects which are essential to solve these situations accompanying the necessary 

materializations that intervene in the situations-problems and the corresponding 
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mathematics practices. However, this layer of material objects should not prevent 

seeing the layer of immaterial objects that really make up the conceptual system of 

institutional mathematics. Both layers are interwoven and to a certain extent are 

inseparable. Mathematics teacher should have knowledge, understanding and 

competence in order to discriminate the different types of objects that intervene in 

school mathematics practice, based on the use of different systems of representations 

and being aware of the synergic relations between the same. 
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We report on an investigation of how school mathematics knowledge is deployed 

differently by a group of students in their mathematical activity in autonomous peer 

work and in the communication of this work to the teacher. We found ‘moves’ between 

certain epistemic issues arising in peer work and some of these issues not being 

communicated in the subsequent interaction with the teacher. The metaphor of a move 

serves us to focus the analysis on two moments of the students’ mathematical activity 

in order to identify potential differences in the use of knowledge concerning the 

construction and justification of school mathematics knowledge. To illustrate this type 

of move we discuss two turns of the interaction from the perspective of the related 

epistemic issues that are either visible or invisible when analyzing them.    

INTRODUCTION 

We discuss results from the identification and explanation of epistemic issues involved 

in and concerning students’ mathematical activity in two contexts of a secondary 

mathematics classroom: autonomous peer work and group interaction with the teacher. 

These are social contexts of mathematical activity for which similar practices may be 

recognized and valued differently depending on who is involved in their discussion at 

each moment (Goizueta, 2015). We argue that a clear case needs to be made about the 

criticality of certain moves in the students’ mathematical activity, between certain 

epistemic issues arising in peer work and some of these issues not being visible in the 

interaction with the teacher. The existence of such moves suggests a lack of systematic 

inquiry and reflection about epistemic issues in the researched setting.   

Epistemic issues in school mathematics have often remained undetected, and are 

sometimes thought of as undetectable, in the analyses of mathematical activity in the 

mathematics classroom. In order to examine how students become involved in and 

refer to epistemic issues in particular contexts of interaction in the mathematics 

classroom, we empirically place our study in compulsory secondary mathematics 

education. We interpret epistemic issues as related to the practices of school 

mathematics whose use and learning prepare students of these ages to construct, reflect 

on and justify mathematical knowledge in a range of situations. In this way, our 

definition of epistemic relates to knowledge about the construction and justification of 

school mathematics knowledge, which is traceable across different moments of the 

students’ mathematical activity in the classroom. Epistemic issues are not always 

evident in the students’ explicit discussion but may be found in the interpretations made 

by the researchers of what is inferable from what has been said and done.  
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THE MATHEMATICAL CULTURE OF THE MATHEMATICS CLASSROOM 

Like Steinbring (2005), we consider social, cultural and historical processes as 

constitutive of mathematical activity, and such activity in turn as related to kinds of 

participation in particular mathematical cultures. Thus, mathematics shows specific 

features in different contexts of development and practice, relative to the persons and 

groups participating in its production and their circumstances. The context in our study 

is the mathematics classroom, with a mathematical culture configured, on a macro 

level, by the meanings historically attributed to school mathematics (Radford, 2008) 

and, on a micro level, by the local interactions between the students and the teacher 

(Krummheuer, 2011). The double micro and macro configuration of the mathematical 

culture of the mathematics classroom points to complex processes of meaning 

construction taking place in the interaction. Micro-social meanings (i.e. situated 

meanings enacted by individuals in their interaction with others) and macro-historical 

meanings (i.e. wider meanings enacted by and on others) dialectically evolve in a 

reflexive relationship that makes it difficult to distinguish them during mathematics 

teaching and learning, and with respect to their impact on the continuous (re)creation 

of school mathematics knowledge.  

The adoption of a micro-macro theoretical perspective situates the mathematical 

culture of a mathematics classroom as an emerging result of the interaction among 

participants as representatives of macro-historical meanings, rather than as some pre-

given object deployed by the teacher as the representative of the mathematics 

discipline. Participation in this mathematical culture is therefore not reducible to 

interpreting and producing some propositional mathematical knowledge (e.g. 

definitions, theorems) directly linkable to the mathematics discipline. It also and 

fundamentally requires understanding about why and how to justify the use of this 

knowledge in the classroom, as well as when to do so and with whom at each moment. 

In this respect, the mathematical culture of any mathematics classroom is framed by 

and within uses of school mathematics knowledge and related meta-claims about the 

conditions of construction and justification of instances of this knowledge.   

An important part of the knowledge involved in the identity practices of the 

mathematical culture of the mathematics classroom is, therefore, knowledge about the 

construction and justification of school mathematics knowledge. Ernest (1998) 

distinguishes between knowing-that, which refers to propositional knowledge (e.g. the 

Pythagorean Theorem), and knowing-how, which “refers to practical knowledge, 

skills, or dispositions, which are not immediately given in the form of propositions, 

even if they can (or cannot) ultimately be so represented” (p. 136). Knowing direct 

proportionality in (school) mathematics, for example, is not only to be able to state 

propositions such as ‘when two variables are directly proportional their ratio is 

constant’; one has to be able to identify when is it appropriate to work with them, and 

to reflexively justify the adequacy of certain adapted uses. 

https://en.wikipedia.org/wiki/Ratio
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Some of this mathematical knowing-how constitutes tacit knowledge that “is validated 

by public performance and demonstration” (Ernest, 1999, p. 67), and is largely implicit 

in the mathematical culture of the mathematics classroom. For example, the knowledge 

necessary to use a particular semiotic representation in certain cases of mathematical 

practice (e.g. the tree representation of probabilistic phenomena) will usually be tacitly 

produced and conveyed by its application in paradigmatic cases, its repetitive 

application to recognizable types of cases, and its adaptation in tackling novel cases. 

Through its use in public practices, this tacit knowledge becomes socially justified in 

the mathematics classroom, and can thus be properly termed knowledge. On the other 

hand, some of this tacit knowledge is epistemological in nature, in the sense that it 

relates to how school mathematics knowledge is constructed, reflected on and justified. 

What we then have is that the mathematical culture of the mathematics classroom is 

constructed by the enactment of micro-social and macro-historical meanings which are 

either explicitly or tacitly introduced and validated through a network of knowing-that 

and knowing-how practices.      

THE EXPERIMENT AND THE RESEARCH QUESTIONS 

A major concern for the empirical design of the study was to determine what kind of 

classroom dynamics, mathematical task and curricular content could facilitate the 

emergence of epistemic issues in the students’ activity during two one-hour lessons. In 

collaboration with the teacher, we planned a problem-solving scenario with time for 

small group work and whole class discussion. It was decided that an everyday-context 

problem could trigger reflection on and justification of mathematical work through a 

wide range of arguments. Moreover, we were interested in curricular contents that were 

novel for the students, since this would be likely to prompt more flexible uses of 

knowledge and less reproductive approaches to school mathematics. Contents 

regarding early concepts of probability, chance and randomness were finally chosen. 

We proposed to the teacher a modified variation of a coin game problem used by Paola 

(1998) in a classroom experiment, which is itself a variation of a historical problem 

discussed by Pascal and Fermat in 1654. Our problem was posed as follows:   

Two players are flipping a coin in such a way that the first one wins a point with every 

head and the other wins a point with every tail. Each is betting €3 and they agree that the 

first to reach 8 points gets the €6. Unexpectedly, they are asked to interrupt the game when 

one of them has 7 points and the other 5. How should they split the bet? Justify your answer. 

In Goizueta, Mariotti and Planas (2014), we used the same problem and lessons with 

thirty 14/15-year-old students in Barcelona, Catalonia-Spain, to examine the processes 

of resolution by a group of students, and specifically the validation of a proposed 

mathematical model. On that occasion, it was seen that work on this problem promotes: 

i) the use of arithmetical knowledge and ii) the elaboration and combination of 

deductive, inductive and abductive types of arguments. We asked the teacher to avoid 

showing either approval or disapproval of the students’ numerical answers and 

strategies. Instead of hint-guiding the students and valuing traces of probability 
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reasoning, we wanted her to foster the discussion of competing (proportional, 

statistical, probabilistic...) models in the approaches to the problem.     

Two groups of students (EA and EB) were video-taped during the two lessons and their 

written resolution protocols were taken for complementary revision of what was 

carried out in the group. Furthermore, two video-taped interviews, one for each group, 

were conducted by the first author one week after the second lesson. The interviews 

were planned to guide, revise and complete our preliminary interpretations of what 

happened in the lessons. We watched the videos of the two groups several times, in 

order to search for moments of the students’ mathematical activity in which epistemic 

issues regarding school mathematics knowledge were detectable in the discussion, 

during the resolution of the problem. We used some video-clips of these moments in 

the interviews as a way, on the one hand, to make direct references to the lessons and, 

on the other, to have common and contrastable data for discussion with the students. 

The research of epistemic issues involved in and concerning the students’ mathematical 

activity followed a qualitative approach. It was guided by two questions:  

1) Do the students become involved with or refer to knowledge about the 

construction or justification of school mathematics knowledge?  

2) What is the evidence for this concerning the interpretation, understanding and 

resolution of the proposed problem?  

Inductive and iterative analyses were developed concurrently through methods of 

constant comparison. The triangulation with researchers in the team helped to infer 

epistemic issues from transcripts and video-clips in which some of the micro-social 

and macro-historical meanings attributed to the students’ mathematical activity were 

not overtly explicit. We created an initial list of epistemic issues which were examined 

for relationships and overlaps and then refined into a shorter list. At an advanced stage, 

all the epistemic issues, whose presence had been inferred from the analysis of lesson 

accounts of the mathematical activity in EA and EB, were further examined with a 

focus on whether and how these same issues could be detected in the communication 

of group work to the teacher. It was throughout this process that two more questions, 

which cannot be answered independently of the first ones, came up:  

3) Do the students become involved with or refer to knowledge about the 

construction or justification of school mathematics knowledge differently in 

their communication with the teacher?  

4) What is the evidence for this difference concerning the interpretation, 

understanding and resolution of the proposed problem?  

The third and fourth questions came after the research in Goizueta et al. (2014) and 

Goizueta (2015). It took time to begin to understand the fact that the students might be 

enacting certain instances of school mathematics knowledge when the teacher was 

involved in the interaction with them, and others when the group was working 

autonomously. In both Goizueta et al. (2014) and Goizueta (2015), there was a search 
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for and detection of epistemic issues under a similar approach. Nevertheless, in these 

studies our results were related to classroom episodes of the students’ mathematical 

activity and specific criteria for comparison between episodes were not considered. At 

that time, the focus was on the particular features of the mathematical activity in each 

episode, and not so much on the variability of these features across episodes. 

EPISTEMIC ISSUES IN THE STUDENTS’ MATHEMATICAL ACTIVITY  

We broadly take the metaphor of a move to indicate the relationship between what is 

done and said by the students in peer work to solve a problem and what is subsequently 

communicated to the teacher. In these two contexts of classroom interaction, we 

research epistemic issues regarding how the students refer, either explicitly or 

implicitly, to knowledge about the construction and justification of school mathematics 

knowledge. Thus, the metaphor of a move helps to focus the analysis on two moments 

of the students’ mathematical activity and identify differences in terms of the epistemic 

issues involved. Below we illustrate a particular move that goes in the direction of the 

invisibilization of epistemic issues that were deployed by the students in peer work. 

This is a type of move that has been found for EA and EB in the two lessons. If we see 

peer work and group discussion with the teacher as two positions, in these positions 

the students become differently involved in or concerned with certain epistemic issues 

during the problem resolution.    

To illustrate our argument, in this report we use lesson data from the two classroom 

contexts and one of the groups, EA. These data reveal part of the phenomenon of: i) 

some epistemic issues being addressed by the students during peer work; and ii) some 

of these epistemic issues not being visible –and perhaps being avoided– in the 

communication with the teacher. We choose two turns of talking that were discussed 

in the interview with the students together with other turns, and for which the inferred 

tacit knowledge was contrasted with them. Although we do not provide empirical 

evidence of the role of the exemplified turns in the interaction, our analysis indicates 

that in these turns the discussion of concrete models of reasoning was initiated.   

Visibility of epistemic issues in peer work 

In an initial stage of the mathematical activity of EA, Anna, one of the students in this 

group, shared the following thought with her three peers: 

Anna: This one only needs to get one point and this one three to get to six euros. 
But obviously, because it’s random, the game, you know, one’s got more 
chances. Because imagine that now, suddenly, if the game didn’t stop... you 
could get three tails in a row and then this one would win. So A does have 
more chances of winning but B could win as well. 

Anna refers to the proposed situation in the wording of the problem as a random game. 

By resorting to randomness, she tacitly brings to the conversation references that are 

rooted in prior experiences with coin tossing and random games, as well as public 

discourses about them (e.g. it is equally likely to obtain heads or tails when tossing a 

coin). These references outline certain aspects of the situation in relation to the random 
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nature of the game. In this way, the student suggests an interpretive framework to make 

sense of the situation. Anna draws on this framework to account for the empirical 

dimension of the problem: having won more points amounts to having an advantage of 

some sort (“So A does have more chances of winning (…)”). Here, a scenario in which 

B wins the game (“(…) but B could win as well”) is foreseen as feasible, though the 

special case of B obtaining “three tails in a row” is less expected.  

In this turn we can distinguish three related issues that come into focus and which, 

together, are of epistemic significance: i) shared references with respect to the random 

nature of the game; ii) a particular account of the situation; and iii) the knowledge 

involved in the use of such references to construct this account. The epistemic 

significance of these interrelated issues can be elucidated by exploring the turn as an 

expression of tacit taken-as-shared knowledge regarding adequate ways of reasoning 

and proceeding (“(...) because it’s random, the game, you know, one’s got more 

chances”). The words “because” and “so” are marks indicating a causal relationship 

between the random nature of the game and the particular account of the situation. This 

is actually an interesting example of how the assumption of certain shared references 

helps to sustain a reasoning that may not be mathematically well founded, since these 

students have not been taught probability theory at school.   

We examine this turn by Anna because it acts as a catalyst that precipitates other 

considerations regarding “good reasons” to be used in situations of randomness. In the 

interaction within EA and EB, there are a few turns that are especially ‘strong’ from 

the perspective of, on the one hand, the epistemic issues that become visible when 

analyzing them in isolation and, on the other, their influence on the development of 

epistemic contents of other turns. These ‘strong’ turns and their related analyses are 

sufficiently significant to conclude that epistemic issues concerning school 

mathematics knowledge were explicitly present in peer work. 

Invisibility of epistemic issues in the interaction with the teacher 

One of the ‘strong’ turns of the interaction with the teacher is again a particular turn by 

Anna when this student first reports the mathematical activity of her group:  

Anna: We thought that... well, player A has got seven points and B five points. We 
thought that if they won four points each, three euros for each one, and the 
distribution would be fair. Then we did six euros divided by eight, which is 
the total, by how many points... You know? I mean, how much one point 
would be, eight points in total. But we said, no, no, no. They have twelve 
points in total… and we multiplied each point by zero point five (...).   

When addressing the teacher, Anna starts by elaborating on a hypothetical tied game 

(“(...) if they won four points each, three euros for each one (...)”). She thus proposes 

a generic example: in case of a tie, no matter what the score is, the money should be 

distributed equally. There is, however, an absence of elements to justify what is said. 

This might indicate that Anna expects the teacher to share common references about 

the situation and about the construction of the generic example, sufficient for it not to 

be controversial or in need of further explanation. Also, Anna qualifies this distribution 
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as “fair”, using a term that was mentioned at the beginning of the lesson by the teacher, 

when she presented the problem (“You have to explain what you consider to be a fair 

way to distribute the money”). Although Anna does not explain her use of “fair” in this 

turn, it is seemingly an indication of the solution’s validity. We cannot know, though, 

whether she suggests the notion of fairness to describe the result in semantically 

significant terms or whether she is matching the teacher’s vocabulary to recognizably 

convey a sense of validity. Anna then advances one intermediate result through the 

ratio 6:8, obtained by dividing the money by the points needed to win. Drawing on 

habitual techniques and wording (“(...) six euros divided by eight, which is the total, 

by how many points...”), she makes the use of proportionality knowledge recognizable.  

When analyzing this turn, together with the rest of turns by the students of EA in their 

communication with the teacher, we cannot find explicit references to meanings 

attributable to randomness. This is in contrast to the fact that some of the reasons used 

by Anna in peer work (see the first exemplified turn) were related to tacit taken-as-

shared knowledge concerning random games and randomness. In the interaction with 

the teacher, the traces of probability reasoning are not brought up and, therefore, the 

discussion of parts of this reasoning does not take place. Instead, Anna focuses her 

report on well-established techniques related to proportionality that emerged during 

peer work. She shares knowing-that with the teacher regarding proportionality 

techniques as they tend to be taught in secondary school mathematics, and she does not 

refer to the tacit knowledge and taken-as-shared knowing-how that have been enacted 

in her group to first attempt a model for the situation.           

Our analyses show that this is an instance of a more general phenomenon, namely that 

epistemologically relevant aspects of the students’ group work are often not made 

visible in the interaction with the teacher. In this interaction, students tend to focus on 

well-established knowledge and techniques of the secondary school mathematics 

repertoire. Drawing on our micro-macro theoretical perspective, we find two levels of 

explanation for this phenomenon. On the macro-level, the change in the focus may be 

tied to the historical emphasis on the use and evaluation of knowing-that and 

techniques as taught by the teacher in secondary school mathematics. On the micro-

level, we see how Anna adjusts her vocabulary in keeping with the use of “fair” by the 

teacher. Moreover, this student reports the group’s mathematical work by describing 

computational procedures (e.g. “we multiplied each point by zero point five”) without 

justifying their adequacy in the context of resolution of the problem. 

FINAL REFLECTIONS ON MISSED OPPORTUNITIES 

In Goizueta et al. (2014) and Goizueta (2015), the analyses of the students’ activity 

concerning the resolution of the proposed problem led to results about a diversity of 

knowing-that and knowing-how school mathematics practices. Since some of those 

practices were not totally developed during the lessons, the insufficient exploitation of 

certain learning opportunities –i.e. mathematics learning opportunities generated in the 

course of classroom interaction (Planas, 2014)– could be argued. In the present 
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investigation, since some of the ideas and tacit knowledge in the students’ reasoning 

in small groups are not opened up for discussion with the teacher, a number of missed 

learning opportunities can be similarly outlined. Any communication of the students’ 

group work to the teacher is always necessarily incomplete and, therefore, not all the 

ideas happen to be shared, assessed and turned into mathematics learning opportunities. 

One question is whether there is a particular type of ideas concerning knowledge about 

the construction and justification of school mathematics knowledge, whose discussion 

tends to be underestimated in the mathematical culture of the mathematics classroom. 

What we have illustrated in this report may not be unique.  

Regarding the context of interaction with the teacher, the students may have 

constructed some learning of the fact that sharing certain issues involved in their 

mathematical activity, and omitting others, can situate them better as learners of 

mathematics in that classroom and with that teacher. The students of EA may have 

intentionally omitted their approaches to probability arguments and ideas of 

randomness if they perceived that this part of their mathematical activity was irrelevant 

or not adequate in the public context of interaction with the teacher. If this is the case, 

important mathematics learning opportunities are missed due to representations of 

what is adequate in the mathematical culture of the mathematics classroom.  
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CHILDREN’S PATTERNS OF REASONING 

IN INTUITIVE MENTAL RATIO COMPARISON 

David Maximiliano Gómez, Pablo Dartnell 

Universidad de Chile, Chile 

 

Understanding rational numbers requires rich notions of ratio and proportionality. 

Previous research has showed that children tend to reason exclusively based on 

natural numbers when asked to compare fractions, ignoring the involved ratios. The 

present work investigated whether this type of reasoning emerges in a context that 

emphasizes reasoning about ratios. Forty 2nd-grade children learned to use fraction-

like symbols to represent ratios of candies received over a number of days, and were 

then evaluated on a ratio comparison task using those symbols. A clustering analysis 

revealed the presence of three groups of children deploying distinct patterns of thought 

including the reasoning purely based on natural numbers, revealing that this pattern 

of reasoning still arises in intuitive mental ratio comparison. 

INTRODUCTION 

Rational numbers are a crucial concept in elementary and middle school mathematics 

and learning them may be one of the most difficult achievements, requiring a 

conceptual shift regarding what numbers are. In line with this high difficulty, research 

has linked rational number understanding to both previous and future mathematics 

achievement (e.g. Aksu, 1997; Siegler et al., 2012). Still, many educators may not be 

prepared to teach fractions because of lack of understanding of the core concepts: 

Depaepe et al. (2015) showed that prospective teachers’ knowledge of fractions 

reached an average of 79% (range 34%-98%) when tested with a questionnaire 

appropriate for upper elementary school according to the curriculum (see also Van 

Steenbrugge, Lesage, Valcke, & Desoete, 2014). 

One of the first relevant questions to deal with for teaching rational numbers is how to 

approach them, with several possible interpretations or metaphors available to the 

educator. Rational numbers can be represented as parts of an object, as positions in the 

number line, or as ratio-based relations between two quantities, among others. 

Educators often emphasize one or two of these representations over the others—most 

commonly the parts-of-an-object one—, and as a result the view of fractions as parts 

of objects is very common, whereas ratio-based relations and a ratio-based approach 

to fractions tend to be introduced much later, or sometimes simply neglected. Although 

ratio and proportions are topics widely recognized as important and part of most 

mathematics curricula worldwide (see Obando, Vasco, & Arboleda, 2014, and 

references therein), their late introduction to students might miss the opportunity of 

taking advantage of children’s early intuitive understanding about ratios (e.g. Singer, 

Kohn, & Resnick, 1997; Van Den Brink & Streefland, 1979). 
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Several researchers in Mathematics Education and Psychology have studied a 

phenomenon named Natural Number Bias (hereafter NNB), consisting on the 

overgeneralization of concepts and intuitions proper of natural numbers to rationals 

(e.g. Ni & Zhou, 2005; Gómez & Dartnell, 2015; Gómez, Jiménez, Bobadilla, Reyes, 

& Dartnell, 2014; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013; Van 

Dooren, Lehtinen, & Verschaffel, 2015). This bias can be appreciated in students’ 

responses to fraction comparison items where fractions share a common numerator 

(e.g. 3/5 vs. 3/7) or denominator (e.g. 5/9 vs. 7/9). Items with a common denominator 

are systematically found to be easier than items with a common numerator (e.g. Gómez 

et al., 2014; Vamvakoussi, Van Dooren, & Verschaffel, 2012; Van Eeckhoudt, 2013), 

because the magnitude of the relevant components (5 < 7) points either in the opposite 

(3/5 > 3/7) or the same (5/9 < 7/9) direction as the fractions’ magnitudes. 

In line with previous studies, this paper will consider as congruent those fraction pairs 

in which the largest fraction is the one with the largest numerator and/or denominator, 

and incongruent those pairs where the largest fraction is the one with the smallest 

numerator and/or denominator (e.g. Gómez et al., 2014; Obersteiner et al., 2013; 

Vamvakoussi et al., 2012). As in these works, we also extend the notion of congruency 

to fraction pairs without common components: an example of a congruent item is 1/3 

< 5/7, where the larger numerator and denominator both belong to the larger fraction, 

whereas an example of an incongruent item is 2/3 > 4/9, in which the larger numerator 

and denominator belong to the smaller fraction. The NNB has been found in the vast 

majority of studies about fraction comparison and fraction knowledge more generally, 

and traces of it seem to be even present in expert mathematicians’ response times to 

compare fractions (Obersteiner et al., 2013). It is so far an open question the extent to 

which the emergence of the NNB depends on the pedagogical strategies or approach 

used to teach fractions (Ni & Zhou, 2005), although the concept of congruence itself 

has been recently problematized in terms of its cognitive relevance (Gómez & Dartnell, 

2015). 

The present study had two goals. First, to evaluate second grade children’s ability to 

use their intuitive understanding of ratios to respond to a ratio comparison test akin to 

the fraction comparison tasks documented in the literature (e.g. Gómez et al., 2014). 

Second, by including in the ratio comparison test both congruent and incongruent pairs 

of ratios, we evaluated if a NNB similar to the one documented for fractions appears 

in this novel setting. To do this, a series of brief audiovisual recordings were developed 

and presented to second grade children in order to teach them how to represent ratios 

by using fraction-like symbols. These symbols (see Figure 1 for an example) were 

messages that represented the number of candies that children in a fictional world 

would receive over a number of days. This way, children were asked to compare ratios 

by judging which one of two of these messages was “more convenient”. This context 

for the presentation of ratios falls into the format category of associated sets studied by 

Lamon (1993), consisting in creating ratios by pairing objects from two different sets—

in our case, the set of candies and the set of incoming days—at a fixed rate. Lamon 
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asked sixth-grade children (who had not yet received formal instruction about ratios) 

to answer problems about ratio and proportion in different formats. She found that 

problems presented in the associated sets format were most frequently solved by using 

some sort of qualitative proportional reasoning, in contrast to other formats that did not 

elicit appropriate proportional reasoning often. 

This work thus aims at exploring the feasibility and utility of using children’s intuitions 

about ratios in order to avoid the NNB and achieve successful comparison of ratios, as 

a possible way to improve the teaching of fractions and rational numbers in general. 

MATERIALS AND METHODS 

Participants 

Forty Chilean 2nd-grade children (19 boys and 21 girls, about 7-8 years old) participated 

in this study. Signed informed consent for participation was obtained from a parent of 

each participant prior to the testing session. 

Material 

Audiovisual recordings. Five audiovisual recordings presented the story of a fictional 

land where elves bring messages and candies to children overnight. The reception of a 

message like the one in Figure 1 meant that the recipient would get two candies every 

five days. Two families of elves (yellow and green) were introduced, in order to give 

children the possibility of choosing which one of two messages was more convenient 

for them. The average length of each recording was 3:12. 

Ratio comparison task. Children answered twelve ratio comparison items presented 

on the computer screen (see Figure 2). In addition to having both congruent and 

incongruent items, the task included also items in which the two ratios shared the same 

number of days or the same number of candies. 

Procedure 

Children were tested in the computer classroom of their school, in groups of 20 to 30 

children. Each child worked individually with a computer in a single testing session. 

After an introductory explanation of the content of the session, children watched the 

five audiovisual recordings. Each video was followed by two questions used to probe 

children’s understanding of specific contents. 

At the end of the session, children answered the ratio comparison task. For each item, 

they were presented with a pair of ratios and asked to judge which was “more 

convenient” by pressing the keys Q or P. Children had no time limit for answering. 

Data analysis 

We analysed only accuracy data for the ratio comparison test. Children were grouped 

in clusters using the k-means clustering algorithm (e.g. see Steinley, 2006) by 

considering their responses to each of the four item types separately. The value of k 

was chosen as the largest possible not generating clusters of size 5 or smaller. 
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Figure 1: Example of a message used to represent ratios, 

meaning that its recipient would receive two candies every five days. 

 

 

Figure 2: Screen capture of an item of the ratio comparison test. The children 

depicted at the top of the screen switched from grayscale to color and started smiling 

after the participant responded to each item, regardless of the correctness of the given 

answer. 

RESULTS 

The full sample of children had a mean accuracy of 65% or approximately 8 correct 

answers out of 12. This value is modestly but significantly above the chance level of 

50% (t(39) = 5.4, p < .0001). This suggests that, at least in average, children were able 

to adequately interpret the symbols used for ratios. Table 1 displays separate scores for 

each of the four item types. These scores were analyzed by means of a logistic 

regression with congruency and the presence/absence of a common component as fixed 

factors and children as a random factor. This regression revealed a significant main 

effect of congruency (OR = -1.0, p = .0005) where congruent items were answered 

more correctly than incongruent items (average scores of 76% and 54%, respectively); 



 Gómez, Dartnell 

PME40 – 2016 2–311 

a trend towards significance for the main effect of the presence/absence of common 

components (OR = 0.58, p =.06) where items sharing a common component were 

answered more correctly than items with all numbers different (average scores of 70% 

and 60%, respectively); and no significant interaction between these two factors (OR 

= -0.15, p = .72). 

We then analyzed individual differences in children’s understanding by means of a k-

means clustering analysis, considering accuracy scores for the four item types for each 

child. This analysis revealed the existence of three groups of children explaining 67.3% 

of the total variance. Table 2 shows the scores of each group and item type. 

Cluster A was the largest, with 17 out of the 40 children. This cluster also had the 

highest overall score (77%). Children in this cluster showed high scores for all item 

types except for incongruent pairs with no common components. 

The second most numerous group was Cluster B, with 14 out of 40 children. Cluster B 

comprised children who answered mostly guided by the congruency or incongruency 

of each item according to the NNB account. That is to say, children in this group had 

very high scores in answering congruent items and very low scores in answering 

incongruent ones. Hence the overall score of this group was markedly lower than the 

other groups (48%). 

 

Group With a common component Without common components Total 

score 
Congruent Incongruent Congruent Incongruent 

Full sample 

(N = 40) 
81 % 59 % 71 % 49 % 65 % 

Cluster A 

(n = 17) 
82 % 80 % 84 % 63 % 77 % 

Cluster B 

(n = 14) 
83 % 7 % 95 % 5 % 48 % 

Cluster C 

(n = 9) 
74 % 100 % 7 % 93 % 69 % 

Table 1: Average accuracy per item type for the full sample and clusters. Congruent 

items with a common component are those in which the two messages share the same 

number of days, whereas incongruent ones are those in which the two messages share 

the same number of candies. 

The third and last cluster, Cluster C, was composed by 9 out of the total 40 children. 

They exhibited a good overall score (69%), but this score conceals an unexpected 

pattern of responses: Incongruent ratio pairs were answered almost completely correct, 

congruent items without common components mostly incorrect, and surprisingly, 
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scores in the easiest item type (congruent items with a common component) were not 

as high as expected. 

DISCUSSION 

The present research aimed at understanding whether children’s intuitions about ratios 

can help them to respond successfully to a ratio comparison test, and to explore if this 

approach elicits a NNB such as the one many studies have documented for fractions at 

different ages and levels of expertise (Gómez et al., 2014; Obersteiner et al., 2013; 

Vamvakoussi et al., 2012; Van Eeckhoudt, 2013). The data shed light on both 

questions. Children’s intuitive reasoning seemed to be, in average, a good scaffold for 

answering the ratio comparison task. Nonetheless, a clustering analysis revealed that 

children showed distinct patterns of intuitive reasoning, not all of them being 

compatible with an adequate concept of ratio. 

A majority group (cluster A, 43% of the sample) compared ratios successfully across 

all item types, indicating that intuitive reasoning via ratios may be successful as a 

pedagogical tool for introducing ratio and proportion. Still, 35% of children (cluster B) 

reasoned mostly based on the natural numbers composing the ratios (a strong form of 

NNB, cf. Gómez et al., 2014), disregarding the relations between numbers of candies 

and days presented in each message and focusing only on comparing the corresponding 

numbers across the two presented messages. Although we did not ask children to 

justify their decisions, they would have probably given explanations where ratios 

simply consist in two independent numbers. Stafylidou and Vosniadou (2004) 

presented and considered this explanatory framework as the most basic one, showing 

that it is still used by 30% of children in 5th grade. Finally, the behavior of children in 

the third group (22% of the sample) also departed from the predictions of the NNB. If 

anything, they showed a reversed bias: scores for incongruent items were higher than 

those for congruent items (in opposition to, e.g., Gómez et al., 2014; Van Eeekhoudt, 

2013; but see Gómez & Dartnell, 2015). This pattern of answers suggests that they 

might have focused exclusively on the number of days presented in each message, 

choosing whenever possible the message with the smallest number of days associated. 

A possible account for this group’s reasoning might go beyond ratio comparison per 

se, as they seemingly deemed more convenient to choose that candies are delivered 

sooner even if that means receiving fewer candies. Such possibility suggests that these 

children interpreted the ratio comparison task as an economical decision rather than 

anything ratio-based (indeed, children facing such decisions seem to prefer shorter 

delays than higher rewards, e.g. Green, Fry, & Myerson, 1994). It is not uncommon 

that children use different interpretations or intuitions than those expected by educators 

and researchers (e.g., Van Den Brink & Streefland, 1979), which leads to one limitation 

of the present study: the absence of individual interviews or similar methods of inquiry 

allowing confirmation of how children were actually reasoning. Still, the cluster-based 

analysis provides an important first step in that direction by grouping children 

according to their patterns of answers. Further research is also needed to discover 

whether children’s clusters of membership predict how they will reason about fractions 
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later, and to explore continuities and discontinuities in the transition from intuitive ratio 

concepts to formal ones. 

These results also have implications for the teaching of ratios and fractions. First, 

biased children (those in cluster B) might benefit from highlighting the relevance of 

integrating both natural numbers within each ratio into a holistic element and explicit 

discouraging of simple comparison of the natural numbers across ratios. Hence, 

activities such as mapping ratios and fractions onto a number line might prove useful 

for them. Second, the data showed that the same teaching material can be interpreted 

in a diversity of ways by children, even when overall performance seems satisfactory. 

The average score of children in cluster C was not substantially lower than that of 

children in cluster A, but looking at their patterns of answers revealed that they resorted 

to radically different reasoning paths, demonstrating that a good average score does 

not guarantee a correct understanding of the intended concepts. This highlights the 

relevance of improving the assessment of mathematics understanding, and in particular 

the need of presenting and explaining ratios and fractions using a variety of ways and/or 

metaphors, so as to minimize the chance of children drawing wrong interpretations or 

generalizations. 
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THE ROLE OF THE KNOWLEDGEABLE OTHER IN  

POST-LESSON DISCUSSIONS IN LESSON STUDY 

Susie Groves, & Brian Doig 

Deakin University 

 

Worldwide interest in Japanese Lesson Study as a vehicle to improve mathematics 

teaching practice through professional learning has left largely unanswered questions 

about the extent to which it can be replicated elsewhere. This paper reports some of 

the findings from a small-scale research project, “Implementing structured problem-

solving mathematics lessons through lesson study”, carried out in three Australian 

schools during 2012, and continued in a modified form during 2013 and 2014. In 

particular, it discusses the potential contribution to teacher professional learning 

resulting from post-lesson discussion commentaries by “knowledgeable others” with 

considerable experience of and expertise in lesson study within and outside of Japan.  

INTRODUCTION  

Lesson study first came to worldwide attention through Yoshida’s (1999) doctoral 

dissertation and Stigler and Hiebert’s (1999) accounts of Japanese “structured 

problem-solving” lessons based on the Third International Mathematics and Science 

Study (TIMSS) video study. These structured problem-solving lessons represent a 

major Japanese instructional approach designed to develop mathematical concepts and 

skills through problem solving (Takahashi, 2008). 

Since 1999, there has been phenomenal growth of lesson study as a vehicle for teacher 

professional learning ouside of Japan. However, worldwide interest in, and attempts at 

implementation of, Japanese Lesson Study have left largely unanswered questions 

about the extent to which it can be replicated elsewhere, with research suggesting that 

teachers outside Japan often focus only on superficial aspects of lesson study (e.g. 

Robinson, 2007; Perry & Lewis, 2008).  

Despite its long-standing tradition in Japan, research into lesson study only 

commenced in Japan as a result of the interest shown by Western nations, with Fujii 

(2014) noting that in Japan “lesson study is like air, felt everywhere ... [but] so natural 

that it can be difficult to identify its critical and important features” (p. 66). Moreover, 

according to Takahashi and McDougal (2016), early research articles based on case 

studies describing Japanese Lesson Study do not explain which parts of the process are 

essential and which could be modified, with “important aspects of lesson study as 

practiced in Japan … getting ‘lost in translation’” (p. 2).  Elsewhere, while many 

studies of professional learning programs have provided evidence of improved teacher 

learning, few have differentiated critical elements that have contributed to this learning. 

Lesson study is neither an end in itself, nor about perfecting a particular lesson, but 

instead is a process through which teachers can gain new knowledge for teaching. 
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Based on their experience of lesson study in Japan and USA, Takahashi and 

McDougall (2016) define collaborative lesson research (CLR) as having six 

components: a clear research purpose; Kyouzai kenkyuu (the study of materials for 

teaching); a written research proposal; a live research lesson and discussion; the 

involvement of “knowledgeable others”; and the sharing of results.  

Misconceptions regarding the nature of lesson study and modifications to its 

implementation outside Japan have been found to include: repeated revisions and 

reteaching of the same lesson; entire lesson study cycles being carried out over the 

course of one day; a lack of observers beyond the planning team, with possibly just 

one other teacher being present at the research lesson and the post-lesson discussion; 

and an absence of knowledgeable others (Fujii, 2014; Takahashi & McDougal, 2016). 

In particular, Takahashi and McDougal draw attention to the importance of the role of 

knowledgeable others to support professional learning, echoing Guskey and Yoon’s 

(2009) findings from their synthesis of research into professional development that the 

“efforts that brought improvements in student learning focused principally on ideas 

gained through the involvement of outside experts” (p. 496).  

In Japan, lesson study almost always includes a knowledgeable other with in-depth 

experience of lesson study, and knowledge of curriculum and teaching, who offers final 

comments at the post-lesson discussion, while ideally there is a second knowledgeable 

other involved in the planning phase.  

This paper reports on some of the findings from an Australian research project, 

Implementing structured problem-solving mathematics lessons through lesson study. 

Using data from a series of post-lesson discussions from research lessons planned and 

taught by Grades 3 and 4 teachers participating in this project, it looks at the potential 

contribution to teacher professional learning resulting from the final commentaries of 

knowledgeable others with considerable experience in acting in this capacity both 

within and outside of Japan. 

THE PROJECT 

The Implementing structured problem-solving mathematics lessons through lesson 

study project was carried out in three Australian elementary schools during 2012 to 

explore ways in which key elements of Japanese Lesson Study could be embedded into 

Australian mathematics teaching and professional learning.  

Six Grade 3 and 4 teachers and four numeracy coaches1 took part in an initial whole-

day professional learning session on Japanese Lesson Study, after which they were 

divided into two cross-school teams, with each team conducting two research cycles. 

Participants planned each research lesson during four two-hour sessions. Two 

researchers joined each planning team and acted as knowledgeable others to facilitate 

and support, but not lead the planning.  

                                           
1  Numeracy coaches are experienced teachers who provide curriculum leadership in mathematics 

teaching by working with teachers to improve teaching and student learning.  
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One teacher from each team taught the research lesson. Members of both planning 

teams, key staff at each school, together with all interested teachers who could be 

released from their classes, observed the research lessons and took part in the post-

lesson discussions. In all between 20 and 30 people – including members of the 

leadership teams from other schools, staff from the regional office, mathematics 

educators, and a knowledgeable other – observed each research lesson and took part in 

the post-lesson discussions. Every attempt was made to implement Japanese Lesson 

Study as “authentically” as possible, including adopting the structured problem-solving 

pattern for the research lessons. The knowledgeable others giving the final comments 

were Dr Max Stephens, an Australian expert on Japanese Lesson Study, and our 

Japanese collaborator, Professor Toshiakira Fujii, who came to Australia to act as the 

knowledgeable other for two of the 2012 research lessons. The project continued in a 

modified form in 2013 and 2014. 

During 2012, all planning sessions, research lessons, and subsequent post-lesson 

discussions were video recorded. Three audio-recorded, semi-structured interviews 

were also carried out with each of the participants. Field-notes, lesson plans, and other 

artefacts, such as student work, were also collected. Similar data were collected during 

the two research cycles in 2013, although in this case there was just one interview. The 

only data available from the 2014 mathematics lesson study cycles were video 

recordings of the first and third mathematics research lesson and the subsequent post-

lesson discussions, together with lesson plans and student work. 

All interviews and post-lesson discussions were transcribed. This paper is based on a 

thematic analysis of these transcripts, and field-notes from the planning sessions. 

THE ROLE OF THE KNOWLEDGEABLE OTHER 

Takahashi (2014) used a case study of three respected knowledgeable others in Japan 

to clarify the role of the knowledgeable other in lesson study, and argues that in Japan 

such expertise comes from years of experience participating in lesson study, which is 

often difficult to replicate outside of Japan. In this section we provide exemplars of 

comments from the knowledgeable others in our project and discuss how these 

comments had the potential to support various aspects of professional learning. 

Linking tasks to the aims for the lesson. Watanabe, Takahashi and Yoshida (2008), 

remind us that the purpose of lesson study is not just to improve a single lesson, but to 

improve mathematical instruction in general. This involves careful attention to kyozai 

kenkyuu, something that is not always attended to in non-Japanese lesson study. They 

further remind us that the same subject matter can be explored using different tasks, 

while different subject matter can be investigated with the same task – the important 

thing being to link the task to the aims of the lesson.  

During his concluding remarks on Research Lesson 3 (RL3), Toshiakira Fujii (TF), our 

knowledgeable other for Research Lessons 3 and 4, highlighted the need for the aim of 

the lesson to be the driving force behind the choice of the task, as well as the need for 

a clear mathematical aim. 
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So first of all the task. The task must be open-ended and rich enough in mathematics, also 

educational value there, but not too open, not too open ... otherwise children’s flexibilities 

are great, they can go anywhere. Today’s evidence shows us they can go anywhere. So [it] 

should be open-ended but narrowed down a bit, according to the aim of this, today’s lesson. 

… So today the lesson’s aim listed about six [aims]. I thought it too many ... Third one 

“choose and use learned facts procedures, strategies to find solutions”. How about this 

one? (TF, RL3) 

In Japan, even the numbers used in a particular task are contested and require deep 

consideration (see, for example, Doig, Groves, & Fujii, 2011). This was evident in 

another of TF’s comments during the RL3 post-lesson discussion. 

Okay, I mean, yesterday we talk about the number, about task [with the research team]. 

The first I saw the task I immediately thought, oh 23. That means not 24. ... So why you 

choose 23 instead of 24? You could choose 24 x 2; I mean no carrying over, two digits 

times one digit. ... why you avoid to use 24 then to accomplish this task, this aim. ... So 

why they … choose 23 then? … [You] have to consider the role of the task, it should be 

open ended but should be related to the end. So if the team could answer, why not 24? ... 

But this task is 23, the prime number, why prime number? (TF, RL3) 

Teaching through problem solving. The Australian Curriculum: Mathematics 

(ACARA, n.d.) identifies Understanding, Fluency, Problem Solving, and Reasoning 

as the four strands that comprise mathematical proficiency. However, the focus in 

Problem Solving is on the “process” aspects, with no suggestion that mathematical 

content can or should be taught through problem solving. By way of contrast, in Japan 

the problem-solving lesson structure for mathematics, which has evolved over four 

decades, originated in a desire to introduce open-ended problems in order not only to 

enhance students’ higher-order thinking, but also to enable students to use their 

previous knowledge and skills to learn something new through the process of solving 

a problem (Becker, Silver, Kantowski, & Wilson, 1990).  

During his comments on RL3, TF highlighted the need to raise students’ levels of 

understanding in the discussion (neriage) phase of structured problem-solving lessons. 

Yes, well let’s talk about the problem-solving orientated lesson. There's two critical parts. 

One is a task, and ... second is the discussion period. ... [It] means starting from children's 

level and [raising] their thought. That’s the most difficult part in a problem-solving lesson. 

(TF, RL3) 

Takahashi (2008) describes this neriage phase as the heart of the lesson and the starting 

point for student learning through the teacher highlighting “important mathematical 

ideas and concepts for students to reach the goals of the lesson” (p. 5). Solving the 

problem and sharing solutions is the beginning of the learning process rather than the 

outcome at the end of the lesson. 

Educational goals versus process goals. An area where teachers in our project 

struggled was in formulating learning goals – especially ones that related to 

mathematical learning rather than observable outcomes such as students finding and 

communicating multiple solutions to the problem or “demonstrating confidence”.   



Groves, Doig 

PME40 – 2016 2–319 

I found it surprising how hard it was for us to articulate what the goals of the lesson were 

going to be. I thought it would be pretty easy ... [but] I was surprised how long we spent 

trying to articulate [these]. (George, Interview 3) 

In Japan, structured problem-solving lessons typically include both content goals and 

goals relating to problem-solving skills and strategies, with Takahashi (2008) 

describing these lessons as vehicles for introducing new topics or big ideas. TF 

commented on this after RL4. 

So Japanese lesson study’s aim is not to solve this task at all – problem-solving oriented 

lesson means through solving this task we want to teach how to think. ... that’s why let 

them think first then discuss how you thought ... so the discussion is not only how to solve 

this one [task]. It should focus on the thinking itself. (TF, RL4) 

He further commented on not only how difficult this is, but also how important it is if 

we are to take seriously our roles in educating the whole child. 

That is difficult. You should know mathematics, you should know children’s way of 

thinking. Therefore teacher is professional job. You see you should be honoured to be a 

teacher ... Skill is important ... [but we need] to educate children as a human being how to 

think. (TF, RL4) 

Engaging students in whole-class discussion. While sharing of student solutions at 

the end of a lesson is common in Australian classrooms, it is often just a very brief  

“show and tell” (c.f. Takahashi, 2008).  There is very little history of whole-class 

discussion, which itself is often equated with expository teaching. Teachers in the 

project went to considerable lengths to overcome practical difficulties associated with 

conducting extended whole-class discussions – for example, the classroom layout that 

necessitated students sitting on the floor for these discussion – and students responded 

well to being asked to explain their solutions during the orchestrated discussion. 

However, moving beyond to-and-fro interactions between the teacher and individual 

students proved difficult.  

Max Stephens (MS), our knowledgeable other for Research Lessons 1, 2, 5, 6 and 7, 

offered advice on this aspect.  

A lot of the discussion was between Megan2 and a student. In a problem-solving lesson 

there is a place for asking the students “Do you have a question to ask of Holly?” I’d throw 

a bit of responsibility back on the students ... I think it is very helpful to [ask the other 

students] “Do you have a question about what Holly has said that wasn’t clear?” … So 

they need to own [it]. Otherwise I think it was a little too passive. But it was a very usable 

phase. (MS, RL5) 

And it comes back again in the sharing of solutions – which I think was very well done. 

But I would encourage you in the sharing of solutions to occasionally throw it out to the 

whole class. Very clear dialogue between you and the student presenting, but occasionally 

                                           
2  All teacher and student names are pseudonyms.   
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you [could] say to people “Have you got a question?” or “What are you noticing?” It 

wouldn’t make the lesson much longer but it means that those who haven’t been called up 

are drawn into the discussion. (MS, RL7) 

When making similar comments after RL6, MS emphasised the fact that teaching 

students how to participate in genuine mathematical discussions was a whole-school 

responsibility and that you could not expect them to suddenly to know how to do this 

in Grade 3. These comments were not merely addressed to the teacher of the research 

lesson, or even the entire planning team. Instead they were addressed to all of the 

observers present at the research lesson and were later reported anecdotally by the 

Assistant Principal as having led to a number of “corridor conversations” amongst 

teachers. 

Concluding his remarks on RL3, TF encouraged teachers to persist in the difficult task 

of “moving the discussion up one level”, emphasising the value of observing research 

lessons and participating in the subsequent post-lesson discussions.   

Focusing on discussion period, ... we could move level up you see. ... In Japan we struggle 

to do that, it's very difficult, so we communicate with each other and keep studying each 

other, we learn from each other. Thank you. (TF, RL3) 

Participants’ views. Participating teachers highly valued the post-lesson discussions 

and regarded the input from the knowledgeable others as important learning 

opportunities.  

What I’ve noticed is, sort of the culture that sits behind it. I can imagine the Japanese post-

lesson discussions being a lot more, as I said honest, really perhaps a little bit more 

animated, a bit more challenging. I think we’re very polite here. And I know Japanese are 

polite, but I have a feeling they’re a bit more blunt in this context. So …  that whole thing 

of changing the culture at the school, to support this model, would result in the best possible 

discussions, that culture of giving and receiving feedback. (Narah, Interview 3) 

The post-lesson discussions have been so valuable. Both people were really valuable 

people to listen to and had real insights and very deep knowledge of the content and 

classrooms. (Paula, Interview 3) 

Having someone like [TF] here today ... when he was speaking everyone was listening ... 

I like his approach. I know with sport ... that’s the feedback I like. ... it can be harsh at 

times and you probably don’t want to hear what some of them are saying. But these people 

are here for a reason – like you guys haven't invited any Joe Blow off the street to come 

and give advice. (Trevor, Interview 3) 

DISCUSSION AND CONCLUSION 

As discussed earlier, many adaptations of Japanese Lesson Study omit critical features 

of lesson study. In particular, the emphasis on and perceived success of collaborative 

planning often overshadows the value of the “open” research lesson and post-lesson 

discussion, which Lewis and Tsuchida (1998) regard as an essential component of 

lesson study. They quote one teacher as likening a lesson to “a swiftly flowing river” 



Groves, Doig 

PME40 – 2016 2–321 

with observers’ comments revealing “your real profile as a teacher … for the first time” 

(p. 15). 

In this paper, we have highlighted the ways that experienced knowledgeable others 

have the potential to contribute to teachers’ professional growth. We argue that 

Japanese Lesson Study is a powerful model for professional growth for all participants, 

with the learning that happens through this process not being restricted to the lesson 

planning team or the teacher teaching the lesson. Instead, as Archer, et al. (2013) point 

out, “The strength [of lesson study] is in the rigour of the post lesson analysis and that 

this feeds directly into the practice of all teachers present. The lesson studies are also 

significant learning opportunities for all others involved, particularly when there are 

visitors from Japan joining the lesson study” (p. 5).  

Lesson study in Japan is widely viewed as a shared professional culture that provides 

a pathway for continuing improvement of teachers’ pedagogical and content 

knowledge. However, as Stigler and Hiebert (1999) point out, efforts at improving 

teaching often ignore the fact that teaching is a cultural activity, which implies gradual 

change and the need to take into account the cultural assumptions underpinning 

teaching and learning. This raises many issues regarding the sustainability of Japanese 

Lesson Study as a model for teacher professional learning in Australia. While project 

teachers frequently referred to their experience of lesson study as being their most 

valued professional learning, further research is required to establish the development 

of sustainable lesson study groups within the Australian school culture – ones that do 

not rely on the degree of support provided to the project schools. This will necessitate 

the establishment of a community of teachers, mathematics educators, and researchers 

who can continue the process, including providing initial exposure to lesson study and 

acting as knowledgeable others.  
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In the field of affect many researchers have underlined to clarify constructs such as 

beliefs, emotions and attitudes, and to better investigate the relationships among them. 

In our previous study we tested the tripartite model of attitude, according to which 

attitude has a cognitive, an affective and behavioral component via structural equation 

modeling and found significant results. In this paper we hypothesize two additional 

structural models that investigate further relationships using the same data for the 

previous study. We will present the results and comment upon them. 

INTRODUCTION 

It is commonly accepted that affective factors play crucial roles in mathematics 

learning. There are many studies that have been able to establish a relationship between 

attitude and achievement in mathematics. However, many researchers have highlighted 

the need of some theory for research on affect, in order to better clarify connections 

among the various components, and their interaction with cognitive factors in 

mathematics education (McLeod, 1992).  

In mathematics education, there is a variety of definitions of the term attitude. Using a 

multidimensional definition, attitude toward mathematics comprises three 

components: a conception about mathematics, an emotional respond to mathematics, 

and a behavioral tendency with regard to mathematics (Hart, 1989). This definition has 

gradually been recognized at a theoretical level (Di Martino & Zan, 2011), a tripartite 

model, according to which attitude has a cognitive, an affective and a behavioral 

component. In our previous study we accepted this tripartite model of attitude and 

hypothesized a second-order factor model where attitude is a single second-order 

factor; cognitive, affective and behavioral components are second-order factors. In this 

study we continue at that point and hypothesized further relationships. 

In assessment of attitude, the Fennema-Sherman Mathematics Attitudes Scales 

(FSMAS) (Fennema & Sherman, 1976) remain the most extensively used in research 

studies (Hyde et al., 1990). The FSMAS comprise nine scales: Attitudes towards 

Success in Mathematics, Mathematics as a Male Domain, Confidence in Learning 

Mathematics, Mathematics Anxiety, Effectance Motivation in Mathematics and 

Usefulness of Mathematics. They also include Mother, Father and Teacher scales. The 

subscales can be used as a set, or individually. Recent studies have generally provided 

support for the reliability and validity of the FSMAS (Melancon et al., 1994). In our 

previous work we used some of the FSMAS and adapted two more scales all represent 

three components of attitude toward mathematics. In the present study we hypothesized 
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two additional structural models including such variables. The research questions of 

the study were: 

 What is the model explaining relationships among students’ perceptions of their 

mathematics teacher’s teaching profession, their mathematics teacher’s, father’s 

and mother’s attitudes toward and expectations from them as learners of 

mathematics, their confidence in learning mathematics, beliefs about the usefulness 

and importance of mathematics, liking for mathematics, mathematics anxiety, 

behaviors toward mathematics and the time they spent on mathematics at home? 

 What is the model explaining relationships between students’ perceptions of their 

mathematics teacher’s teaching profession, their mathematics teacher’s, father’s 

and mother’s attitudes toward and expectations from them as learners of 

mathematics and cognitive, affective and behavioral components of attitude toward 

mathematics? 

METHOD 

Sample 

The sample of the study consisted of 1960 7th grade students enrolled in 19 different 

public elementary schools in one of the districts of one of the big cities of Turkey. 

Convenience-sampling was used to select the subjects. In the total sample, 1001 

(51.1%) students were female and 959 (48.9%) students were male. 

Instrument 

In order to test the hypothesized models, Attitude Toward Mathematics Questionnaire 

(ATMQ) was used. It involves ten scales: confidence in learning mathematics (12 

items), usefulness and importance of mathematics (16 items), liking for mathematics 

(5 items), mathematics anxiety (12 items), learner behaviors toward mathematics (4 

items), time spent on mathematics at home (4 items), father scale (11 items), mother 

scale (11 items), teacher scale-I (12 items) and teacher scale-II (7 items) (94 items in 

total). It is scaled on a five-point Likert type: strongly agree, agree, undecided, 

disagree, and strongly disagree. The subscales confidence in learning mathematics, 

usefulness of mathematics, liking for mathematics, mathematics anxiety, father, 

mother and teacher-I were adapted from the corresponding subscales of the FSMAS 

(Fennema & Sherman, 1976) by Tag (2000); importance of mathematics and teacher-

II were adapted from TIMSS (1999) by Tag (2000); learner behaviors toward 

mathematics was adapted from the questions in ‘student interview guide’ developed 

by Beth and Neustadt (2005); and time spent on mathematics at home was adapted 

from the statements of the instrument developed by Mohamad-Ali (1995).  

Preliminary data analyses for the instrument were done to detect the outliers, check the 

data recording (data cleaning) and normal distribution of the variables. The alpha 

reliability coefficients for ten subscales were found 0.879, 0.878, 0.769, 0.827, 0.599, 

0.659, 0.843, 0.840, 0.690 and 0.724, respectively. To test the construct validity of 

each subscale and determine whether or not they have sub-dimensions, principle 
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component analysis was done. A confirmatory factor analysis with ten factors was 

carried out to assess the fit using LISREL. All the fit indices indicated that the model 

proposed fitted to the data set. 

RESULTS 

For testing the proposed models, covariance matrixes were generated using PRELIS. 

Significance of the path coefficients was tested through t-tests. Maximum likelihood 

estimation was used for estimating parameters of the models. 

Results of the First Research Question 

In order to test the proposed relationships among variables, a path analytic model was 

hypothesized. Initially, to revise the hypothesized model data fit, the selected LISREL-

SIMPLIS model fit indices and the significance of the paths was considered with 

respect to the t-test results. In addition, the modification indices were checked and 

covariance terms were added if needed. The path between students’ perceptions of their 

mother’s attitudes toward and expectations from them as learners of mathematics and 

mathematics anxiety was found to have non-significant t-value; therefore it was 

removed from the hypothesized model. Moreover, as a result of inspecting the 

modification indices, covariance terms were added between eight pairs of observed 

variables. As a result, all the goodness-of-fit indices of the model were investigated 

through their criteria and because of RMSEA, it was concluded that the model 

indicated a poor fit to the data (χ2 = 443.55, p = .00, df = 14; GFI = .96; AGFI = .83; 

SRMR = .063; RMSEA = .13). However, the relationships among the variables of the 

proposed model were examined using correlation analysis. Table 1 shows the inter-

correlations of the variables used. 
 

 CO UI LIKE ANX MBEH TIME TETP TEST FAST 

UI .54         

LIKE .62 .62        

ANX .69 .48 .59       

MBEH .53 .51 .50 .45      

TIME .45 .45 .46 .41 .44     

TETP .36 .48 .40 .32 .37 .27    

TEST .50 .48 .44 .52 .40 .39 .41   

FAST .40 .52 .37 .39 .48 .39 .31 .44  

MOST .42 .54 .38 .36 .51 .42 .32 .45 .71 
Note. CO=Confidence in learning mathematics, UI=Usefulness and importance of mathematics, 

LIKE=Liking for mathematics, ANX=Mathematics anxiety, MBEH=Learner behaviors toward 

mathematics, TIME=Time spent on mathematics at home, TETP=Students’ perceptions of their 

mathematics teacher’s teaching profession, TEST=Students’ perceptions of their mathematics teacher’s 

attitudes toward and expectations from them as learners of mathematics, FAST=Students’ perceptions of 

their father’s attitudes toward and expectations from them as learners of mathematics, MOST=Students’ 

perceptions of their mother’s attitudes toward and expectations from them as learners of mathematics.  

p<.01 

Table 1: Inter-correlations of the variables 



Gun, Bulut 

2–326 PME40 – 2016 

From Table 1, all correlations are positive and significant at the .01 level of 

significance. 

Results of the Second Research Question 

In order to investigate the second research question, a path analytic model with latent 

variables was hypothesized. In the model, Cognitive Component of Attitude toward 

Mathematics, the Affective Component of Attitude toward Mathematics and the 

Behavioral Component of Attitude toward Mathematics latent variables were defined 

by their respective observed variables. Same procedures were done for revising the 

hypothesized model data fit. The paths between students’ perceptions of their father’s 

attitudes toward and expectations from them as learners of mathematics and affective 

component of attitude; students’ perceptions of their father’s attitudes toward and 

expectations from them as learners of mathematics and behavioral component of 

attitude; and students’ perceptions of their mother’s attitudes toward and expectations 

from them as learners of mathematics and cognitive component of attitude indicated 

non-significant t-values. Therefore they were removed from the hypothesized model. 

Moreover, covariance terms were added between six pairs of observed variables. As a 

result, the final model fit indices indicated that our hypothesized path analytic model 

with latent variables has an acceptable fit (χ2 = 110.67, p = .00, df = 15; GFI = .99; 

AGFI = .96; SRMR = .017; RMSEA = .057). The strength and direction of the 

relationships among exogenous and endogenous variables were identified by γ 

(lowercase gamma) values and the structural equations of the model fitted for 1960 

seventh grade Turkish students were obtained. 

DISCUSSION 

In the present study, when the models obtained were compared with the hypothesized 

models at the beginning of the study, it was seen that some of the proposed 

relationships were validated and some of them surprisingly did not. For example, in 

the second model obtained, no relationships were found between cognitive component 

of attitude toward mathematics and students’ perceptions of their mother’s attitudes 

toward and expectations from them as learners of mathematics; affective component 

of attitude toward mathematics and students’ perceptions of their father’s attitudes 

toward and expectations from them as learners of mathematics; and behavioral 

component of attitude toward mathematics and students’ perceptions of their father’s 

attitudes toward and expectations from them as learners of mathematics. Although no 

specific finding was obtained in the previous studies investigating the relationships 

between the students’ perceptions of their teacher’s and parents’ attitudes toward them 

and three components of attitude; there are evidences in the literature that students’ 

perceptions of their teacher’s (Aiken, 1970; Kulm, 1980; Leder, 1992; Haladyna et al., 

1983) and parents’ (Eccles et al., 1983; Fennema & Sherman, 1976) attitudes toward 

and expectations from them as learners of mathematics had effect on their attitudes 

toward mathematics. 
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The findings of the present study indicated that further research should be conducted 

to examine the structure of attitude toward mathematics in terms of cognitive, affective 

and behavioral components. The influence of teacher’s and parents’ attitudes and 

expectations on three components of attitude should also be investigated. The models 

presented for attitude toward mathematics in this study had implications for further 

research studies. 

Based on both the findings of this study and the related studies in the literature some 

implications for research methodology can be drawn. The first improvement needed in 

future research is the need to go beyond simplistic positive-negative distinction of 

affect. In this study, differentiating attitude toward mathematics as cognitive, affective 

and behavioral is very remarkable. Many of the mathematics attitude scales that have 

been constructed and used in research studies are generally intended to assess factors 

such as liking/disliking, usefulness, confidence. The choice of using items only about 

beliefs or emotions does not take into account the behavioral component. What seems 

to be implicit in this choice is the assumption that an individual’s behavior toward an 

object has not got any meaning about his or her attitude toward that object. Therefore, 

in order to assess an attitude, we have to take into account all three components of it 

namely, cognitive, affective, and behavioral components. 

Regarding affective traits, there is a need for new longitudinal studies with 

measurement instruments that would take into account the synergistic relationships 

between cognition, emotion, and behavior. Since simple answers cannot satisfy the 

complexity of classrooms, more attention should be paid to three main elements in 

order to study affect in mathematics education: cognition, emotion, and behavior. It is 

highly recommended that the researches on affect in mathematics classrooms should 

involve three approaches (observations, interviews, and questionnaire) which focus on 

emotional reactions of students in mathematics classes and achieve methodological 

triangulation. 
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This paper presents a 15-year longitudinal study of how the Chinese students’ 

mathematics achievements could be predicted by their parents’ educational level, and 

their pre-school numeracy skill. Sixty-three Chinese children from Beijing, and their 

parents were participated in this study. It was found that both the parents’ educational 

level measured at children’s 1-year-old age and children’s 5-year-old age pre-school 

numeracy skill can significantly predict students’ mathematics achievements in high 

school when they were 15 years old. Furthermore, the effect of parents’ educational 

level was mediated by the students’ pre-school numeracy skill. Findings suggested that 

students’ pre-school numerical skill is crucial for later mathematics achievements, and 

may be a protector for children in low-SES families. 

INTRODUCTION 

Students’ mathematics achievements never fail to be the center of attention for parents, 

researchers, educators, and policy makers. As suggested in the Survey of Adult Skills 

(OECD., 2013), mathematics achievements have a major impact on individuals’ life 

chances, influencing their ability to gain higher social prestige, and to have better 

physical and psychological health later in their lives. 

The socioeconomic status (SES) is one of the most important family environmental 

factors to predict students’ academic achievements. Students generally perform better 

in school if their SES-background is higher (Sirin, 2005; Wang, Li, & Li, 2014; White, 

1982). In China, students’ SES exerts significant influence on their mathematics 

achievements, and parents’ educational level and income stand out among other factors 

(Wang et al., 2014).  

Chinese parents are usually involved into pre-school educational activities. However, 

since parents in China seldom participate in children’s mathematics learning activities, 

especially after primary school, the long-term effects of SES remain unclear. In a study 

with a sample of 532 children, Anders et al. (2012) argued that family SES significantly 

influenced early numeracy skills. In addition, some longitudinal studies have already 

demonstrated that early numerical skills such as object counting, number knowledge, 

nonverbal calculation and number combinations predict later mathematical 

performance at school (Aunio & Niemivirta, 2010; Hannula-Sormunen, 2015; 

Krajewski & Schneider, 2009a, 2009b). 
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Regarding the possible relationships among SES, early numeracy skills, and high 

school mathematics achievements, our hypothesis in the present study is that numeracy 

skills mediate the effect of SES (parents’ educational level or income) on Chinese 

children’s mathematics achievements. Although previous studies have tried to detect 

the effect of SES and early numeracy skills on students’ mathematics achievements, 

few researches combined the three aspects in one study and focus on Chinese sample. 

The time spans for these studies were also too short to cover both the pre-school 

characteristics and high school achievements. To deeply detect the causal influence of 

SES and numeracy skill, a 15-year longitudinal design was used here to reveal the SES-

to-numeracy skill-to-mathematics achievements pathway for Chinese children. 

METHOD 

Participants 

The participants in the present study were sampled from a 15-year longitudinal study 

of language and literacy (Chinese Communicative Development Inventory, CCDI; 

Tardif et al., 2008). All the participants (N=309) were born in Beijing and they all 

studied in public schools in Beijing. Sixty-three children (31 boys and 32 girls) in this 

study were randomly selected from the large sample based on their mathematics scores 

in the senior high school entrance examination. The mean age of these students was 

15.57 years old (age range: 14.00-16.75, SD = 0.69). 

Measures 

Parent questionnaire 

Two questionnaires were used in the present study. One is the background 

questionnaire in which parents’ educational level and income were investigated. 

Parents’ educational level was measured with a 7-point scale: 1 = primary grade 3 or 

below, 2 = primary grade 4 to 6, 3 = middle school, 4 = high school, 5 = junior college, 

6 = university, 7 = postgraduate. Parents’ income (monthly income in Chinese 

renminbi (RMB)) was measured with a 6-point scale: 1 = less than 300, 2 = between 

300 and 499, 3 = between 500 and 999, 4 = between 1,000 and 1,999, 5 = between 

2,000 and 8,999, 6 = more than 9,000. 

Another questionnaire is the behavioral questionnaire in which parents were asked 

about their children’s numeracy performance of using 5-point scale: 1 = very hard to 

complete, 2 = hard to complete, 3 = neither easy nor hard, 4 = easy to complete, 5 = 

very easy to complete. Developed from a theoretical model of early mathematical 

development (Krajewski & Schneider, 2008), three items were used to describe 

children’s pre-school numerical skill: counting numbers from one to ten in order (Basic 

numerical skills), complete addition of less than ten (Linking number words with 

quantity), name correctly the number of objects <10 (Linking quantity relations with 

number words). 
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Mathematics achievements test 

Mathematics achievements was measured by using a sub-test from the Mathematics 

Competencies Test Bank (Guo, Cao, Yang, & Liu, 2015) in Grade 7-9, which was 

designed to measure a student’s capacity to formulate, employ and interpret 

mathematics in four contents including Function, Equations & Inequalities, Geometry, 

and Statistics & Probability. The sub-test consists of 18 items and students were given 

90 minutes, and these items were designed to reflect students’ performance in three 

mathematical capabilities, namely Learning & Understand, Practical Application, and  

Creation & Innovation.  

The four content categories play an important role in Chinese mathematics curriculum, 

and account for the vast majority of the curriculum standards in middle school. The 

test measures a student’s ability to integrate his or her mathematics knowledge, 

quantitative reasoning, and calculation skills with solving mathematics problems. 

Procedure 

Students were tested by several tasks from 1 year-old to 15 year-old. For each student, 

both of the parents were asked to finish the background questionnaire and behavioral 

questionnaire when the student was 1 and 5 year-old, respectively. A mathematics test 

was conducted in students’ fifteens, when they have finished their middle school 

learning.  

Statistical procedure 

Factor analyses 

The aim of the factor analyses was to identify the factor structures of the parents’ 

questionnaire. To make the factor analysis more reliable, based on a larger sample 

(N=309), an exploratory factor analysis was employed to explore the structure of the 

seven questionnaire items using SPSS, with a varimax rotation. The factor solution was 

then tested with a confirmatory factor analysis using Mplus to estimate the factor scores 

for each participant using the larger sample. 

Item response theory 

The item response theory analysis was then used to achieve students’ Rasch-scaled 

achievements estimates within a larger sample1 (N=3,840) with the one-parameter 

model (Rasch, 1960) and implemented by ConQuest software (Wu, Adams, & Wilson, 

1997). The reliabilities (WLE) is .879 for the test, .807 for Function, .745 for Equations 

& Inequalities, .842 for Geometry, and .867 for Statistics & Probability. Furthermore, 

the comparison between the present sample (N=63) and the larger sample suggested 

that the former can stand for the latter (t = .803, p = .422). 

                                           

1 This sample is from a Mathematics Competence Test Project for secondary school students 

in Beijing. 
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Association analyses 

Following the IRT estimating and factor analyses, the association of the estimated 

person parameter (here the mathematics achievements of each student) and the 

estimated factor scores were tested using partial correlation and hierarchical regression.  

Our hypothesis is that students’ early mathematical skill can mediate the effect of 

parents’ characteristics. A mediation model was fitted and a nonparametric approach, 

bootstrapping test (MacKinnon, Lockwood, & Williams, 2004), was performed to test 

the indirect effect. The indirect effect was suggested as significant when the bootstrap 

estimates are different from zero with 95% confidence. 

RESULTS 

Factor analyses 

The exploratory factor analysis indicated three factors with eigenvalues of more than 

1.  Solution with varimax rotation showed items separately loaded on three factors (see 

Table 1). Three items about children’s performance had high loadings on the first 

factor, which was referred as early mathematical skill. The father’s and mother’s 

educational levels were highly loaded on the second factor, namely parents’ 

educational level. The other two items had high loadings on the rest factor, which 

named as parents’ income.  

 Component 

Variables 1 2 3 

counting numbers from one to ten in order .850 -.164 .074 

complete addition of less than ten .655 -.031 -.291 

name correctly the number of objects <10 .825 -.047 .173 

father's educational level -.144 .867 .163 

mother's educational level -.075 .907 .146 

father's income -.011 .056 .878 

mother's income .046 .391 .707 

Note. Factor loadings over .4 are bolded. 

Table 1: Rotated factor loadings of exploratory factor analysis with varimax rotation 

on parents’ questionnaire scores. 

Correlation and regression 

The partial correlations among estimated mathematics achievements and factor scores 

controlling age and gender were showed in Table 2. Students’ mathematics 

achievements significantly correlated with their early mathematical skill and their 

parents’ educational level (r = .356 and .298, respectively), but not correlated with their 
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parents’ income (r = .060), although the educational level and income are highly 

correlated with each other. Furthermore, students’ early mathematical skill is 

significantly correlated with their parents’ educational level (r = .274). 

 1 2 3 

1. Mathematics achievements -   

2. Early mathematical skill .356** -  

3. Parents’ educational level .298* .274* - 

4. Parents’ income .060 .004 .609*** 

Note. *, p < .05; **, p < .01; ***, p < .001. 

Table 2: Correlations among mathematics achievements, early mathematical skill, 

parents’ educational level, and parents’ income. 

Since parents’ income wasn’t significantly correlate with mathematics achievements, 

it is not included in the hierarchical regression model. The regression showed that 

controlling for gender, age and parents’ educational level, early mathematical skill 

uniquely predict students’ mathematics achievements (see Table 3), explaining 

additional 8.1% of the variance in mathematics achievements. 

 Variables β ΔR2 ΔF 

Model 1 Age .041   

 Gender .005 .002 .053 

Model 2 Age .061   

 Gender -.004   

 Parents’ educational level .299* .089 5.764* 

Model 3 Age .092   

 Gender -.001   

 Parents’ educational level .217   

 Early mathematical skill .298* .081 5.670* 

   R2 = .172  

Table 3: Hierarchical regression models using gender, age, parents’ educational level, and 

early mathematical skill to predict students’ mathematics achievements in high school. 

Mediation model 

The mediation model was performed in Figure 1. Without the early mathematical skill, 

parents’ educational level can significantly predict children’s mathematics 



Guo, Song, Cao 

2–334 PME40 – 2016 

achievements. When with early mathematical skill controlled, predictive effect of 

parents’ educational level was not significant. The bootstrapping test estimated a 

significant 95% confidence interval of indirect effect (indirect effect= .094, 95% CI:  

[ .011, .188]).  

 

Figure 1. Mediation model with the indirect effect of early mathematical skill 

DISCUSSION & CONLUSION 

Our results indeed showed that early numerical skill independently predict students’ 

mathematics achievements in high school. Moreover, the effect of parents’ education 

to students’ school mathematics was significant and mediated by their numerical skill 

at 5 years old.  

Consistent with previous studies (Davis-Kean, 2005), parents’ educational level was 

proved again as a correlating factor of students’ mathematics development. But the 

income does not have any significant effect on mathematics performance 15 years later, 

which is rarely revealed in other studies (Sirin, 2005; Van Ewijk & Sleegers, 2010). At 

least part of the reason may be the operation time, since previous studies mostly 

investigate SES concurrently with the achievement measure. On the other hand, the 

Chinese families in low SES even spend a high proportion of home income on their 

children’s education (Wang et al., 2014), so that their family environment caused by 

income would be comparable with high SES families. 

Chinese parents are highly influenced by traditional Confucian values (Li, 2002) and 

believe in “clumsy birds have to start flying early” and tend to attribute high 

achievement to hard work, rather than talent (Leung, 2001). Thus, they pay much 
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attention to early childhood education to protect their children from losing at the 

starting line. The present longitudinal study has produced accumulating evidence for 

beneficial effect of early numeracy skill on students’ mathematics outcomes later. 

From educational and practical perspectives, early education on numeracy skills is no 

doubt effective preparation for children before their school learning (Missall & 

Hojnoski, 2014; Skwarchuk & Smith, 2009). Although family environment, such as 

parents’ educational level, can partly determine children’s mathematics achievements, 

parents achieving low educational level still have chance to help their children to get 

academic progress by improving their early numeracy skills. 
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STUDENT TEACHERS’ QUESTIONING BEHAVIOUR WHICH 

ELICIT CONCEPTUAL EXPLANATION FROM STUDENTS 

Markus Hähkiöniemi 

University of Jyvaskyla 

 

Getting students to explain their thinking is one of the big challenges in teachers’ work. 

Previous studies have analysed teacher questioning by focusing on amounts of different 

types of questions. In this study, I use questioning diagrams to see how questioning 

develops during the lessons. The data includes video recordings of student teachers’ 

mathematics lessons in secondary and upper secondary school. The data is analysed 

by constructing questioning diagram for each student teacher and locating conceptual 

explanations given by students. The lessons which included largest amount of 

conceptual explanations are further studied. In these lessons the student teachers had 

lengthy discussions with the students and asked them many kinds of questions. 

INTRODUCTION 

An essential part of teacher-student interaction is to get students explain their thinking. 

Explaining is necessary condition for dialogic interaction because ideas need to be 

shared. In addition, even explaining to one self supports learning because of so called 

self-explanation effect (Wong, Lawson, & Keeves, 2002). However, there are different 

kinds of explanation. Kazemi and Stipek (2001) described two classrooms: one where 

students explained procedures (steps) and one where students explained reasons (why). 

The teachers in these classes pressed differently for conceptual thinking although some 

features of teaching were the same. 

The two kinds of explanations described by Kazemi and Stipek (2001) correspond to 

procedural and conceptual knowledge. Procedural knowledge includes procedures 

which are used to solve problems and conceptual knowledge includes connections 

between pieces of knowledge (Hiebert & Lefevre, 1986). When explaining reasons, 

one makes connections. Thus, in this paper, these two kinds of explanations are called 

procedural and conceptual explanations. 

The conceptual and procedural explanations also compares to Toulmin’s model (1958). 

In Toulmin’s model a claim (e.g., an answer to a task) is supported by data. Warrant 

indicates how the claim follows from the data. Thus, procedural explanation describes 

data for the claim and conceptual explanation gives the warrant. 

Teachers can elicit student explanation through questioning. Sahin and Kulm (2008) 

characterize three kinds of questions: factual questions request a known fact, guiding 

questions give hints or scaffold solution, and probing questions ask for elaboration, 

explanation or justification. The first step in getting students to explain is to ask probing 

questions. However, even though a teacher is asking probing questions it does not mean 

that students will explain. Franke et al. (2009) found that even follow-up questions did 
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not guarantee explanation. According to their results, the best way to help students give 

a correct and complete explanation, was asking a probing sequence of specific 

questions.  

In previous studies questioning has been studied by calculating frequencies of 

questions (e.g., Hähkiöniemi, 2013). This kind of analysis does not consider how 

questioning develops and progress over time. Lehesvuori, Viiri, Rasku-Puttonen, 

Moate and Helaakoski (2013) have included this kind of temporal consideration in their 

analysis by using interaction diagrams which depict the types of teacher talk as a 

function of time. 

This study contributes to studying teacher questioning and student explanation by using 

questioning diagrams which give more holistic picture of teacher questioning. The aim 

of this study is to understand what kind of teacher questioning gets students to give 

conceptual explanations to probing questions. The following research question guided 

the data analysis: How do student teachers, whose students give conceptual 

explanations, ask questions? 

METHODS 

Data collection 

The participants of this study consist of 29 Finnish prospective secondary and upper 

secondary mathematics teachers. The student teachers were in the final phase of the 

teacher training program. They all had taught several school lessons during the 

program. The student teachers participated in an inquiry-based mathematics teaching 

unit taught by the author. The unit included nine 90 minutes group work sessions about 

the ideas of inquiry-based mathematics teaching. For example, the student teachers 

practiced how to guide students in hypothetical teaching situations (see, Hähkiöniemi 

& Leppäaho, 2012). After the unit, each student teacher implemented one inquiry-

based mathematics lesson in grades 7–12. All the lessons were structured in the launch, 

explore, and discuss and summarize phases. During the explore phase students usually 

worked in pairs or in three person groups. Altogether, there were 16 lessons in 

secondary school (grades 7–9) and 13 lessons in upper secondary school (grades 10–

12). Lesson length was 45 minutes in the secondary school and either 45 or 90 minutes 

in the upper secondary school. Students used GeoGebra software to solve problems in 

17 lessons. 

The lessons were videotaped and audio recorded with a wireless microphone attached 

to the teacher. The video camera and the microphone were synchronized. The hand-

held video camera followed the teacher as he or she moved around the classroom. 

When the teacher discussed with a student pair, the camera was positioned so that 

students’ notebooks or computer screens could be seen. Although the microphone was 

attached to the teacher, it captured also students’ talk when the teacher discussed with 

a group of students. Students’ written notes were collected after each lesson. 
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Data analysis 

Data was analyzed using Atlas.ti video analysis software. All the teachers’ questions 

were coded to probing, guiding, factual, and other questions. The definitions for these 

codes were constructed on the basis of Sahin and Kulm’s (2008) characterizations. The 

shortened versions of the definitions are as follows: 

 Probing questions (code 1): Questions which request students to explain or 

examine their thinking, solution method or a mathematical idea. 

 Guiding questions (code 2): Questions which potentially give students hints or 

guides solving a problem. Potentially means that students do not have to 

understand the hint but the questions offers opportunity for this. Probing 

questions are excluded from this category. 

 Factual questions (code 3): Questions that ask for a known fact such as an answer 

to a task, a definition, or a theorem. Guiding questions are excluded from this 

category. The difference to a guiding question is that students are not solving a 

problem and the question does not guide or give hint to solving the problem. 

 Other questions (code 4): All other questions such as questions concerning 

classroom control.  

A teacher utterance was considered as a question if it invited the students to give an 

oral response. For example, utterances such as “explain” were considered as questions 

even though grammatically they are not questions. On the other hand, grammatical 

questions were not coded as questions if the teacher did not give the students a 

possibility to answer the question. Inter-rater reliability for coding probing, guiding, 

factual, and other questions for a sample of 150 questions was 89 % (Cohen’s kappa = 

.845). 

In addition, lessons were coded to launch, explore, and discuss and summarize phases. 

The episodes when the teacher discussed with a certain student group during the 

explore phase were marked. After this, questioning diagrams of each student teacher 

were produced using SPSS and spreadsheet software (see, e.g., Fig. 1). In the diagrams, 

the horizontal axis shows the time in minutes and vertical axis shows the question type. 

The beginning and the end of the lesson as well as the lesson phases are indicated by 

vertical lines. In the exploration phase, the questions asked from a student group (or an 

individual student) are connected with a line. Questions are marked with red circles or 

blue triangles so that the symbol changes when the group changes. Questions asked 

during the launch and discuss and summarize phases are marked with green squares on 

connected with a line. 

After producing the questioning diagrams, students’ responses to teachers’ probing 

questions were coded as follows: 
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 Conceptual explanation: Expresses why a result or an intermediate step is 

achieved using some method, why a property holds or do not hold, or how 

something represent or means something or how concepts are related 

 Procedural explanation: Expresses how a result or step is achieved or how 

something is done or describes representations 

 No explanation 

The conceptual explanations were marked with C in the questioning diagrams. Also 

when a conceptual explanation was identified, it was checked if the teacher had already 

discussed with this student group and if so these discussions were connected by dashed 

line. 

I looked for lessons in which several student teachers probing questions were answered 

by conceptual explanations in the explore phase of the lesson. I selected those student 

teachers whose lessons contained five or more conceptual explanations. I considered 

these lessons to include high number of conceptual responses because in the other 

lessons the number of conceptual responses was between 0 and 3. I searched for 

commonalities and differences in the selected student teachers’ questioning diagrams. 

After this I turned to microanalysis of the video episodes in which conceptual 

explanations were given. 

RESULTS 

In four lessons students gave five or more conceptual responses to student teachers 

probing questions. In these lessons several different students gave the conceptual 

explanations. The questioning diagrams of these student teachers are given in Figure 1. 

Common feature in student teachers 8, 9 and 11 questioning diagrams is that they asked 

many different kinds of questions from the same students. Thus, based on the diagrams, 

they engaged in long discussions with the students. 
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Figure 1: Questioning diagrams of the student teachers whose lessons contained five 

or more conceptual explanations (1 = probing question, 2 = guiding question, 3 = 

factual question, 4 = other question, C = conceptual explanation) 

The questioning diagram of student teacher 12 seems at first a bit different. However, 

when we look at how he returned to ask questions from the groups after visiting other 
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groups (dashed lines in Fig. 1), it seems that also he is asking many different questions 

from the same students, but not just in a row. For example, he first visited a pair of 

students who were solving how much juice can be made of 1.5 litres of concentrate 

when 30 % of the juice has to be concentrate: 

ST 12:  How are you succeeding? [Other question, time 12:15] 

Student 1: [Mumbles] 

ST 12:  Okay, let’s see. 

Student 2:  Is it correct? 

ST 12:  It isn’t quite correct. Let’s see. What have you done here? Tell me. Let’s 

see where it goes wrong. [Probing question] 

Student 2:  Uhm. I don’t know. We thought that 30 %, it has to be multiplied by 7. 

[Procedural explanation] 

ST 12:  Why it has to be multiplied by 7? [Probing question] 

Student 2:  I don’t know. 

Student 1:  I would have understood, that I think that you multiply by 0.70. [Procedural 

explanation] 

The students had solved the task as shown in the crossed part of figure 2. The student 

teacher asked why the students had multiplied by seven and thus started to probe 

reasons. Then the student teacher guides students to use x and lefts the student to 

continue. Later he comes back to this group: 

ST 12:  Explain a little what you have done here. [Probing question, time 18:58] 

Student:  We took first 10 % which is this 0.5. Then we multiplied it by 7 to get 70 

%. Then we added the 30 % to 70 %. [Conceptual explanation] 

The students were still not using x but now they gave a conceptual explanation. The 

explanation is conceptual because in addition to describing the steps, the student also 

indicates that 0.5 is multiplied by 7 to get 70 % in this case. 

 

Figure 2: Students’ solution of how much juice can be made of 1.5 litres of 

concentrate when 30 % of the juice has to be concentrate. 

Also two other student teachers returned to a previously visited group when they got 

conceptual explanations (see Fig. 1.). Only student teacher 9 did not visit the groups 

which gave conceptual explanation before. 
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In many cases the probing question which yielded a conceptual response was not the 

first question or the first probing question. For example, student teacher 8 asked 

questions from a group who had drawn a line representing a situation in which entrance 

fee is 2 euros and time based fee is 5 €/h: 

ST 8:  What is the meaning of your line? [Probing question, time 16:48] 

Student:  It is the second task. [No explanation] 

ST 8:  Okay. Yeah. On what grounds did you think that it would be like that? 

[Probing question] 

Student:  Because here are euros and here is time and always when it plays an hour 

it is 5 €. And here it has played 2 h, then it is 10 €. [Conceptual explanation] 

The students did respond properly to the first probing question. When the teacher 

reworded the question, the students gave a conceptual explanation. Also in the other 

lessons, which contained fewer conceptual responses, the conceptual explanations 

were often given when the teacher asked many different types of questions or when the 

teacher focused the probing question based on the student’s response. 

DISCUSSION 

The results of this study show in what kind of conditions it is possible to get the 

students to give conceptual responses to probing questions. One of these conditions is 

that the student teachers engage in lengthy discussion with the students and asks several 

different types of questions. These kinds of discussion can be regarded as more 

authentic than short discussions following initiation-response-evaluation pattern 

(Mehan, 1979; cf. Lehesvuori & al., 2013).  

Another feature which is connected to getting the students to give conceptual questions, 

is asking several probing questions in a row so that when students give non-conceptual 

response, student teacher modifies the question based on students’ responses. Similarly 

Franke et al. (2009) noticed that probing sequence of specific questions was most 

efficient way to get the students to give a correct and complete explanation. Thus, the 

results of this study support Franke et al.’s (2009) findings.  

Also returning to ask questions from the same students was used when students gave 

conceptual explanations. Keeping track of all the different paths taken by the students, 

supporting and even relating them to each other is one of the big challenges in 

orchestrating students’ problems solving (Stein, Engle, Smith, & Hughes, 2008). When 

a teacher manages to keep track and return to continue the discussion, the students are 

perhaps in better position to express their idea as they had time to think.  

The questioning diagrams were useful research tool as they made it possible to compare 

student teachers’ questioning more holistically and notice commonalities and 

differences. In future research, the questioning diagrams could be used to study how 

teachers’ questioning habits change over time. 
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This RR is part of a comprehensive study whose goal it is to investigate the effects of 

the process of constructing geometric concepts on students’ proving processes related 

to these concepts. In the current RR we focus on the effects of visual difficulties in 

constructing concepts on proving processes. We found three effects: the impact of the 

difficulty to identify a non-prototypical example, the impact of the failure to identify a 

common element of two shapes, and the less strong effect of using self-attributes of a 

single drawing. 

INTRODUCTON AND BACKGROUND 

The study reported here is part of a larger research. The larger research has three goals, 

namely to investigate 1. the effect of visualization on students' construction of 

geometrical concepts and their definitions, 2. the effect of visualization on students' 

ability to prove in geometry, and 3. the effect of definition understanding on students' 

ability to prove in geometry. The current research report focuses on goal no. 2. 

In the mathematics education research literature one can find many studies that focus 

on the construction of geometric concepts, and specifically on the mutual interaction 

between their concept definition and students’ concept images (e.g., Fischbein, 1993; 

Fujita & Jones, 2007; Hershkowitz, 1987; Vinner & Hershkowitz, 1980). One of the 

main findings of the research literature is the prototype phenomenon: Vinner & 

Hershkowitz (1980) found that, for each geometric concept, there is at least one 

prototypical example. The prototypical examples are usually acquired first, and are 

therefore prominent in the concept image of most learners. Prototypical examples are 

usually the examples of the concept with the most attributes - the critical attributes of 

the concept and self-attributes that are not critical. Often, these non-critical attributes 

have dominant visual properties, which have an effect on the concept's identification, 

classification and construction. A related difficulty is interwoven in the mediation of 

the geometrical objects by graphical representations - their drawings. Parzysz (1988) 

pointed out that the drawing is unique, wherever it represents a set of objects, which is 

usually infinite and has common critical attributes. Laborde (2005) showed that 

students often regard the unique and particular drawing on paper as the object itself, 

rather than the abstract object represented by the drawing. Thus drawings may cause 

difficulties for students in their proving processes while using the particular attribute 

of the single drawing instead of using the critical attribute of the geometric concept.  
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Other studies focus on the difficulties of proof construction, difficulties of 

understanding proofs, understanding its essence and understanding the need for it (e.g. 

Martin & McCrone, 2003). However, we could not find in the literature a clear focusing 

on the relationships between these two research domains - the construction of 

geometric concepts and the proving processes related to these concepts. The present 

research attempts to fill the gap. The goal of the current study is to investigate possible 

relationships between these two areas of learning geometry, more specifically to 

investigate the effects of students’ processes of constructing geometric concepts, 

including the mutual interconnections between concept images and definitions, on 

students’ proving processes related to these concepts.  

METHODOLOGY 

Population: The participants are 90 students from a regional high school in an Arab 

community in the centre of Israel; they learn geometry with three different teachers in 

three parallel classes, which are considered to be at the highest mathematical level 

among the seven parallel classes in this school. The teachers have a first degree in 

mathematics from the universities in the country and each has more than ten years of 

experience in teaching mathematics.  

Research tools: The main research tools of the large research include three 

questionnaires, one for each goal of the research. The questionnaires were distributed 

at time intervals sufficient for analysing the results of each questionnaire and use its 

findings in the design of semi-structured interviews with about 10% of the participants, 

as well as in the design of the next questionnaire. The second questionnaire, the one 

used for the current study, deals with the effect of visualization in concepts 

constructing processes on proving processes.  

In some questionnaire tasks, the participating students are asked to prove or to reflect 

on imaginary students' proofs. During such a reflection, students have opportunities to 

use critical thinking; they test the proof made by the imaginary student. Detailed 

analyses of the questionnaire tasks and of students' responses are given in the next 

section. 

DATA COLLECTION AND FINDINGS  

The data of the current questionnaire were collected while the participants were in 

grade 11. The questionnaire includes 4 tasks and was administered at the end of the 

first semester.  

The First Task (Figure 1): 

The claim and the proof of Salim are wrong (see Figure 1 below); he uses the attributes 

of the quadrilateral example in the drawing (a square) instead of using the critical 

attributes of a general quadrilateral. 
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 is a quadrilateral, E is the midpoint of AB, G the midpoint of DC, F the 

midpoint of BC and H the midpoint of BD.  

What is the type of the quadrilateral HEFG? Prove your claim!   

 
 

Therefore EF = FG = HG = HE. Thus the quadrilateral EFGH has four equal sides! 

In addition, because  (the triangles BEF and AEH are 

isosceles) this lead to the result that . To conclude:  the quadrilateral 
EFGH has four equal sides and a right angle, so it is a square!  

Are Salim’s claim and proof correct? Explain your answers! 

Figure 1: The First Task. 

The findings point to the impact of the use of the attributes of a "single drawing" instead 

of the critical attributes of the given figure in the proof. As a result, a third (37%) of 

the 90 pupils have concluded and accepted a wrong proof, they "fell into the trap" and 

claimed that Salim's proof was correct. In other words, these students went astray after 

the drawing of Salim (a square) instead of dealing with the data expressed in the written 

task. 82% of the students who claimed that Salim's proof is correct referred in their 

explanations only to the square and gave right proof for square, wrong proof for square 

or missing proof to the square. Approximately 56% of the students claimed that Salim's 

proof was wrong. Most (76%) of them justified their claim on the grounds that Salim 

used the wrong information; this means that they noticed that the drawing of a square 

does not match the data of the problem and therefore Salim’s claim and proof are 

incorrect. 

The Second Task (Figure 2):  

ABCD is a rhombus in which the length of the diagonal AC is twice the length of 

its altitude. 

  

Figure 2: The Second Task. 

ABCD

045 AEHBEF
090HEF

Prove that 030ACB  

Salim drew the following shape, he claimed that EFGH is a 

square and wrote the following proof:  " E, F, G, H are the 

midpoints of sides of the square ABCD, therefor AE = EB = BF 

= CF = CG = DG = HD = AH.  

So the triangles FCGBEFAHE  ,, and HDG  are isosceles 

right triangles and all of them are congruent. 
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Constructing an external altitude (from vertex A to BC), creates a right angle triangle 

in which the length of the perpendicular side is half of the hypotenuse length. The 

failure to identify, or the inability to construct non-prototypical altitude (external 

altitude) in a triangle or quadrilateral, prevented students to start proving. About two-

thirds (63%) of the students failed to prove the claim because they didn’t succeed to 

construct an external altitude. These students drew an internal altitude or no altitude; 

among these students, 83% used unjustified or false assumptions (Dvora & Dreyfus, 

2014) or made other mistakes in the proof. Only about 37% of the population were able 

to identify the external altitude from vertex A; among these students, 82% proved the 

claim correctly. In addition, all the students who wrote a correct proof based their proof 

on constructing the needed external altitude. The strong visual properties of the 

prototypical example of the altitude concept (internal segments) affect the students’ 

ability to prove. In the interviews we have the opportunity to explore whether only the 

construction of the external altitude causes the inability to prove. When we helped the 

students to construct the external altitude in the interviews, they immediately came to 

the right proof. This behaviour strengthens the conclusion that the inability to identify 

the external altitude prevents students to start proving.      

The Third Task (Figure 3): 

ABCD is a square in which we extend the diagonal BD so that BD=BE. 

 

Figure 3: The Third Task. 

25% of the students gave a wrong answer for the first question and claimed that the 

triangles are congruent; in order to explain their responses they wrote a wrong proof 

for their claim. About 70% of the students answered correctly the first question and 

claimed that the triangles are not congruent. The data show that more than the half 

(60%) of the students who claim that the triangles are non-congruent indicated that 

areas of these triangles are not equal. The majority of the student's explanations who 

indicated non-equality of the areas of the triangles (87%) were based on the wrong 

assumption that for an equal area the triangles have to be congruent. E.g. one student 

wrote: "all the sides are not equal" or another student wrote: "all the angles are not 

equal". 

Only about 30% among the students who claimed that the triangles are not congruent 

also indicated that the areas of the triangles are equal. Approximately 58% of these 

students (who noted that the triangles have an equal area), explained their responses by 

using the claim that the triangles have an equal bases and a common altitude. About 

a) Are the triangles CBEBDC  &

congruent? 

b) Are the triangles CBEBDC  &  

having an equal area? 
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26% among these students who noted that the triangles have equal areas explained their 

responses by using a trigonometry. 

The Forth Task (Figure 4):  

 is a parallelogram, G is on the side AD. Given: AG=4cm, 

GD=3cm. The area of the triangle  is equal to   

 

 

Figure 4: The Forth Task. 

In the fourth task the students are asked to calculate the area of one triangle; this 

calculation is based on the area of another triangle and on having a common altitude 

for both triangles.  

For the first question whether it's possible to calculate the area of the triangle  

we get that the majority of the students (57%) claimed that it's impossible to calculate 

the area of the triangle . 44% among them didn't identify the common altitude 

of the triangles and indicated that the altitude is missing. For example 

one student's response was "No, it's impossible to calculate the area of the triangle 

because no altitude is given". 44% among the students who claimed that it's 

impossible to calculate the area of the triangle indicated that that there is 

missing information like angles or sides. 

For the second question, 75% among the students didn’t succeed to calculate the area 

of the triangle correctly. The data show that the difficulty to identify or to construct the 

common altitude of the triangles prevented many students to calculate the area of the 

triangle. It should be noted that the common altitude of the triangles is an external 

altitude for one of the triangles. The question which arose was: whether the inability to 

identify the altitude arises from the fact that it is an external altitude to one of the 

triangles, or whether it is due to the inability to identify a common altitude even if it is 

an internal altitude. The interviews allowed us to take another step forward in order to 

answer this question. Here is an episode from one of the interviews, in which, in order 

to calculate the ratio between the areas of two triangles, one has to identify their 

common altitude which is internal to both triangles:  

 

 

 

ABCD

AGF 25cm

GDF

GDF

GDFAGF  ,

GDF

GDF

Is it possible to calculate the area of the 

triangle GDF ?  

If not explain what is missing! If it is 

possible do it!  
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Episode (I – interviewer; A – Aseel, a student), regarding the following task. 

 

1 I: Can you calculate the ratio between the areas of the triangles ABC and 
ABD? 

2 A: The ratio? 

3 I: Yes the ratio between the areas of the triangles? 

4 A: Maybe 4:7. 

5 I: 4:7? Why? 

6 A: This BC equals 4 and BD equals 7.  

7 I: So, why you conclude that the ratio is 4:7? 

8 A: Because BC equals 4 and BD equals 7. 

9 I: What is the connection? How can you calculate the area? 

10 A: By multiplying the length of one side and the length of the altitude to it. 

11 I: Where is the altitude? 

12 A: (silent).  

Aseel knew how to calculate the ratio between the areas of the triangles, but she didn’t 

know to justify her response. Aseel didn't identify the common internal altitude of the 

two triangles. When we tried to help and push Aseel to reach the correct argument that 

there is a common altitude for both triangles (line 11 in the episode), Aseel continued 

not to identify the common internal altitude. All of the nine interviewees except one, 

who were asked to calculate the ratio between the areas of the two triangles, reacted 

like Aseel. 

CONCLUDING REMARKS 

The goal of the current study was the investigation of the influence of visual factors 

associated with geometric concept construction on proving processes. The findings 

show the impact of three effects on the ability to prove: i) using self-attributes of the 

"single drawing" instead of the critical attributes of the figure in the proof task usually 

led to wrong assumptions and from there to wrong proofs (Task 1). ii) Failure to 

identify or inability to construct non-prototypical examples, such as an external altitude 

in a triangle or quadrilateral, or non-congruent equal area shapes, usually prevented 

students from starting the proving process, or led to wrong assumption (Tasks 2&3). 
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iii) Failure to identify a common element to two geometric shapes, such as a common 

altitude of two triangles, usually limited the ability of students to prove or caused them 

to make wrong assumptions (Task 4, Episode from interview).   

Figure 5 summarizes the main findings of the study. The impact of the three effects are 

not equal as shown on the arrows by the percentages of the population who were not 

able to make transition from visual representation to justification. In the population of 

the current study, the failure to identify or inability to construct non-prototypical 

examples, and the impact of the failure to identify a common element to two geometric 

shapes, are far greater than the impact of the use of an attribute of a "single drawing” 

on students' proving processes. The interviews confirmed, sharpened and highlighted 

the findings from the questionnaire, mainly about the failure to identify a common 

element for two geometric shapes and about the prototype assumption that the 

congruence between shapes is a necessary condition for the equality of the shapes' 

areas. 

 

 

* Percentage of the entire research population 

** Percentage of the students who claim the triangles are not congruent 

 

Figure 4: The main findings 
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In summary, the uniqueness of this work is that it considers geometric concept 

construction and the development of the ability to prove as a sequence of closely 

connected abilities. The research findings indeed indicate that the zones of concept 

construction and proving in geometry are a continuum on which the geometric 

concepts construction process and the difficulties associated with them have clear 

effects on the students' proofs processes and their ability to prove.  
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SILENT GAZING DURING GEOMETRY PROBLEM SOLVING, 

INSIGHTS FROM EYE TRACKING  

 Markku Hannula Gaye Williams 

 University of Helsinki Deakin University 

 

The authors examine data on student gaze from their different research perspectives 

as they consider the contribution such data collection methods can make to study of 

student mathematics learning within the complexity of classroom activity. Findings 

from study of eye tracking, and body language are compared to identify evidence of 

learning of two middle school students in Finland. The gaze of one student is tracked 

using a head-mounted eye-tracking device. Body language was examined 

independently before findings are compared, to identify what evidence each does offer. 

It was found that body language and eye tracking employed together were insufficient 

to provide information about the thinking students undertake even though eye tracking 

provides information about their focus of attention, and body language indicated 

intervals of engagement consistent with eye-tracking findings.  

INTRODUCTION 

When visual information (e.g. diagrams) are presented in the classroom, an important 

part of student behaviour is the quiet processing of that information. The student looks 

at the diagram and its different parts, trying to make sense of it. How a student looks 

at the diagram is influenced by their preliminary intuitions and the ideas activated by 

the task context (Knoblich, Ohlsson, & Raney, 2001). Tracking student visual 

searching of ideas informs us of their problem solving behaviour and how this search 

is influenced by the learning context. In our article, we are exploring the possibility of 

using eye tracking to study such quiet gazing in the context of non-routine problem 

solving in an authentic classroom context. 

Communication consists of more than just words and diagrams; gestures, glances, body 

movement, voice articulation, and prosody are also important aspects of it (Arzarello, 

Paola, Robutti, & Sabena, 2009; Mercer, Wegerif, & Dawes, 1999; Radford, 2009; 

Roth, 2012). In this article, we are analysing student behaviour through their verbal 

utterances, their body language, and the direction of their gaze. In relation to the present 

study, body language is one of the lenses employed to study student engagement during 

the lesson. By employing both eye tracking, and body language lenses, it is intended 

to find out more about how eye tracking can contribute to research designs: providing 

a new way to study student learning within the complexity of classroom learning. The 

inclusion of body language in this study is intended to examine whether eye tracking 

offers additional information that is not apparent through lesson observation. 

The Quality of Experience Framework EyDUPLEx (see Williams, 2005) was 

developed using Csikszentmihalyi and Csikszentmihalyi’s (1992) descriptions of 

‘flow’, a state of high-level engagement during creative activity. It was employed to 
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identify possible intervals of flow (Williams, 2010). Where a student displayed most 

of the body language indicators, further analysis was undertaken to see whether 

creative development of mathematical ideas was occurring. In our study, we are 

working on the premise that students displaying few but some body language indicators 

associated with high-level engagement are likely to be more engaged than students 

displaying none of these indicators. 

We use eye tracking to examine student’s visual attention during problem solving, 

specifically during silent gazing. There is quite extensive eye-tracking research on how 

visual information is being processed. Experts are known to find the task-relevant 

features of the visual information faster than novices and their visual attention is 

focused more on the relevant areas of the visual stimulus (Gegenfurtner, Lehtinen, & 

Säljö, 2011). Regarding insight problems, Knoblich et al. (2001) add that even novices 

are more likely to solve a task successfully, if they attend to the relevant areas. 

Moreover, they observed that when people are stuck, they tend to stare at the problem. 

So far, eye-tracking studies are done almost exclusively in laboratory settings lacking 

the authenticity of a real classroom. Moreover, most eye-tracking studies focus on 

controlled experiments, whereby more complex behaviour included in non-routine 

problem solving is seldom addressed.  

In class, a student is an active agent, whose behaviour is determined by his or her needs, 

goals, identity, and resilience. At the same time, for many students, their behaviour is 

largely reactive to changes in the environment, especially to what the teacher and the 

student’s peers do. Due to such complexities within classroom interactions, no research 

method has been identified that provides a complete account of meanings of this 

behaviour and reasons for it. Clinical interviews and think-aloud protocols can inhibit 

thought processes and social interaction in class, and thus limit ecological validity. 

Reconstructive post-lesson interviews in which general questions are asked may not 

access memory traces and thus not be valid. Where stimuli – such as video-stimulated 

recall – are included with the interview, the likelihood that students access memory 

traces is increased and thus the validity of the data (Ericsson and Simon, 1980). 

Observations of facial expressions, brain imaging, and other physiological measures 

contribute additional information but fail to capture the meanings students associate 

with their behaviour. Yet, each new methodology has shed light on some new aspects 

of the complexity of student cognition.  

In the current study, our research question is: “What kind of unique information does 

eye tracking give on student problem solving behaviour during quiet visual processing, 

that is not accessible from a careful analysis on their video recorded body language 

alone?”  

METHODS 

Participants and apparatus  

The data is obtained from a Finnish ninth grade class in a school in Helsinki that has a 

well-regarded academic reputation. The subject wearing the glass frame (Kimi) and a 
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peer working with him (Saku) volunteered to participate in the study. We had two 

ordinary video cameras in the class. One video was recording the class from behind, 

focused on the teacher and the board. A second video focussed on Kimi and Saku. 

In order for the researchers to monitor Kimi’s visual 

attention, he wore a head mounted eye-tracking 

device. This device was developed in collaboration 

between the Finnish Institute of Occupational Health 

and Helsinki Institute of Information Technology 

(Lukander, Jagadeesan, Chi, & Müller, 2013). The 

device consists of a glass frame equipped with two 

miniature cameras (see Figure 1); one camera follows 

the eye while the other camera points to the viewing 

direction. The prototype of that device has been used 

in the current study. The associated software 

computes the direction of gaze, producing a video 

scene with a marker indicating the locus of visual 

attention of the person wearing the glass frame. The 

eye-tracking glasses are connected to a laptop with 

two cords, which prevent the student from moving 

around but do not restrict movement while seated. The used tracking scheme is robust 

against small changes in lighting conditions and especially against movement of the 

glasses during a measurement.  

Procedure 

The teacher opened the lesson with the problem-solving task designed by the 

researcher (Hannula). The students worked in pairs, each pair sharing a tablet and using 

GeoGebra software. As an introductory task, the teacher guided her class to solve a 

problem, where they needed to find three lines, forming a triangle, which contained 

three given points, and which had the least possible area. The purpose of this task was 

to highlight the method of modifying the triangle, especially when using GeoGebra 

software on a tablet. The students were then asked to solve a similar, but more complex 

problem with four given points: A=(0,1), B=(0,5), C=(3,1), and D=(5,2). Again, they 

were asked to find three lines, forming a triangle which contained all four points, and 

which had the least possible area. The task is a non-routine problem for students.  

Data analysis 

Our data analysis is twofold. First, we analysed student body language and then looked 

at what additional detail we could obtain from the eye-tracking data. Body language 

was examined using the target student video, initially by Williams (who does not 

understand Finnish). Thus, initial analysis had limited influences from knowledge of 

content of the interactions (other than teacher’s diagrams and gestures). The indicators 

for the quality of experience framework EyDUPLEx were formulated using the flow 

construct (Csikszentmihalyi & Csikszentmihalyi, 1992). Flow is a state of high positive 

 

Figure 1.  The eye-tracking 

device (model used, not the 

study participant). 
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affect during creative activity. During flow, people lose all sense of time, self, and the 

world around, because all of their energies are focused on the task at hand. The set of 

body language indicators are Ey (eyes on the task or person working with the task), D 

(body directed towards the task, including direction of knees, leaning over, hand on the 

paper while another is working with it), U (unaware of the world around: focused 

intently on the task, not responding to what is happening around them, often motionless 

if looking at something and thinking about it), P (participating in the task, orally, and 

or physically), L (latching to the ideas of others by completing or expanding on the 

statement of another), and Ex (exclamations of surprise or pleasure).  

The target of student gaze was calculated based on data from the two cameras on the 

eye-tracking device. As an output, a video was produced with a marker for the target 

of student gaze. A different computation was required for each viewing distance, due 

to the parallax effect. Hence, we produced two videos: one for a short viewing distance 

(to own desk) and another for a longer viewing distance (to the board). Occasionally, 

the gaze was outside the visual field of the video, mostly when the student looked at 

the tablet. As the raw data included the coordinates of the gaze direction, we could 

determine the general gaze target, when only a little outside the video’s visual field. 

When interpreting eye-tracking data, it is important to distinguish between foveal and 

peripheral perception because it is only in the fovea (spanning less than 2 degrees of 

visual field), that we can identify finer structures such symbols and fine articulation of 

gestures (Gullberg & Holmqvst, 1999). For peripheral perception, light and motion 

recognition is good but textual recognition is poor. On this basis, we assumed that the 

student would notice only those finer details on screen within a 10-centimetre radius 

from the marked gaze location. Moreover, we are aware that even when the student 

gaze is on a target, it does not guarantee that the student attends to the target. Hence, 

instead of individual glances, we looked at the sequences of gazes and interpreted them 

in the overall context of student problem solving. 

RESULTS 

We begin the description of events, from when the teacher set a new task requiring 

students to find the triangle with the smallest area that encloses four given points. She 

projected a large triangle that enclosed all four points on the screen, and suggested 

student pairs try to find a triangle that fits the constraints but has a smaller area. The 

two focus students worked together on the tablet, Saku constructing and modifying the 

triangle and Kimi using the area tool to display the area. Their (slightly imprecise) 

solution can be seen in Figure 2. They spontaneously shared their area result with other 

pairs of boys, making clear that the area they had found was smaller than the areas 

found by others. The teacher presented this solution on board and encouraged the class 

to try to find other possibilities (better alternatives). Soon after, Saku left his seat to 

find how another group (with a larger area) had positioned their rays (away 

approximately 30 seconds), Kimi picked up the tablet, inspected it from several angles 

and then appeared to use it. On return, Saku stated: ”let’s try one” and took the tablet 
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from Kimi (who gave no indication of objecting). Kimi contributed the pair’s answer 

to the teacher as the smallest area found [time: 37:47].  

Some of the interactions [after 37:47] are now provided and interpreted employing both 

perspectives. For most of the time, Kimi maintained his slouched position and shifted 

his gaze multiple times from board, to teacher, to tablet and Saku.  

At 37:48, the teacher stated: “two rays [go] through A and C and B and D [pointing at 

the lines as she spoke]. Did anyone have a different?” Kimi focused his attention on 

the triangle, turning to the tablet when Saku responded to the teacher’s request for 

another possible triangle. Kimi examined the solution on the board [Figure 2], then 

looked ‘out into space’ in a slightly downward direction [38:20-38:24] which could 

have been staring into space, reflecting, developing new mathematical ideas, or 

engaging in non-task related thought. He then paid close attention to the teacher actions 

at the board as the teacher showed Saku’s solution “it was like this [moved rays in 

Figure 2 to make Figure 3] one of the rays went through those C and D”, and 

encouraged students to search for other possibilities [38:24-38:40]. Kimi then glanced 

at the tablet and asked Saku what he was doing [38:41]. Saku presented a hypothesis 

to the teacher “(So that) is this we should at how long their shared distance (always)? 

Is that right? [38:42]. At 38:45 when the teacher discussed the second nother solution 

[see Figure 3], Kimi focused on the board, the teacher, then the GeoGebra tool on the 

screen. The teacher continued to encourage students to search for other possibilities, 

Saku operated the tablet, and Kimi looked at the tablet screen before the teacher pointed 

at the ray through D and C: “Could this ray’s direction yet be changed?” [39:06].  

Both students turned their gazes to the board and Saku asked: “Uh, which one?” She 

traced the line with her finger from D to E: “This ray, could its direction be changed?” 

[39:12]. Over the next 7 seconds Kimi remained motionless. His eye-tracking data 

indicated attentive examination of the triangle. First his gaze followed the movement 

of teacher’s finger with short delay, then he glanced at the teacher’s face, returned to 

diagram, and his gaze again traced the ray from D to C, paused at C, continued on for 

half a unit towards E and then traced back to point C. This segment of trace of Kimi’s 

gaze is represented by the jagged curve with an arrow at the end [Figure 3]. The eye 

tracking, in conjunction with body language could indicate less awareness of the world 

around. Such focused attention, and motionless body has been associated with student 

engagement with spontaneously focused questions (Williams, 2005). 
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Figure 2. Kimi and Saku’s first solution. Figure 3. Kimi’s gaze at 39:14 

 

After a brief glance at the bottom right corner of the screen, Kimi returned to explore 

the diagram, gazing along a horizontal track near the point C as shown in Figure 4. 

Again, his gaze went down and returned to explore the diagram (Figure 5). His gaze 

traced segments of the line DE and horizontally around the point C [39:12-39:19]. In 

this movement of gaze, there is some indication of diverging from the two found 

solutions and exploring a possible third line that is not horizontal nor the line DE.  

 

         

Figure 4. Kimi’s gaze at 39:15   Figure 5. Kimi’s gaze at 39:17 
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When the teacher said: “These were quite good these both solutions 13.86 and 13.29!” 

[39:19], Kimi’s gaze turned to the teacher’s face and his explorative tracing on the 

triangle ended. He did return to gaze at the information on the screen, but there was no 

indication of any systematic attention on any lines of the diagram even when the 

teacher asked again: “Would any ray have a steepness something between the two?” 

Finally, the teacher led the class to find an intermediate version: "Well, let’s try it. I 

suggested that if (it went) somewhere there somewhere there middle, middle ground 

so could we get it better [40:32].” The teacher manipulated the triangle moved the angle 

D a little out and then gradually dragged the point E up, asking the students to say when 

to stop. Kimi displayed lip movement just before he growled “Nnoow” as though 

waiting for the ray to reach a certain position before he spoke [40:49]. 

DISCUSSION AND CONCLUSIONS 

In this case, body language did not help to identify learning not associated with flow 

when it was employed as the sole theoretical lens. As there was not much verbal or 

bodily action, it was unclear from his body language alone whether Kimi was 

cognitively engaged. Whether this is always the case requires further study. What is 

interesting in this episode is the ambiguity of Kimi’s engagement based on an analysis 

of his body language, yet the increased interpretation of body language that was 

possible when informed by the eye-tracking data. Body language showed the direction 

of his gaze, when he participated orally or physically in the task. It did not provide 

information about whether he gazed in an unfocused way or specifically focused his 

attention. With eye tracker, we gain additional information about the target of his 

attention and based on this, we obtain a better picture of his problem solving behaviour 

during the silent gazing, especially the three consecutive gazes (figures 3, 4, and 5) 

exploring the existing and alternative solutions. Even though we had additional 

information from the eye tracker, we did not know what mathematical thinking Kimi 

undertook as he focused on particular diagram features. Body language and eye 

tracking employed together were insufficient to provide information about the thinking 

students undertake even though eye tracking provides information about their focus of 

attention, and body language indicates intervals of engagement consistent with eye-

tracking findings. A potentially fruitful area for future research would be to include 

post-lesson video-stimulated interviews that include eye-tracking video as part of video 

stimulation, to hopefully enrich student reconstruction of students’ mathematical 

thinking by providing additional memory traces.  

Our study shows that eye tracking can be employed as an additional tool to gain further 

insights into classroom learning. As technologies improve and eventually become 

cheaper the headpiece will hopefully become less intrusive, and more than one 

student’s gaze will be able to be tracked during the one lesson. 
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ADDRESSING STUDENTS' DIFFICULTIES IN EQUIVALENT 

FRACTIONS  

Alice Hansen, Claudia Mazziotti, Beate Grawemeyer 
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London  

 

215 8-10 year olds undertook exploratory tasks devoted to addressing common fraction 

errors on an intelligent learning platform. Students continued to make errors but there 

was improvement in their overall performance. We make the case that partitioning of 

virtual representations while concurrently showing a changing fraction symbol was 

instrumental for some students addressing their difficulties with whole number bias 

and the shift from additive reasoning towards multiplicative reasoning.  

INTRODUCTION 

Fractions are widely-acknowledged as a challenging aspect of mathematics to learn 

and teach. Indeed, this is reflected in the high number of persistent fractions errors and 

misconceptions students make (c.f. Hansen, 2014). One way to start overcoming 

fraction difficulties is not to only allow students to apply fraction rules without 

reasoning (Skemp, 1976) but to enable them to deeply interact with fraction 

representations (Lamon, 2012) and to thus initiate sense-making activities. These 

sense-making activities support students' conceptual knowledge which in turn is an 

effective instrument for addressing errors. Supporting students to overcome their 

difficulties paves the way for them to become proficient in dealing with fractions, a 

key domain in the area of mathematics education as fractions attainment at elementary 

level is a predictor for their future mathematics performance (Siegler et al., 2012).  

By providing students with exploratory learning activities and thus encouraging 

reflection and self-explanation, students are supported to abstract information, 

construct schemata, and hence develop conceptual knowledge (Koedinger et al., 2012). 

Due to the open-ended nature of microworlds (Healy & Kynigos, 2010) which enable 

students to manipulate variables, make experiences and discover concepts, students are 

offered suitable instructional support for exploring underlying principles. Against this 

background we aimed to investigate whether students’ interactions in a learning 

platform with such a microworld - already shown to improve overall fractions 

knowledge (Rummel et al., submitted) - helps to reduce common fractions errors and 

consider how it may do so. 

STUDENTS’ DIFFICULTIES IN EQUIVALENT FRACTIONS 

By observing errors and identifying patterns it is possible to infer common difficulties 

students have in relation to fraction concepts and use these to address students’ 

misunderstandings and support learning and teaching (Hansen, 2014).  We focus here 
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on two significant, overarching difficulties that face students: whole number bias and 

the shift from additive to multiplicative reasoning. 

Although the origins of students' difficulties related to whole number bias are debated 

(Ni & Zhou, 2005), the natural number reasoning that students draw upon to make sense 

of rational numbers is oft-cited as the cause of misconceptions (Vamakoussi and 

Vosniadou, 2010), with these continuing into adulthood (DeWolf & Vosniadou, 2015). 

With whole number bias, students are likely to interpret the numerator and denominator 

as separate entities rather than as part of a fraction symbol in its own right that represents 

a part/whole relationship, measure, operator, quotient or ratio (Kieran, 1993).  

Students also often rely on more-familiar additive structures when making sense of 

fractions (Siemon, Breed & Virgona, 2010) and although students may have learnt their 

multiplication and division facts, it does not mean that they are necessarily using 

multiplicative reasoning (Brickwedde, 2011). There are different perspectives on how 

to support students' transition from additive to multiplicative reasoning, but all agree 

that multiplicative reasoning supports students' later mathematics work (Brickwedde, 

2011; Siemon, Breed & Virgona, 2010). If using additive reasoning, students are likely 

to apply incorrect 'rules' without considering the invariant proportional relationship 

between numerator and denominator. 

THE ITALK2LEARN PLATFORM 

The learning platform was developed during iTalk2Learn, an EU-funded project1 aimed 

at supporting students' conceptual and procedural knowledge of fractions. It enables 

students to learn with exploratory and structured tasks. Students are encouraged to talk 

to the learning platform, use fraction-specific vocabulary and reflect out loud on their 

learning. As only the microworld component of the platform was specifically designed 

to address errors, we introduce it and one of its key functionalities below. 

Fractions Lab 

Fractions Lab (http://fractionslab.lkl.ac.uk/) is the microworld within the iTalk2Learn 

platform. Students are encouraged to create and manipulate various fraction 

representations while carrying out exploratory tasks that challenge errors related to 

common difficulties such as whole number bias and multiplicative reasoning.  

Four types of graphical representations (number lines, area models, sets, liquid 

measures) are available for students to construct fraction representations. Students are 

able to manipulate the representations using different tools, for example finding an 

equivalent by partitioning the representation (Figure 1). When the 'find equivalent' tool 

is selected, a copy of the original fraction is made and the student can change the 

number of partitions while the fraction symbol alongside it simultaneously changes. 

                                           
1 The work described here has received funding by the EU in FP7 in the iTalk2Learn project 

(318051). Thanks to all our iTalk2Learn colleagues for their support and ideas and implementing 

the learning platform, pre- and post-tests. 

http://fractionslab.lkl.ac.uk/
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Figure 1: An example task. The student is encouraged to create equivalent fractions 

by partitioning. Here, two sixths has been made by partitioning one third. 

METHOD 

In order to investigate how students’ errors were addressed after learning with the 

platform (as compared to before) we conducted a study with 213 students (8-10 years 

old) in England. Overall, the study took 90 minutes and students had 40 minutes 

interaction time with the learning platform. Before and after interacting with the 

platform the students completed a pretest and a posttest including six items measuring 

their fraction knowledge. We report here upon two items (see Figure 2) addressing 

errors related to whole number bias and multiplicative reasoning (see Table 1).  

Q1. What goes in the box?  
3
4

= 6
  (a) 4       (b) 8       (c) 9      (d) 12 

Q2. Which of these is equivalent to 5/6 

and has 18 as the denominator?  

 

Figure 2: Two questions related to whole number bias and multiplicative reasoning. 

 
Option Q1 Q2 

(a) D unchanged Correct  

(b) Correct N unchanged 

(c) N + N N/D confusion & D unchanged 

(d) N x D N/D confusion 

Table 1: Options explained (N = numerator, D = denominator). 
 
In parallel to the pretest and posttest we interviewed a subsample of 12 students in 

order to get a more detailed insight into their common errors and difficulties and how 

learning with the platform helped them to overcome these difficulties. The one-to-one 

interviews were of 30 minutes duration and included questions pertaining to project 

components including understanding equivalent fractions. As data entry and analysis 

(a) (b) (c) (d) 
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is ongoing at the time of submission we mainly focus here on the descriptive data in 

the findings and will present the final results at the conference. 

FINDINGS  

Although we report only on two questions in this paper due to space constraints, we 

have evidence on the effectiveness of the overall intervention and in terms of the 

overall measure of fractions knowledge, the students’ knowledge increased (Rummel 

et al., submitted).  

We focus here on two questions (Q1 and Q2) which are related to whole number bias 

and additive/multiplicative reasoning (the other questions relate to representational 

errors). There are significant associations between the two errors made in the pretest 

and posttest (errors from Q1: χ2 (1, N = 213) = 32. 15, p = .000,   errors from Q2: χ2 

(1, N = 213) = 21.96, p = .000). The frequency of the specific error responses exhibited 

in the questions are shown in Table 2. Indeed, across both questions there was a 6% 

increase in the number of students providing the correct answer and in all bar one 

response there was between a 2% and 7% reduction in the number of students 

exhibiting errors.  
 

Option Q1 Q1 difference Q2 Q2 difference 

(a) 

D unchanged 

Pre 35 (16%) 

Post 24 (11%) 

-11  

(-5%) 

Correct 

Pre 112 (53%) 

Post 125 (59%) 

+13  

(+6%) 

(b) 

Correct 

Pre 132 (62%) 

Post 146 (68%) 

+14  

(+6%) 

N unchanged 

Pre 54 (25%) 

Post 42 (20%) 

-12  

(-5%) 

(c) 

N + N 

Pre 16 (8%) 

Post 12 (6%) 

-4  

(-2%) 

N/D conf, D unc 

Pre 29 (14%) 

Post 15 (7%) 

-14  

(-7%) 

(d) 

N x D 

Pre 15 (7%) 

Post 7 (3%) 

-8  

(-4%) 

Terminology 

Pre 10 (5%) 

Post 11 (5%) 

-1  

(0%) 

Table 2: Frequency of responses for Q1 and Q2 (nil responses not included). 

Some errors are common amongst the students in the study. Q1 was answered more 

effectively with 62% (pre) and 68% (post) of students answering correctly but within 

the errors exhibited, 16% (pre) and 11% (post) of the students chose an option where 

the denominator remained unchanged when finding an equivalent fraction. 

Furthermore, 8% (pre) and 6% (post) added the two numerators given to find a new 

denominator, and 7% (pre) and 3% (post) multiplied the numerator and denominator 

of the given fraction. In these three errors we see that the students are treating the 

numerator and denominator as separate entities and that they do not yet have an 
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appreciation of the invariant relationship between the numerator and denominator. This 

issue is also evident in Q2 where 25% (pre) and 20% (post) of students did not change 

the numerator, and 14% (pre) and 7% (post) did not change the denominator. This 

provides evidence that the students are experiencing difficulties with whole number 

bias and additive/multiplicative structures. 

We also note that in Q2 the students appeared confused with the use of 

numerator/denominator. Whilst this is rectified in 2c with 7% fewer students selecting 

the incorrect response, it is not evident in 2d. 

We see the biggest reductions in the number of students selecting the 'numerator 

unchanged' (2b: 5%) or 'denominator unchanged' (1a: 5%, 2c: 7%) options when 

finding an equivalent fraction. One of the interviewees, Elizabeth, made specific 

reference to this: 

Elizabeth: [Fractions Lab] helped me, equivalent fractions don't always have to have 

the same denominator and you can use different [representation] types to 

make equivalent fractions. I worked out 'find equivalent' eventually. It 

helped me because [the partitioned rectangle] was kind of like a chart when 

you split it into small bits. You double it and the denominator becomes 

bigger but the bits become smaller. It was pretty new to me, we’d only used 

fraction walls before. 

We tentatively suggest that the reduction in students’ errors and Elizabeth’s comment 

may reflect a small change in the students' whole number bias and may also reflect a 

small shift from additive reasoning towards multiplicative reasoning. Elizabeth is 

reflecting on the role of the ‘find equivalent’ tool. While representations are 

partitioned, the fraction symbol is shown contemporaneously. George also referred to 

partitioning using the liquid measures model. 

George: Because I practised it I got more confident with it and how to find 

equivalent fractions. I like using the jug because I like measuring. You can 

split it into parts. 

Three students referred specifically to additive or multiplicative structures. Ella refers 

to Fractions Lab helping her to think about equivalent fractions by seeing the fractions 

“go up. 8+ 8.” Laura refers to both additive and multiplicative structures and Oscar 

refers just to multiplicative structures.  

Ella: It would go up.  8 + 8.  

Laura: You could add 1 and 1 and 1 or 4 and 4 and 4.  What you could also do was 

your times tables. 

Oscar: It splits up the rectangle so if you make it into four [partition the rectangle 

four times] then it is four times four which is sixteen. I had never thought 

about equivalent fractions like that before. 

We tracked these three students’ pre and posttests to see if there was any possible link 

between their comments and attainment on the tests (see Table 3).  
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Student Q1 (Pretest / Posttest) Q2 (Pretest / Posttest) 

Ella Unanswered / Correct N/D confusion & N unchanged /  

D unchanged 

Laura Unanswered / Correct  N/D confusion & N unchanged /  

D unchanged 

Oscar Correct / Correct N/D confusion & N unchanged / 

Correct 

Table 3: Three students’ performance on Q1 and Q2. 

For all three students there appears a general improvement across both questions. Ella 

and Laura answered Q1 incorrectly in the pretest but correctly in the posttest. In all 

three cases the students exhibited confusion in Q2 related to the numerator and 

denominator in the pretest but this was not evident in the posttest. However their 

success in Q1 was not completely mirrored in Q2, with all overcoming their 

numerator/denominator confusion but two not changing the denominator as required. 

Q2 is more cognitively challenging than Q1: Q1 requires one operation to be carried 

out whereas Q2 requires students to know the term ‘denominator’ as well as carry out 

the calculation, that contains ‘harder’ fractions than Q1.  

We wonder if the platform requiring the students to use the terms ‘numerator’ or 

‘denominator’ (and prompting them into use when they were not) may have influenced 

the students’ understanding of the terms. However if this is the case, there is no 

influence in 2d where there was no change. 

DISCUSSION 

Students are often fed a narrow diet of representations and interpretations 

(Charalambous, Delaney, Hsu & Mesa, 2010). However, providing a range of 

representations such as sets, number lines, area models and liquid measures is 

paramount to student learning (Lamon, 2012) because these different representations 

help students understand the underlying fraction concepts (Ainsworth, 1999) and 

improve conceptual learning. Our findings support the literature on the importance of 

teaching with a range of representations: Elizabeth explicitly referred to the range of 

representations, and others to specific representations, as instrumental in supporting 

them consider equivalent fractions, particularly when the models could be partitioned, 

e.g. Oscar - rectangle, George - jug.  

We believe that the manipulation of the virtual representations is crucial in the students' 

general thinking-in-change (Hansen, Mavrikis, Holmes & Geraniou, 2015). The 

affordances that Fractions Lab provides, such as the 'find equivalent' (partitioning) tool 

also supported some students to think about equivalent fractions in a different way. 
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Indeed, Oscar and Elizabeth were able to explain how the rectangle became partitioned 

and the effect partitioning had on the equivalent fraction symbol.  

Perhaps more interesting is the relationship partitioning appears to have with the 

interviewees' additive and multiplicative reasoning. Ella, Laura and Oscar all explained 

what happened to the numerator or denominator of the symbol as they partitioned. Ella 

used additive reasoning in her explanation (“8 + 8”), Laura used additive and 

multiplicative reasoning (“You could add 1 and 1 and 1 or 4 and 4 and 4.  What you 

could also do was your times tables”) and Oscar used multiplicative reasoning ("it is 

four times four"). What we find interesting is that Oscar, who explains the relationship 

between the partitioned rectangle and the four times table, is more successful in the 

two test items than those students discussing equivalent fractions in relation to additive 

structures. We are tentative about claiming anything more from this observation and 

even that Oscar is using multiplicative reasoning. As Brickwedde (2011) reminds us, 

just because students know their times tables it does not mean they are using 

multiplicative reasoning. However, we conjecture that the platform (and Fractions Lab 

in particular) may be a useful resource to support some students’ shift from additive to 

multiplicative reasoning.  

Although there is a significant association from pretest to posttest, the errors we have 

observed seem to be persistent. Yet the improvement observed is worthy of note 

considering the time the students had undertaking the exploratory tasks. Indeed, we are 

mindful that the period of interaction the students had with Fractions Lab is very short 

because the students were additionally undertaking complementary structured tasks.  

CONCLUSION 

Students' fractions difficulties often stem from whole number bias and the shift from 

additive to multiplicative reasoning. Despite students working independently on the 

iTalk2Learn platform for a relatively short period of time, there was a statistically 

significant overall improvement in their fractions knowledge. Additionally, some 

students were able to overcome the errors they had exhibited prior to their time on the 

platform. In light of this, we set out to consider how the platform, and in particular 

Fractions Lab, might be effectively supporting students to address their difficulties. 

We saw around one third of the students making errors related to whole number bias 

and additive reasoning. We make the case that the ‘find equivalent’ tool, which enabled 

partitioning of representations, was instrumental for students being able to notice 

relationships between equivalent fractions and their numerators/denominators in real 

time, thus helping them to address their difficulties with whole number bias and the 

shift from additive to multiplicative reasoning. We are less clear whether the platform's 

requirement for students to speak aloud and use the terms 'numerator' or 'denominator' 

contributed to the students' mixed improvement in confusion between the terms.  

Further analysis is required to identify the specific tasks that the students undertook. 

These data will inform our analysis of how the exploratory tasks (rather than the 

microworld’s affordances alone) played a part in addressing the students’ errors.  
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THE RICHNESS OF POSSILITIES IN ADAPTING A TASK 

Petra Hendrikse  

KPZ, the Netherlands 

 

Adaptive education aims to meet the needs of individual students. Teachers have to be 

able to judge if problems lie within the zone of proximal development of each single 

student and adjust a problem if it does not. This study is a reproduction and extension 

of the study of Nicol, Bragg and Nejad (2013). In our study, 51 small groups of pre-

service teachers were asked to offer suggestions for adapting a problem. The 

suggestions given were analysed with an extended version of the original coding 

scheme. Results show that students give more suggestions to make the problem more 

accessible than to make it more challenging. The background of the pre-service 

teachers seems to influence the type of suggestions given. In contrast to Nicol, Bragg 

and Nejad (2013), we found that some of them varied on the big ideas of the problem.  

THEORETICAL FRAMEWORK 

Dutch primary schools are legally bound to offer adaptive education (van Gerven, 

2009), meaning that tasks, instruction and materials are adapted to learners’ capabilities 

and needs. Mooij, Hoogeveen, Driessen, van Hell & Verhoeven (2007) argue by citing 

Sternberg and Grigorenko (2002) that if education is adapted to the learning level and 

capabilities of the learner students outperform learners who aren’t taught in the way 

that fits their way of thinking. As Berk and Winsler (1995) write: 

According to Vygotsky, the role of education is to provide experiences that are in the 

child’s zone of proximal development (p. 25) 

Getting education to be challenging for each child, standard tasks used in regular 

education can be adjusted. There are many ways in which the level and complexity of 

a task can be adjusted and in many ways these adjustments can be clustered and/or 

classified. In literature several types of classification are used for different reasons, 

such as evaluating the curriculum or assuring a high quality of assessment. Examples 

are the iceberg metaphor, learning landscapes, Bloom’s taxonomy and the 

classification used by TIMSS. Each type of classification indicates strategies to adjust 

tasks.  

The purpose of the iceberg metaphor (Webb, Boswinkel, & Dekker, 2008) is to 

illustrate how mathematical knowledge is constructed on the basis of prior 

mathematical knowledge, which in general is less formal and more concrete at primary 

school level. The central concept of the iceberg metaphor is that in order to be able to 

work with formal concepts like the fraction ¾ in a correct and flexible way, a large 

amount of ‘under water knowledge’ is needed, the so-called floating capacity. In the 

case of ¾ this is knowledge like dividing 3 pizza’s over 4 persons. De Corte (1995) 

mentions that learners differ by the time they need to build a base of informal 

experiences. More capable learners can pass much quicker to higher levels of 
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formality. Consequently soon after introducing a new topic, learners already differ in 

the level of formality of the assignments which are in their zone of proximal 

development. Tomlinson (2001, 2003) also asserts tasks may be defined on a 

continuum from concrete to abstract and a given problem is made more concrete by 

giving students manipulatives. It can be concluded that the level of formalness, for 

example by giving manipulatives, influences the level and complexity of a task. 

Another way of organizing learning content are the so-called ‘learning landscapes’ 

(Fosnot & Dolk, 2001). A learning landscape contains models, strategies and ‘big 

ideas’. In a learning landscape, learners move upward along these constituents. It is not 

necessary to understand each single constituent, since different paths are possible, but 

there should be a path from the bottom upwards; this idea compares to the idea of the 

floating capacity of the iceberg. Learning landscapes make clear that big ideas are 

essential and therefore one should keep in mind which big idea is addressed while 

adjusting a task.  

Bloom’s taxonomy (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) is hierarchical 

with six steps: knowledge, comprehension, application, analysis, synthesis and 

evaluation. The hierarchy of the taxonomy has been criticised, especially that of the 

higher-order thinking skills (the last three) which can be conceptualised as distinct but 

parallel (Long, Dunne & de Kock, 2014). Revisions of the taxonomy are widespread. 

Krathwohl (2002) for example gives the following categories: remember, understand, 

apply, analyse, evaluate and create. From these taxonomies it can be concluded that 

tasks can be adjusted by asking questions of different categories of the taxonomy. A 

question to evaluate (why is it that ….? or Is it a coincidence that … ?) or to create 

(think up of a similar problem for other children) are examples of higher order tasks 

and therefore more suitable for strong performers.  

TIMSS and CAPS classify questions and their answers into the following categories: 

knowledge, routine procedures, complex procedures and problem solving (Long, 

Dunne & de Kock, 2014). One aspect of the difference between routine and complex 

procedures is the numbers used in a task, since students’ familiarity of numbers affects 

their performance (Blessing & Ross, 1996; Ebersbach, M., Luwel, K., & Verschaffel, 

L., 2015). Another aspect is the number of facets in a problem, these include the 

number of steps required to solve it, the number of variables, or the number of different 

skills to be employed (Little, Hauser, & Corbishley, 2009). Little et al. (2009) state that 

indirectly the number of facets can be decreased by providing extra scaffolding. 

Blessing and Ross (1996) found that the amount of correlations between a problem’s 

content and its deep structure influences the level and complexity of a problem. It can 

be concluded that the familiarity of numbers, the number of facets in a problem, 

whether or not scaffolding is provided and the correlation between content and deep 

structure, influences the level and complexity of a task.  

Nicol, Bragg & Nejad (2013) argue that learning to design and adapt problems for 

mathematics teaching that meet the diverse needs of students and maintaining the 

richness while teaching are not a trivial endeavour both for pre-service as for 
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experienced teachers. In their paper, they examine how preservice elementary teachers 

adapt a task. The original coding scheme of their paper is given in Figure 1 (more 

accessible) and Figure 2 (more challenging) in the first two columns. Nicol, Bragg and 

Nejad (2013) identified these categories on the basis of the work of their participants. 

In the third column we added the conclusions drawn from the different types of 

classifications which are comparable.   

a vary 

mathematical 

content 

introduce numbers that are more 

familiar 

TIMSS, familiarity of 

numbers 

b vary context Use fewer words and more diagrams 

Use manipulatives 

Iceberg, role of context 

c vary question 

asked 

Work forward 

Decrease number of problem steps 

Provide structured support 

Iceberg, role of content 

TIMSS, number of facets 

TIMSS, scaffolding 

Figure 1. Alternatives for mjaking the problem more accessible (original version) 

a vary mathematical 

content 

introduce different fractions  TIMSS, familiarity of 

numbers 

b vary context include more or extraneous 

information 

Iceberg, role of context 

c vary question asked provide open-ended questions 

construct original questions 

Bloom’s taxonomy 

Bloom’s taxonomy 

Figure 2. Alternatives for making the problem more challenging (original version) 

In these figures some of the adaptions we mentioned before, are missing: the number 

of facets is only present in making the problem more accessible, in both schemes 

varying on the big idea is missing as is the level of formalness and/or concreteness, the 

number of facets is missing in making the problem more challenging. 

METHOD 

Participants 

In this study, 51 groups of a maximum 4 students participated. All participants were 

pre-service elementary teachers. There were two types of students. The first group of 

students included 114 regular students who started their teacher education soon after 

they had finished secondary education. The second group of students consisted of 20 

part-time students who study during weekends and in the evenings. On average these 

students were older than the regular students and in many cases they had a family. All 

part-time students had a bachelor degree, but not in education.  
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Procedure 

All participants were students from a primary teacher education institute in a small city 

in the Netherlands. They were taking an obligatory course about adjusting education 

to the needs and capabilities of individual learners. The study was performed during 

the first meeting of the course, before any information whatsoever (besides the 

information in the curriculum overview) was given about the course. Participants were 

told that they were allowed to work together in pairs (or in case of an odd number of 

participants in a group of 3). Because some pairs could hear one another’s discussion 

those pairs worked together. Participants were given a problem about fractions. They 

were asked to give suggestions how to make the problem both more accessible and 

more challenging. Participants were given as much time as they needed.  

Task  

In this study the task used by Nicol, Bragg and Nejad (2013) was translated into Dutch.  

Three Hungry Monster Problem: Three tired and hungry monsters went to sleep 

with a bag of cookies. One monster woke up, ate 1/3 of the cookies, then went 

back to sleep. Later, the second monster woke up and ate 1/3 of the remaining 

cookies then went back to sleep. Finally, the third monster woke up and ate 1/3 

of the remaining cookies. When she finished there were 8 cookies left. How 

many cookies were in the bag originally? 

Data analysis 

The analysis scheme used by Nicol, Bragg and Nejad (2013) formed the basis of the 

analysis, but the scheme was extended if necessary. The number of forms that 

contained a suggestion in each option in each category were identified and we 

examined whether the type of student influences the type of given suggestions.  

RESULTS 

In total 51 forms were collected, 43 from regular students and 8 from part-time 

students. Only 39 of the forms of the regular students contained suggestions for making 

the problem both more accessible as more challenging. Two forms didn’t contain 

suggestions given for making the problem more accessible and one form didn’t contain  

suggestions given for making it more challenging. 

We extended both schemes (Table 1 and 2) by adding a category d ‘vary on theme of 

big idea’. Suggestions were made about going to another subdomain like percentages 

or ask for the limit of repeating the process of awakening, so we added a category e 

‘vary subdomain’ (see Table 2). Besides extending the scheme for challenging 

alternatives by adding more categories, we also added possibilities within the existing 

categories. For example, the question ‘how many more times do the monsters have to 

wake up, before there’s 1 cookie left for each monster?’, was put in the new option 

‘make the problem a more puzzling task’ within the category a. Besides this addition 

we added the possibilities of starting with more cookies, of working with different 

fractions within the task,  and of having a result which is no longer an integer within 
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category a. Within category b we’ve added the possibility of making the task more 

formal. In the original scheme nothing was said about raising instead of decreasing the 

number of problem steps, which was in category c of the ‘more accessible version’. 

Because in the ‘more challenging version’ category c contains different kind of 

adaptions, we see it as a form of including more information, category b (for the 

complexity is raised by raising the amount of information, not by raising the 

complexity of the question itself).  

Suggestions to make the problem more accessible 

In Table 1 results are given for the task of making the problem more accessible. One 

form contained the suggestion to first have learners practice the multiplication table of 

3 before trying to solve the problem. In contrast to the regular students, significantly 

less part-time students varied the task by changing the numbers into more familiar 

numbers (t(13,07) = 3,40; p = 0,005) or suggested to decrease the number of problem 

steps (t(39,00) = 4,58; p < 0,001). Part-time students more often suggested to change 

the order of the problem (t(12,39) = -3,97; p = 0,002) and they gave more different 

options (maximum was 3, see Table 1) within the category of varying the question 

asked (t (46) = -2,26; p = 0,028).  

  

 
Category   

% of the forms on which the suggestion is made 

 
Options within category                          Regular  Part-time               

a vary mathematical 
content 

introduce numbers that are more familiar 62,5 12,5 

b vary context Use fewer words and more diagrams 

Use manipulatives 

30,0 

12,5 

25,0 

37,5 

c vary question 
asked 

Work forward 

Decrease number of problem steps 

Provide structured support 

30,0 

35,0 

10,0 

87,5 

  0,0 

50,0 

d vary theme of big 
idea 

Have the monsters eat 1/3 of the total and not 
1/3 of the remaining cookies 

  7,5 37,5 

Table 1. Results of the alternatives for making the problem more accessible 

Suggestions to make the problem more challenging 

In Table 2 the results are given for the task of making the problem more challenging. 

Some forms contained the suggestion to have the parents share the remaining cookies 

equally. It is an interesting suggestion, because now the fraction is taken two times 

from the same amount, in contrast to taking the fraction of the remaining, which was 

done by the ‘little’ monsters. We choose to put this suggestion in category b instead of 

d, because no explicit remark was made about this difference between parents and 

children and it therefore just might be another form of adding facets. 
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  % of the forms on which the suggestion is made 

 
Regular Part-time 

a vary 
mathematical 
content 

introduce different fractions or start with more 
cookies, work with different fractions within task  

have a result which is no longer an integer 

make task more like a puzzle 

81,0 

 
  4,8 

  2,4 

37,5 

 
  0,0 

  0,0 

b vary context include more or extraneous information 

make task more formal (formulated only in 
mathematical symbols) 

40,5 

  9,5 

  0,0 

50,0 

c vary question 
asked 

provide open-ended questions 

construct original questions 

  2,4 

  2,4 

  0,0 

  0,0 

d vary on big idea  11,9 12,5 

e vary subdomain ratio (like percentage, decimal numbers)   4,8   0,0 

f vary goal make the learner visualize the problem for others   0,0 12,5 

Table 2. Results of the alternatives for making the problem more challenging 

What kind of suggestions did we categorize as variations from the big idea? One 

example are questions concerning the amount of cookies the second and third monsters 

are still entitled to. Another example is having each monster eats the same amount of 

cookies but now ask which part this is of the amount of cookies that are there when the 

monster awakens (and have children see that this is a different fraction each time; 1/3, 

1/2, 1/1). Another variance found was the question how many times you have to take 

1/3 of the remaining before you are below ½ of the total. One form had an added 

question whether or not it is a coincidence that 1/3 ∙ 1/3 ∙ 1/3 = 1/27. An interesting 

detail is that one form contained 4 different kinds of variations concerning the big idea.  

There were also some suggestions that made us wonder why they were considered 

more challenging by the students. Examples of suggestion we ourselves would have 

put in making accessible are (1) a question asking whether or not the cookies are 

divided fairly, (2) have the second and third monster share equally instead of taking 

1/3 of the remaining cookies (and this contradiction is mentioned explicitly).  

As it was with the more accessible suggestions, part-time students suggest significantly 

less often to vary the task by varying the mathematical content (t(8,47) = 2,39; p = 

0,042). Having this result in mind it is not surprising that part-time students also 

suggested significantly less often to make the problem more challenging by adding 

redundant information (t(41,00) = 5,28; p < 0,001). 

CONCLUSION AND DISCUSSION 

In this study the number of participants was much larger than in the original study of 

Nicol, Bragg and Nejad (2013). We found suggestions which were similar to those of 
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the original study, but we also found new suggestions amongst others about variations 

from the big idea. This led to extended coding schemes. In this study there were two 

different types of students. It turned out that they differ in the suggestions they give.  

Both groups of students had relatively more different categories of suggestions for 

making the problem more accessible than for making it more challenging. A reason 

might be that quite a few participants found the original problem quite challenging. It 

would be interesting to investigate whether a different result would be obtained if 

preservice teachers had to adapt a problem which they find easy to solve. The result 

that different types of students give different kind of suggestions, raises the question 

whether more inexperienced teachers, inexperienced both in teaching and in 

knowledge of life, focus more on superficial aspects like changing the numbers or the 

amount of information, while more experienced teachers focus more on deeper aspects 

like the order of the problem (forward or backward). It is desirable to extend the 

research to in-service teachers.  

In this study a suggested adaption was to ask how long it will last before all cookies 

are completely eaten if each time 1/3 of the remaining is taken away. It is interesting 

to see that this in fact is a mathematically interesting question, but it is a misplaced 

question in this context. At the moment a monster awakes and finds just one cookie 

left, it will eat all of it instead of eating just 1/3. It is a nice example of vertical 

mathematizing (Freudenthal, 1991): for strong learners, the context can be taken away 

and the problem can be seen from a purely mathematical point of view, leading to new 

mathematical interesting questions.  

We didn’t judge the different suggestions given, but in a follow up study this might be 

done. For example: though adapting the task by making the numbers more or less 

familiar affects succeeding the task, it is discussible whether or not it makes the task 

more challenging in terms of insight. Miscalculations are more likely to occur and 

working memory is much more loaded, but if one understands how to solve the 

problem with more familiar fractions, there’s no new insight needed. Another question 

is whether making the task less concrete raises or lowers the level of complexity. Piel 

and Suchart (2014) found in their study of social class related differences that the 

choice of the context influences the level of intelligibility. Realistic items had more 

differences due to their cognitive ability, class and sex than pure items.  
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This paper continues work initiated in Hernandes-Gomes & González-Martín 

(submitted), which examines whether engineering teachers’ views of Calculus are 

influenced by their different academic and professional backgrounds, and how these 

views impact their teaching practices. We follow an institutional perspective, using 

Chevallard’s Anthropological Theory of the Didactic (ATD), in particular the notion 

of personal relationship. Our data suggest that different academic and professional 

backgrounds may influence engineering teachers’ personal relationships with the 

content of Calculus courses, thus resulting in different practices. 

INTRODUCTION 

Calculus is a first-year course in most science, technology, engineering and 

mathematics (STEM) university programs. Calculus courses are meant to introduce the 

tools students require in their more advanced courses. However, in the case of 

engineering programs, Harris, Black, Hernandez-Martinez, Pepin, Williams, and 

TransMaths (2015, p.321) think that “whichever way the mathematics within 

engineering courses is taught, there are problems for some students”. The literature 

seems to indicate that this issue is generalised to other programs (Rasmussen, 

Marrongelle, & Borba, 2014), and could contribute to a student’s decision whether to 

continue pursuing a STEM degree or not (Ellis, Kelton, & Rasmussen, 2014). Not only 

do teachers need to address students’ difficulties in learning Calculus notions, they also 

must acknowledge “the need for bridging the gap between mathematics and sciences” 

(Dominguez & de la Garza Becerra, 2015). When it comes to teaching mathematics in 

professional programs, Christensen (2008, p.131) has pointed out that “it can be quite 

difficult to connect the abstract formalism of mathematics with the necessary 

applicable skills in a given profession”, and that this could produce a “gap in the 

students’ ability to use mathematics in their engineering practices”. 

Research at the undergraduate level has identified many of the difficulties students face 

in their first-year mathematics courses at university (Rasmussen et al., 2014). 

However, more research is needed to ascertain how these difficulties are taken into 

account through teaching practices at the tertiary level (Rasmussen et al., 2014). 

Indeed, the literature has identified variability in these practices. For instance, Wagner 

and Keene (2014) analysed the practices of two university mathematics teachers on the 

first day of an undergraduate differential equations course. Each instructor held a 

doctorate in mathematics and possessed more than fifteen years of experience teaching 

at the university level. Their results showed that both “mathematics professors 



Hernandes-Gomes, González-Martín 

2–378 PME40 – 2016 

addressed the first day’s mathematical content in different ways, and […] that how the 

professors interpreted the curriculum is an important and appropriate way to consider 

how the enacted curriculum may have affected student learning” (p.330). We also cite 

Pinto (2013), who, in analysing two university teachers’ implementation of the same 

lesson plan in a course on infinitesimal Calculus, showed “how different beliefs and 

attitudes, different goals and reliance on different resources resulted in two 

substantially different lessons.” (p. 2424) These two works seem to indicate that 

university teachers may rely heavily on their own experience and their own vision of 

mathematics and teaching. For this reason (among others), further research focusing 

on university teachers’ knowledge and beliefs (particularly when it comes to Calculus) 

is necessary (Eichler & Erens, 2014). We intend to address this lacuna using an 

institutional perspective. In the context of engineering courses, Calculus can be taught 

by teachers with very different training and professional experience; we believe that 

an institutional perspective will shed light on the origin of these teachers’ Calculus 

instruction practices. 

Our work also contributes to an emerging field of research on the teaching and learning 

of mathematics in engineering. Artigue, Batanero and Kent (2007, p.1031) previously 

pointed out that “there have been very few studies of the different ways that 

mathematics and engineering students think about mathematics.” However, it is also 

necessary to study how instructors with a background in mathematics think about 

mathematics and their teaching, as opposed to instructors with a background in 

engineering. In Hernandes Gomes & González-Martín, (2015) we addressed this issue 

by identifying differences in the way two teachers with different academic 

backgrounds approach mathematical topics in engineering programs. These results led 

us to examine this topic more closely, drawing on a larger pool of teachers with 

different backgrounds and following an institutional perspective (Hernandes-Gomes & 

González-Martín, submitted). 

THEORETICAL FRAMEWORK 

As stated above, we are interested in studying how teachers’ visions of mathematics 

and their teaching vary according to the instructors’ different training and professional 

experiences, particularly with respect to the teaching of Calculus in engineering 

programs. Because we wish to use an institutional approach, we employ Chevallard’s 

(1999) Anthropological theory of the didactic (ATD). 

ATD sees mathematical (communal) knowledge (savoir in French) as the product of 

institutional human action; it is something that is produced, used, taught, or more 

generally, transposed within institutions (Bosch & Chevallard, 1999). An institution is 

defined as a social organisation I that allows, and also imposes on its subjects, ways of 

doing and thinking proper to I. One key notion of ATD is that of praxeology, which 

allows for the modelling of social practices in general and mathematical activity in 

particular. ATD also proposes that “any institutional practice can be analysed, from 

different points of view and in different ways, through a system of tasks relatively well 
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circumscribed.” (p. 84) Every task can be tackled or accomplished using one or more 

techniques; ATD postulates that institutional activity is composed of a wide range of 

tasks that are carried out according to institutionalised “ways of doing”. In this sense, 

the institutional relationship with an object o, for a given position p within the 

institution I (RI(p, o)), is defined through the set of tasks accomplished by individuals 

occupying this position, using given techniques. As a consequence, by carrying out 

given tasks in various institutions to which an individual belongs simultaneously (or 

has belonged successively), his or her personal relationship with a given object 

emerges and is constantly remodelled. Techniques are explained by given discourses, 

called technologies, which belong to branches of knowledge called theories. This set 

of task/technique/technology/theory forms a praxeology. The personal relationship 

includes elements such as ‘knowledge’, ‘know-how’, ‘conceptions’, ‘competencies’, 

‘mastery’, and ‘mental images’ (Chevallard, 1989, p.227). 

To illustrate the application of these notions in the context of our research, let us 

consider a faculty of engineering (E) comprising several positions, including teacher 

(in various departments) and student. Figure 1 illustrates the following scenario. An 

individual can occupy the position of student in a faculty of engineering (E), learning 

limits in the context of praxeologies that exist under the restrictions of RE(s, λ). This 

notion is approached in a particular way in professional courses, due to the existence 

of specific praxeologies (RE(s, Λ)), which may modify the individual’s personal 

relationship with said notion. The same individual can later occupy the position of 

engineer at a firm (F). It is likely the praxeologies present in this new environment 

(RF(e, Λ)) will further remodel the individual’s personal relationship with Calculus 

notions. A second individual can occupy the position of student in a faculty of 

mathematics (M), developing a different personal relationship with limits, first in 

introductory Calculus courses (under the restrictions of RM(s, l)) and later in more 

advanced courses (RM(s, L)). These two individuals then go on to teach Calculus in a 

faculty of engineering (E), a new position for both of them. Even though they now 

occupy the same position in the same institution (under the restrictions of RE(t, λ)), 

their personal relationships with limits are likely very different, which could have an 

impact on their teaching practices. 

 

Figure 1: Different paths to becoming a Calculus teacher in engineering 

 

We believe that ATD offers an interesting lens through which to observe and analyse 
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these phenomena, allowing us to identify variations between different teachers’ 

personal relationships with the notions they teach. This could help explain teachers’ 

divergent practices and the various choices they make in preparing their courses. 

METHODOLOGY 

In September 2015, we interviewed six university teachers with different academic 

backgrounds (Figure 2). They all had been teaching first-year Calculus in university 

engineering programs in São Paulo, Brazil, for at least 14 years. One month before the 

interviews, each teacher received a questionnaire on their academic and professional 

backgrounds, which allowed us to categorize their profiles. For this paper, we compare 

the main results from our interviews with teachers T4 and T5. 

 

Figure 2: Profile of six university teachers 

Both instructors teach Calculus in first-year engineering courses at the same university. 

T4 has taught Calculus I and II for 45 years; his professional experience is limited to 

university teaching. On the other hand, T5 has been a Calculus instructor for 14 years 

and has taught Calculus I at her current university since 2011. She also worked as an 

electrical engineer for 36 years, both in-house and as a consultant. At their university, 

Calculus I covers functions, limits and derivatives, ending with rate of change and 

optimisation problems. The course is organised around the classical praxeology of 

introduction of definition, properties, theorems, exercises and some applications. 

All the interviews were audio recorded and transcribed. They took place at the teachers’ 

workplace in a room with only the interviewer (first author of this paper) and 

interviewee present, on a day chosen by the interviewee. The questions were designed 

to establish the main aspects of the teachers’ vision of Calculus and its teaching, reveal 

how their academic and professional backgrounds influence their practices (including 

specific elements that might influence their personal relationship) and identify the 

choices they make in preparing the course and student exercises, taking into account 

the fact this Calculus course is geared towards engineering students. After the 

transcription was complete, the teachers’ answers were coded, which allowed us to 

categorize the data to develop our analysis. Figure 3 lists the elements we discuss in 

this paper. 
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Figure 3: Final categories and subcategories 

DATA ANALYSIS 

Both teachers were asked how their academic and professional backgrounds influence 

their course preparation. They were also asked about their choice of student exercises 

and about the books and resources they select to prepare their course and use in class. 

Their responses were as follows: 

T5: In the contextualisation, the application of exercises, then it influences quite a bit. 

[…] And in electrical engineering, so to speak, you model […] circuits, and 

components, through mathematics. […] Let’s say I have […] an integrator circuit, 

I have to know what [it] does, I need to know what is the integral, how it is that I 

throw a pulse and it starts the integral […].With an equation, a second order filter 

becomes a polynomial equation of second degree. I cannot dissociate one thing 

from the other. [...] Because that is how I see Calculus for engineering: it’s 

modelling. I look at an oscilloscope and I see a function, and in the same way that 

I see a function, I think of an electric signal associated with that function. Because 

it’s my way of understanding engineering and mathematics. Mathematics helps me 

with physics and Calculus problems. That’s why I went into teaching Calculus. 

On the other hand, in answering these and other questions, T4 revealed that the 

difficulties he had encountered with mathematics as a graduate student continue to 

influence his choices as a teacher: 

T4:  At the beginning I had a lot of difficuly, because I almost always had to teach 

something that I hadn’t mastered myself. So I had to study a lot. I got different 

books; I’ve always been a bit of an autodidact. […] But I could learn new things 

on my own, [I] overcame my own difficulties and I pass [this new knowledge] on 

to [my students]. […] So, books, they are essential. I always say [to my students]: 

“You cannot be an engineer if you don’t have […] a library [at home]. […] You 

need to have books on the basics as well as specific [professional] books. Because 

at times you’ll have a look at your notes, and you won’t find [what you’re looking 

for], and then you’ll go to your book.” […] I value books. Very much. 

We see in these excerpts that both have a very different personal relationship with the 

content of the Calculus course they teach. T5 can clearly relate the content of the course 

to her experience as an engineer; she has been exposed to praxeologies that allow her 

to connect this content with the practice of an engineer. On the other hand, T4, while 

he holds a Bachelor of Mathematics, seems to have a personal relationship with 

•Academic

•Professional
Background

•Practical

•Context of engineering practice

•Other Contexts

•Theoretical

Types of exercices 
used in the course 

•Books

•Software (computer)
Resources used

Elements of the personal 
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Calculus that is closer to that of a student than a mathematician. This could be because 

he started teaching immediately after he received his degree, and is therefore lacking 

experience as a mathematician and engineer. 

The teachers’ academic and professional backgrounds also seem to influence the 

amount of time they dedicate to exercises that are specifically relevant to engineering. 

T4 stated he finds it challenging to select contextualised exercises, due to the fact he is 

not an engineer and because first-year students are not familiar with advanced 

engineering concepts. To overcome this limitation, he usually consults his colleagues 

who teach professional courses on ways to use Calculus course content to maintain 

students’ attention: “This thing here, there’s [an application] in engineering, in the 

professional courses, where you will use this calculation. Even myself, I don’t know it 

very well, but this calculation will be used there, so I believe it’s better for you to learn 

it now, because if not, you’ll have difficulties there.” We see that he has not participated 

in any praxeology in which he used the notions he now teaches, and although he seeks 

advice from his colleagues, he seems to have a superficial understanding of how to 

apply Calculus directly to engineering practices. At the other end of the spectrum, T5 

said that she always explores how exercises apply to engineering: “I have a look at the 

exercise and I see where it can be applied. I already give a contextualisation for the 

exercise.” Once again, her background in engineering, as well as her professional 

experience in the field, seem to have given her and understanding of how the notions 

she teaches may be applied to engineering tasks. This topic also arose at another point 

during the interview: 

T5:  I tell [students] that the exercises I give in class have to be harder than the ones on 

the exam. Because they can do exercises. […] But like any teacher, you have a 

preference for a certain type, type of function and, of course, I’ll direct things 

towards whatever is more applicable to electrical engineering. 

In contrast, T4’s approach to exercises for engineers seemed more closely related to 

praxeologies of mathematics courses: 

T4:  Always more practical, since it’s [a course in] engineering. For instance, yesterday 

I was trying to justify the first fundamental limit  
x

x
x

sinlim
0

, and I said: “Now I'll 

make a justification for engineers.” […] Then I made a table […] and a student 

asked me: “[…] there isn’t an algebraic proof, professor?" Yes, there is. Now I'm 

going to do a proof that combines many things, it has geometry, algebra, and 

trigonometry. I would say that this proof is more for mathematicians, but not 

very… it’s mostly for an average mathematician. [...] But it's more practical, I 

believe that in engineering, theory must be minimized, as much as possible. 

Again, we see that T4 seems to engage in praxeologies involving only basic 

mathematical notions from the Calculus course, even though he believes they are 

“more practical”. When asked about the importance they ascribe to theorems and 

proofs, the teachers responded as follows: 
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T4: Depending on the theoretical level of the proof, I believe that it could be useful, 

because it enriches reasoning capacities. For example, if the engineering student 

is interested in pursuing his studies after graduating, like [in] a master’s degree, a 

doctorate. If he wants to be an engineer that makes projects […], he needs to know 

the theory well. […] Now depending on the level [of his professional activity], he 

may not use it. But I think the right thing is to do it even if it they won’t use it. 

T5:  I usually do the following, when the proof is pure mathematical manipulation, 

where you have to manipulate the equations to get the answer you want, I just 

project it in the data projector and bye. When the proof follows a way of thinking 

[…] I do it, even if it entails a lot of mathematical manipulation, but the concept is 

in the proof. But [when the proof] is just about doing calculations [I don’t do it]. 

Once more, we see a meaningful difference between T4’s and T5’s personal 

relationship with the content of their Calculus course. T4’s relationship seems 

influenced by his background in mathematics, which is perhaps why he considers 

proofs to be important for engineering students even though they may not use them. 

However, T5’s position appears to be shaped by her background in engineering; she 

identifies those proofs that may help students better understand the mathematical 

notions they will need in their future practice and distinguishes them from proofs that 

only offer manipulations and do not enrich an engineer’s profile. 

FINAL CONSIDERATIONS 

Our data, in accordance with those presented in Hernandes-Gomes & González-Martín 

(submitted), suggest that different academic and professional backgrounds could 

influence Calculus teachers’ practices in engineering programs. When different 

teachers have belonged to different institutions and participated in different 

praxeologies, they seem to use different approaches when connecting Calculus notions 

with engineering practices and deciding which content or skills are most useful for a 

future engineer. We see that T4 and T5 each possesses a different set of ‘knowledge’, 

‘know-how’ and ‘competencies’, among others. This results in different personal 

relationships with the notions taught in their Calculus courses and, thus, with their 

practices. The gap identified by Christensen (2008) between mathematical notions 

taught in class and the practical skills required by engineers seems to be addressed 

more fully by T5 than by T4. 

As noted in the introduction, there is need for further research on how engineering 

students think about (and use) mathematics (Artigue et al., 2007). However, this could 

be strongly influenced by how their mathematics courses are taught. In this sense, it is 

also necessary to develop studies that investigate how teachers with different 

backgrounds plan and organise their engineering courses. Our work intends to 

contribute to this strand of research. We plan to analyse the results derived from the 

interviews with T1 and T2 (neither of whom have a background in engineering) and 

develop a global analysis and comparison of our six participants. This will be the 

subject of future publications. 
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In this study creativity is taken in its most common meaning: the ability to transcend 

traditional ideas, rules, patterns, relationships, and the like, and to create meaningful 

new ideas. During the last few years, we have been investigating knowledge shifts 

among different settings in inquiry-based classrooms. The goal of the current study is 

to investigate creative mathematical thinking within the shifts of knowledge in an 

inquiry-based mathematics classroom. We demonstrate the creativity within shifts of 

knowledge via a whole class discussion and a group work. The shifts of creative 

knowledge started with an individual student and often served as a kind of milestone 

in the inquiry of the topic. 

BACKGROUND 

Our research is coordinating Abstraction in Context (AiC) and Documenting 

Collective Activity (DCA) in order to empirically investigate progress of mathematical 

knowledge among different settings in the same classroom, as they unfold in the same 

lesson, resulted in the emergence of several new theoretical constructs (Authors, Year). 

A knowledge agent is a member in the classroom community who initiates a new idea, 

which subsequently is appropriated by one or several other members of the classroom 

community. Thus, when a student in the classroom is the first one to express a new 

idea according to the researchers’ observations, and later others in classroom express 

or use this idea, then the first student is considered to be a knowledge agent. We call 

these other students followers. To empirically identify a student as a knowledge agent, 

the researchers need to point at her or his follower/s. A student can follow an idea by 

repeating it, elaborate it, or object to it. The follower’s action may occur immediately 

after the one of the knowledge agent but it may also take place later during the same 

discussion, or during a later discussion and/or in a different social setting in the class.  

The term knowledge shift relates to the spread of ideas in the mathematics classroom. 

A first shift takes place between the knowledge agent and the follower/s. However as 

other students take part in the discussion, more shifts may become evident. Note that 

we do not claim that "the same" piece of knowledge is duplicated in the minds of 

students in the discussion. Rather, each individual appropriates the ideas that are 

brought up in the collective. An idea can be shifted from a group to the whole class 

(uploading), within the whole class, within a group, from a group to another group, or 

from the whole class to a group (downloading).  
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Creative mathematical thinking 

There is increasing interest among researchers and policy makers concerning the role 

of creativity in mathematics education, and how it may be fostered (e.g., Singer, 

Ellerton, & Cai, Eds., 2013). When referring to creativity in school, it is usually 

considered as a relative phenomenon. In other words, students’ ideas will be considered 

creative on the basis of their contribution to the mathematical knowledge of the class 

or the group. As Leikin and Pitta-Pantazi wrote: "Creative ideas are those that are 

considered by the reference social group as new and meaningful in a particular field" 

(2013, p. 161).  

A few studies were conducted where whole class discussion served as data source in 

an attempt to evaluate the collective creativity of the group (e.g., Levenson, 2011). The 

current paper takes also a socio-cultural approach to analyse classroom episodes. In 

addition, we consider the distinction made by Lithner (2008) between imitative 

reasoning and creative mathematical reasoning. Imitative reasoning can manifest itself 

as either memorized or algorithmic. Lithner claims that creative mathematical 

reasoning satisfies three criteria:   

1. Novelty. A new (to the reasoner) reasoning sequence is created, or a forgotten one is re-

created. 2. Plausibility. There are arguments supporting the strategy choice and/or strategy 

implementation motivating why the conclusions are true or plausible. 3. Mathematical 

foundation. The arguments are anchored in intrinsic mathematical properties of the 

components involved in the reasoning (Lithner, 2008, p. 266). 

We link the notions of knowledge agent, follower and shift of knowledge in the 

mathematics classroom to students' creative reasoning. Specifically, we ask: What are 

the mutual relations between knowledge agents and their followers in the classroom 

and the creative ideas within mathematical knowledge shifts in the classroom? 

METHODOLOGY 

A 10-lesson learning unit in elementary probability was designed, implemented, 

observed and video-recorded in several eighth grade classes. The current study is based 

on data collected during Lesson 4 of the unit in one class. In this class, a camera was 

focused on whoever spoke during whole class discussions and on a specific group of 

three girls during group work. The learning unit consists of a sequence of activities that 

was purposefully designed to offer opportunities for constructing knowledge and 

establish practices.  

Two problems were at the heart of Lesson 4 (see Figures 1 & 2). 
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A Hanukkah dreidel (a four-sided top with one of the letters N, G, H, and P on each side) 

was spun 100 times. Mark approximately, on the chance bar, the chances of the following 

events: 

A. The dreidel will fall 100 times on the letter N. 

B. The dreidel will never fall on the letter N. 

C. The dreidel will fall on N between 80–90 times. 

D. The dreidel will fall on N between 20–30 times. 

Figure 1: The Dreidel Problem for the whole class discussion 

 

A coin was flipped 1000 times. Mark approximately, on the chance bar, the chances of the 

following events: 

A. The coin will land 1000 times with heads facing up. 

B. The coin will land with heads facing up between 450-550 times.  

C. The coin will land with heads facing up between 850- 950 times. 

D. The coin will fall 1000 times with tails facing up. 

Figure 2: The Coin Problem for groups' work 

 

The first step in our analysis consisted of an a-priori analysis of the two problems, to 

identify relevant knowledge elements for working on the two problems. The students 

were expected to use the following knowledge elements constructed during their work 

on previous tasks: 

Eu Uncertainty is inherent in probability problems. 

Ee There are expected probability values for each event. Hence, probability is 

amenable to mathematical reasoning. 

Em Results of multiple experiments accumulate to the expected probability value of 

an event. 

The following knowledge elements were expected to be constructed by the students 

during the work on the two problems:  

Ere The probability of a simple event is different from the probability of a composite 

event that consists of a repetition of the simple event. 

Ed The probability of a composite event that consists of repetitions of the same 

simple event decreases with each repetition. 

Era If a given range of values includes the expected value, then the probability of 

falling into this range is high. 
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Next we took the transcript of the lesson and parsed it to episodes. All episodes were 

further analyzed, and we choose a small number among them for presentation. In each 

episode we identified students who raised new ideas, and marked these students as 

potential knowledge agents. Later, we reanalyzed the transcript to identify whether 

elaborations, continuations, or objections to these ideas were raised by other students - 

evidence that a different student followed the idea raised by the potential knowledge 

agent. If indeed such a student was identified, we consider her as a follower. Hence the 

first student becomes a knowledge agent, and we conclude that the first shift of this 

idea (new knowledge) took place. We then analyzed the knowledge that was shifted 

through the creativity lens – we examined the students’ contributions to see if there is 

evidence for the creative reasoning criteria, and hence this contribution can be 

identified as creative.  

FINDINGS 

In the lesson the concept of chance bar (a segment between 0 and 1 on which one can 

mark the probability of an event) appeared. In the Dreidel Problem and the Coin 

Problem (Figures 1 and 2), the chance bar has mainly a qualitative meaning. The 

teacher opened the lesson with a whole class discussion in which she asked her students 

for examples to remind them of the meaning of a few relevant concepts: the chance 

bar, the meaning of this segment's edges: 0 for the probability of an impossible event, 

1 for the probability of a certain event. She asked a few students to mark the probability 

of various events on a chance bar on the blackboard. Then they started working on 

event A of the Dreidel Problem (Figure 1). The teacher asked Itamar to mark the 

probability of event A on the chance-bar. Itamar made a mark for A close to ¼, but 

then expressed a dilemma: "It is supposed to be impossible". 

Argumentation in class – Episode 1, event A -  Guy's idea of decrease 

68  Teacher What do you have to respond to that? (Repeats Itamar's argument that there 

are 4 letters but N is just one letter) Guy, how would you answer him? 

69  Guy There is, like, each time that you spin there is, like, 4 letters it can fall on, 

so each time it divides again by 4, the chance (Teacher: yes), and the chance 

decreases, it decreases each time that you spin that it will fall again on the 

same letter. 

70  Teacher So you are reinforcing him?! You are saying that the mark is correct?! 

71  Guy No, you have to lower it. 

72  Teacher Because…? 

73  Guy Because each time the probability is much smaller, when you spin twice 

and it falls on the same letter – the probability decreases. 
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In this episode Guy raised a new idea concerning the probability of event A as repeating 

event (69, 71 & 73). Guy’s idea is mathematically correct. In fact, Guy (69) expressed 

the knowledge elements Ere (The probability of a simple event is different from the 

probability of a repetition's composite event) and Ed (The probability of a composite 

event which consists of repetitions of the same simple event decreases with each 

repetition). These are innovative ideas in the framework of this classroom, and we 

consider them to be an example of creative reasoning. In this episode we still do not 

have evidence if Guy is a knowledge agent, because we do not (yet) have followers.   

After this episode, the class continued to discussed event A, and also events B and C.  

Because of space constrains we will omit these and proceed with the class to event D. 

Argumentation in class – Episode 2, event D 

128 Teacher Let's look at event D. D says, a top is spun 100 times, it will fall on N 

between 20 to 30 times. What do you think? We will spin the top 100 times; 

how many times will it fall on N, between 20 and 30 times. [To Eliana] 

Come, you haven't marked yet. [Eliana approaches the board and marks D 

close to the middle of the chance bar]. 

129  Teacher Adin, what is your opinion, what do you say? 

130  Adin I think that it is approximately 30%. 

131  Teacher That means that you agree with what Eliana suggests, explain why! 

132  Adin It has more of a chance… 

133 Teacher So if it has more of a chance you are marking it on the 30, more chance for 

what? 

134 Adin More of a chance than A, B and C. There is a higher chance that it will 

happen, it is closer to the middle. 

135 Teacher So if there is a higher chance you are marking it close to what? Does anyone 

feel different, want to support or oppose? ... What do you think, Guy? 

136 Guy I think it is much higher [Teacher asks how high?] - 80%, because in fact 

there are 4 sides to the top, right? And the chance that it will fall on one of 

them is 25% and you said that it will fall between 20 to 30, so… 

137  Yael That means that it is 25% not 80%. 

138 Guy Not that it will fall on it 25 times, on it… out of 100… 80% approximately 

90%. 

139 Teacher What do you say about what Guy says? 

140 Guy Just a second, can I continue? It is not how many times it fell, I can’t 

explain. 
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141 Omri What I am trying to see is if I understood Guy: what he is trying to say is 

that there is a 1 out of 4 chance, that means that it is a very high percentage 

that it will be between 20 to 30. 

142 Teacher Yes, that means you support Guy? 

143 Omri Yes! 

144 Teacher Can you explain again why you are supporting Guy? 

145 Omri  What he's saying is that every time you spin there is a 1 out of 4 chance that 

it will fall on the N, meaning, 25% now out of 100 is approximately the 

number of times it will fall on the N, because it is ¼ out of four. 

146 Teacher What do you think? You are nodding yes (turns to Rachel); who do you 

agree with? 

147 Rachel   With Guy. 

Note that events C & D are different from events A, & B, which discussed repetition 

of the same simple event. C & D address the probability of falling into a range of 

values; this probability is determined not only by the size of that range but by its 

position relative to the expected value. Given that two ranges are of equal size, the one 

whose centre is closer to the expected value has a higher probability. Era is a simplified 

version of this statement; in the a priori analysis, we decided that this simplified version 

can be expected to be developed by Grade 8 students.  

Adin (130, 132 & 134) tries to answer these questions, carried by an intuitive feeling 

that D has greater chances than events A, B & C. However, the probability he indicates 

is lower than the correct one and he can't suggest any explanation for the teacher's 

prompt question in 133. We do not consider Adins' sequence of claims as creative 

ideas, because although they are novel, they lack justifications. In turn 136 Guy 

suggests the chances are 80%, and also gives an appropriate explanation, by presenting 

a new claim followed by a justification, he expressed creative idea.  We may conclude 

that Guy expresses the knowledge element Era. Does he start a new shift of this 

creative idea in the classroom? Not immediately! In turn 137 Yael follows only the 

first part of Guy's idea. Guy (138 & 140), who would like to explain again his reasoning 

is lacking words. Only then Omri (141 & 145) repeats Guy's entire creative reasoning 

in a very clear way, and by this he makes Guy a knowledge agent and himself a 

follower. An additional creative way of reasoning starts its shift in the classroom.    

During the group work, which takes place just after this episode, we followed the group 

of Yael, Rachel and Noam. We bring only the beginning of the episode here. 

Group work – Episode 3, Evidence for downloading of creative knowledge 

The students discuss the Coin Problem (Figure 2).  
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174 Yael [Reads the problem]. There are only two sides to a coin. 

175 Rachel But still… 

176 Noam It is not like the top. 

177 Yael In my opinion it is a quarter! [Yael marks a quarter on the chance bar]. 

… 

182 Rachel If you are saying that it will be 1000 times tails, at the same time it has the 

same chance being heads. 

183 Yael It's like you throw a coin 10 times and it came out tails 5 times and 5 times 

heads, you can't say that with 1000 it will be 500 tails and 500 heads [Yael 

corrects the chance to lower, closer to 0]. 

… 

191 Yael The more throws you add your chances are decreasing. 

192 Rachel But if there are only 2 sides, and if it doesn’t fall on tails, and you yourself 

say that there isn't a high chance it will come out a 1000 times tails, so there 

are many times it will come out heads. It's actually what you are saying 

because a coin has two sides. 

193 Yael No, I am saying that there is a higher chance that it will come out tails rather 

than 100 times, 100 times N with the top…look, every time you throw one 

more throw, every time you throw more times the chances decreases. 

From turn 174 to 190 the three girls in the group raise different ideas. Some of these 

ideas do not include any reasoning to which we can assign any meaning (e.g. Yael in 

177). Others express the struggle with the situation (e.g. Rachel in 182 and Yael in 

183). However, Yael’s turn 191 (and again turns 207 and 218 – not shown here) 

demonstrates how ideas continue to shift, this time from the whole class discussion to 

the focus group: Quite surprisingly Yael, in turn 191, repeats the idea raised by Guy in 

a much earlier episode, Episode 1, turn 73: "The more throws you add, your chances 

are decreasing" and repeats it again in 193. We may conclude that in this episode Yael 

(1) downloads Guy's idea from the whole class to the group without mentioning his 

name, and (2) follows Guy and this provides somewhat delayed evidence that in 

Episode 1 Guy was a knowledge agent. In addition, Yael's contribution in 191 and 

more so in 193 might be considered as creative reasoning, in spite of being incomplete, 

since she adapts Guy's idea to a new mathematical situation.  

DISCUSSION 

Our general question in this paper is: What are the mutual relations between knowledge 

agents and their followers in the classroom and the creative ideas within mathematical 

knowledge shifts in the classroom? Our findings reveal shifts of creative knowledge in 
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an inquiry based mathematics classroom. We showed one shift that took place within 

the whole class discussion, and one shift that "crossed the lines" and represents a 

downloading of a creative idea from the whole class into a working group. The shifts 

of creative knowledge started with an individual student who raised a creative idea that 

was new to the learners and often served as a kind of milestone in the inquiry of the 

topic. In what way is the shifted knowledge creative? We claim that the analysis of the 

above sequence of episodes fits our intuitive definition of creativity mentioned at the 

beginning of this paper, and also appropriate to Lithners' (2008) three criteria.  

This study is, on the one hand, a continuation of our line of research on knowledge 

shifts between different classroom settings, research that is situated within the DCA 

and AiC frameworks and methodologies. On the other hand, this is our first attempt at 

expanding this line of research into creativity as it unfolds in the classroom.  
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CHANGE IN TEACHERS’ PRACTICES TOWARDS 

EXPLORATIVE INSTRUCTION  

Einat Heyd-Metzuyanim, Margaret Smith, Victoria Bill, Lauren B Resnick 

Technion – Israel Institute of Technology & University of Pittsburgh 

 

Our study tracks change in teachers’ practice in the context of a professional 

development (PD) program aimed at getting teachers to teach mathematics 

“exploratively”: using cognitively demanding tasks, exploration phase in groups and 

whole-classroom discussions. Participants included 7 middle school teachers in an 

urban district in eastern United States. Our data shows variability in uptake of the PD 

principles, with an improvement in Accountable Talk measures when lesson plans were 

highly scaffolded for the teachers. The scaffolding was done by clear lesson plans and 

instruction about Accountable Talk moves. We focus on one particular case to show 

the qualitative differences in students’ discussion over two lessons. 

What does it take to transform mathematics instruction in challenging, urban settings? 

Despite evidence that robust, conceptual learning is significantly enhanced by 

discourse-rich, highly cognitive-demanding instruction, students that most often need 

this instruction still sit in classrooms where teaching is of the "demonstrate and 

practice" kind. This gap is probably a result of the fact that the change needed is not 

merely one of textbooks or of instructional protocol, but rather a shift in classroom 

culture. Teachers play a crucial role in supporting this shift. Understanding what it 

takes to move teachers towards mathematics instruction that supports explorative 

participation is the goal of the present research.  

THEORETICAL BACKGROUND 

Explorative participation in mathematical learning is defined by participation for the 

sake of producing mathematical narratives to solve problems or to describe the world 

(Heyd-Metzuyanim, 2015; Sfard, 2008). Such is the participation teachers and 

educators wish to cultivate in mathematics classrooms. Yet often enough, students are 

found to participate ritually in mathematical learning.  Such ritual participation is 

geared at pleasing an authority, often the teacher, getting high grades, or simply being 

identified as a “good student” (Heyd-Metzuyanim & Graven, 2015).  

Instruction that supports explorative mathematical learning is characterized by several 

features. It provides tasks that are cognitively demanding and are open to different 

solutions and procedures (Smith & Stein, 2011), thus minimizing the propensity for 

ritual memorization of rules and procedures. Explorative Instruction is organized 

around group work which promotes students’ agency and authority (Boaler & Greeno, 

2000); and it fosters discussions characterized by Accountable Talk, in which students 

are held accountable to each other and to rigorous reasoning (Bill, Leer, Reams, & 

Resnick, 1992; Resnick, Michaels, & O’Connor, 2010), thus diminishing the ritual 

tendency to seek solely the approval of the teacher.  
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Over the past two decades, accumulating evidence has shown that this type of 

instruction promotes conceptual understanding, strengthens students’ mathematical 

identities, and even transfers to higher achievements in other subject domains (Resnick, 

2015; Schoenfeld, 2014). Yet despite these findings, mathematics classrooms, 

especially in urban settings, are still often dominated by instruction that promoted ritual 

participation (Jacobs et al., 2006).  

In recent years, certain professional development programs have reported success in 

changing teachers’ practice from ritual towards a more explorative-oriented instruction  

(e.g. Boston & Smith, 2009). Others have found such change difficult to accomplish, 

especially in urban settings  (e.g. Clarke, Chen, Stainton, & Katz, 2013).  Less attention 

has been given to the process by which teachers change their practice. In relation to 

this process, we apply Sfard’s (2008) socio-cultural lens, together with its distinction 

between ritual and explorative participation. This lens provides a dual view on change 

in teachers’ practice. On the first level, it points to the necessary changes in classroom 

discourse, including the opportunities given for students’ participation in this 

discourse. On the second level, it points to teachers’ appropriation of tools (such as 

tasks, classroom procedures and talk-moves during discussions) that enable the 

changes in classroom discourse. At both these levels, the distinction can be made 

between ritual and explorative participation. Just as students can participate ritually in 

mathematical learning, so can teachers participate ritually in practices promoted by a 

PD program. For instance, they can use a high-cognitively demanding task because it 

has been recommended (or even dictated) by the teacher educators, yet implement it in 

ways that are not consistent with the goals of the task, for instance by proceduralizing 

it (Henningsen & Stein, 1997). Thus, our aim in this study was to use the ritual-

explorative framework to investigate the process of teachers’ change towards 

discourse-rich, cognitively demanding instruction.  

The Intervention: A Professional Development and Coaching Program 

Our research was located in an urban district in eastern United States. The professional 

development (PD) was carried out under the organizational umbrella of the Institute 

For Learning (http://ifl.pitt.edu) and was led by Margaret Smith and Victoria Bill. In a 

nutshell, the PD program featured the following characteristics: 1. Teachers were 

trained in the “5 practices for orchestrating productive mathematics discussions” 

(Smith & Stein, 2011), which are practices for selecting high cognitive demand tasks 

and leading discussions about them in purposeful, planned ways. 2. Teachers were 

trained to use Accountable Talk moves to promote students’ reasoning, mathematical 

justifications and listening to each other (Resnick et al., 2010). 3. Training was situated 

in the actual life and work of teachers. (Resnick & Glennan, 2002). And 4. Teacher 

leaders were trained as coaches so that they can support teachers throughout the year 

and beyond the PD (West & Staub, 2003). In the context of this PD, the question of 

our research was: to what extent do teachers change their instructional practices in the 

classroom and if so, how can this change be characterized? 
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METHOD 

The study took advantage of an already-established PD program for 50 middle-school 

teachers and 11 teacher-leaders, which took place between August 2014 –  March 2015. 

In addition to 4 teacher training sessions there were 4 additional sessions for teacher 

leaders. Throughout the year, teachers were supported via individual coaching sessions 

by the teacher leaders and via a web-based platform provided by LearnZillion. 7 

teachers and 5 teacher leaders, a subset of the teachers and coaches participating in the 

PD, volunteered to participate in the study. They were recruited during the first PD 

session in August and then followed until May 2015. 

The data collection included four cycles, each containing: 1. Pre-lesson interview with 

the teacher, about his/her plan for the lesson; 2. Video recording of a lesson planned 

by the teachers according to the “5 Practices”. 3. Students’ worksheets produced during 

the lesson. 4. Post-lesson interview with the teacher, reflecting upon the lesson. 

In addition, all PD sessions were recorded, interviews were held with the coaches 

during and at the end of the PD program, and interviews were held with each of the 

teachers at the beginning and end of the year.  

Data Analysis. For examining change in teachers practice we used a three-tiered 

analysis design: 

Tier 1: Measuring the potential of the tasks used in the lessons was done with the 

Instructional Quality Assessment tool (IQA) (Boston & Smith, 2009), which provides 

a score of 1-4 on the cognitive demand of the task.  A score of 1 means the task only 

demands rote memorization, 2 means the task only invites the application of procedures 

explicitly taught, 3 is a high level task that is flawed in some way (e.g. doesn’t invite 

verbal explanations) and 4 is a high-level task which invites engagement with 

mathematical ideas and does not have only one, procedural way for solving it. 

Tier 2: To determine quantitate changes in teachers’ talk during whole-classroom 

discussions, we used the Accountable Talk (AT) coding scheme (Clarke et al., 2013). 

This scheme, which we slightly modified for our study’s purposes, codes classroom 

transcription on a line-by-line basis. Codes for teachers’ talk are: Press for Reasoning 

(“why?”, “how do you see that?”, Challenge (“But isn’t it…?”), Agree/Disagree (“Who 

agrees with what Daniel says?”), Add-On (“who wants to add on to what Jayla has 

said?”), Say More (“can you elaborate”?), Revoice (“What I’m hearing you say is…”, 

Explain other/Restate (“who wants to explain Tom’s idea in his own words”?). 

Tier 3: Excerpts that have been shown to differ significantly in quantitative measures 

of Accountable Talk (as produced by the Tier 2 analysis) were examined qualitatively 

using Sfard’s communicational framework (Sfard, 2008) to determine the 

opportunities offered for students’ participation. In particular, we looked for change in 

authority structure and in who initiates ideas, the place given for wrong answers, and 

opportunities for mathematical justification, all parts of explorative participation. 
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FINDINGS 

The coding revealed perceptible changes in teachers AT moves. Figure 1a shows the 

total count of teachers’ AT moves during whole classroom discussions. Each line 

stands for one teacher and traces the changes in total AT teacher moves during the 4 

lessons (notice the line graph is used to show trends, not to imply continuity). The 

graph shows AT peaked in most lessons (4 out of 7) during the 3rd lesson and then 

dropped down during the last follow-up (4th lesson).  

  

Figure 1a Figure 2b 

Regarding the cognitive level of the task, Cross-checking the AT counts with IQA 

“potential of the task” scores revealed a clear relationship (see fig 1b), meaning 

cognitive level of the task seemed to be a necessary but not sufficient condition for 

high levels of AT. Necessary, because when the level of the task was low (1 or 2), 

almost all lessons had less than 5 AT moves. Not sufficient, because even when the 

level was the highest (4), six lessons still remained with a low-to-moderate AT score 

(less than 10). This finding corroborates ealier studies (Henningsen & Stein, 1997) that 

pointed to the importance and the “ceiling effect” of the level of the task. The novelity 

here is that this was obtained by two different measures; one pretaining to the cognitive 

demand of the task as written, the other to measures of teacher talk during classroom 

discussion.  

The importance of the potential of the task was further enhanced by the findings 

showing a peak in AT talk during the 3rd lesson in 4 out of the 6 classrooms. During 

this lesson, all teachers participating in the PD were asked to implement the same task, 

namely the “Hexagon Task”, a task which invites multiple algebraic solutions for 

calculating the perimeter of a series of “trains” made up of adjacent hexagons. Before 

the lesson, teachers collectively prepared a “monitoring sheet” for anticipating 

students’ possible solutions, and were asked to write specific questions for pressing on 

students’ reasoning for the different solutions. Finally, they were introduced to 

Accountable Talk moves that can facilitate the lesson discussion. Though this lesson 

was successful and important for almost all teachers invovled, for 3 teachers (Mr. D, 

Ms. N and Mr. M), this close scaffolding of the lesson plan proved crucially important. 
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The amount of AT moves in their lessons rose considerably during these lessons (see 

Fig 1). In fact, their graphs show that they were unable to sustain this high level of AT 

in their 4th lesson. This finding suggests these teachers were in a ritual stage of 

implementing the PD practices, and that they may have needed to implement several 

more scaffolded lessons before they would be able to choose and implement tasks with 

high levels of AT discussion.   

Out of the whole group of 7 teachers, one pair of teachers – Ms. M & Ms. W., proved 

to change their instructional discourse most considerably. In what follows, we briefly 

present excerpts from their first and second lessons, where we found the change to be 

most perceptible both in AT and in qualitative terms. 

Ms. M & Ms. W co-taught an inclusive 6th grade classroom at one of the lowest-

achieving schools in the district. Ms. M was the principal teacher while Ms. W. was a 

special education teacher. Unlike similar teacher teams, they chose to plan lessons 

together and co-teach them instead of Ms. W working with the group of special needs 

students separately.  They had several years of experience working in such a way and 

the co-teaching seemed to be especially productive for their taking up of the PD 

principles. When they started with the “5 practices” at the beginning of the year, Ms. 

M had already had some knowledge and experience with talk moves that encourage 

discussion. On the first lesson, Ms. M and Ms. W presented the following problem:  

A publishing company is looking for new employees to type novels that will soon be 

published. The publishing company wants to find someone who can type at least 45 words 

per minute. Dominique discovered she can type at a constant rate of 704 words in 16 

minutes. Does Dominique type fast enough to qualify for the job? Explain why or why not. 

The task was graded by the IQA as a high-level (4) task because: a. at that point, 

students did not have well-practiced procedures for solving it. B. There were multiple 

solutions paths possible (division of 704:16; multiplication of 45*16; working with a 

“ratio table”, and more).  

During the “explore” phase of the lesson (when students were working in groups), 

some students were struggling with the task, others found some solutions. However, 

when starting the whole-classroom discussion part of the lesson, Ms. M & Ms. W chose 

to invite only the students that had correct solutions. These students presented their 

work rather hesitantly, and most of the explanation was “restated” by the teachers. For 

instance, when Justin presented his ratio table, the following interaction occurred: 

Ms. M A ratio table - okay, Justin - …- can you explain to me what your thinking was 

when you were creating your ratio table? 

Justin Uh, Dominique did 45 minutes in words, and you gotta see how many times she 

did it, and - and, um... 

Ms. W Wait, hold on right there. So I - she - the job says that you have to type at least 

45 words per minute, right? Okay, so you were looking to find out if Dominique 

could type fast enough. So, explain how this table works. 
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Justin In - in her [Indistinct] 60 seconds I - I did, I counted one all the way to 16, and 

[I meet] 720. 

T.W Oh. So you found out, [if I'm correct], that you need to be able to type 720 words 

in 16 minutes to get the job. 

This excerpt, though very short, is generally indicative of the authority structure during 

the 1st lesson. Though students were invited to present their solutions, the role of 

clarifying their mathematical thoughts remained solely on the shoulders of the teachers. 

No one held Justin accountable to explain his thinking more clearly, as could be seen 

in both Ms. W and Ms. M’s eagerness to restate his confused words into statements 

that could be understandable by the rest of the students. This was also the case with the 

next student who presented a solution path involving division, though that student was 

more articulate, and therefore needed less “restating”. In general, the teachers seemed 

to use student presentations in this lesson as a proxy for explaining the different 

solution paths in the ways they had wished them to be presented. Though students’ 

presentations of different solution paths are an important part of the “5 practices” plan, 

such an implementation keeps the lesson at a level of “show and tell” and does not 

offer students real agency and authority for grappling with mathematical ideas. This 

authority structure changed remarkably in the 2nd lesson. For the 2nd lesson, the students 

were given the following task:  

Christian, Cayden and Annabella were playing a card game over vacation. The object of 

the game is to finish with the most points. The scores at the end of the game are: Christian 

-1, Cayden -2, and Annabella -4. Who won the game? 

This time, the teachers chose first to bring up to the board a student who made an 

erroneous claim, but was able to convince his fellow group members that Annabella 

(with -4 points) was the one to win the game. When presenting his work on the board, 

he explained: “Even though 1 is closer to the 0, it's still bigger than ... it's still ... 4 is 

bigger than 1, even though it's farther away from the zero.” In reaction to this claim, a 

genuine discussion developed, in which several students questioned Roger’s claim. 

Dawson asked “wouldn't it be Christian, 'cause 1 is closer to the 0?” and Jayla, who 

had formerly been convinced by Roger’s arguments during the group discussion, had 

a sudden ‘a-ha moment’. Urged by the teachers to share it with the rest of the class, she 

explained, pointing to the -4 on the number-line at the board: “four- left is little, and 

right is greater than. So the 4 is smaller than the 1”. Pressed by the teachers for the 

meaning of “four”, she corrected herself to “it’s a negative four”. Throughout the whole 

discussion, students were visibly more engaged in the discussion than during the first 

lesson. They responded to each other’s suggestions, and built on previous knowledge. 

For instance, Andrew, explaining why he agreed with the idea that Christian (-1) was 

the winner, explained “Because, the other day we talked about - if you want to owe 

Ms. W - whether you wanted to owe Ms. W 4 dollars or 1 dollar? … And if you owe 

4 dollars, you're losing 4 dollars from yourself”. Thus the authority structure in this 

lesson was markedly different than the 1st lesson. Instead of students presenting their 

solutions merely for the sake of showcasing the teachers’ narratives (a modified 
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version of the “show and tell” routine), students were now having agency to err, 

disagree, argue with each other and change their minds about mathematical ideas. We 

hypothesize that this movement in discourse structure was at least partially a result of 

several trial-and-error attempts at introducing such tasks to the classroom. Ms. M & 

Ms. W, though starting already at a relatively high level of implementation of the “5 

practices” principles, still did not have enough experience during the first lesson to 

enable genuine student discussion. Their level of expertise continued to rise, seen in 

their AT in lessons 3 and 4, and most notably in a follow up lesson they recorded 

themselves, which included again more than 20 AT moves (in a whole-classroom 

discussion of about 15 minutes). 

SUMMARY 

In the present study, we sought to examine teachers’ change in instructional practices 

through two measures, IQA level of task and Accountable Talk during whole-

classroom discussions. AT results showed great variability in AT talk between teachers 

as well as variability in choosing cognitively demanding tasks. Yet overall, there 

seemed to be a positive change, especially when the lesson-plan was well scaffolded 

and where the task was sufficiently rich and appropriate for a variety of classrooms. 

Implications of this study are relevant both for researchers and for professional 

development practitioners. They support previous studies stating change in teachers’ 

instructional practice is a difficult and non-linear process that may take more than a 

year (Gresalfi & Cobb, 2011). They also show that a “try first based on scaffolded 

teacher materials and “design independently later” may be a productive approach for 

initiating teachers into such complex changes in their practice, as some complexities 

to this type of instruction cannot be mastered until some experience had been gained 

with it.  
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TAIWAN 

Feng-Jui Hsieh   Ting-Ying Wang   Chia-Jui Hsieh   Chi-Tai Chu 
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In TEDS-M, an international comparison study sponsored by the IEA, numerous 

MPCK items were considered as measuring MCK or as involving situations that would 

not occur in Taiwan. The present study was the first attempt in Taiwan to develop a 

conceptual framework and test items for assessing preservice secondary mathematics 

teachers’ mathematics teaching competence. The test items developed in this study 

were all based on situations that occurred in Taiwan classrooms and were obtained 

through observing mathematics instruction of 47 preservice mathematics teachers. A 

questionnaire composed of TEDS-M MPCK items and our items was developed, and 

these items were tested by 35 preservice teachers. The results showed that the 

preservice teachers performed much less well in Taiwan items than in TEDS-M items.  

INTRODUCTION 

Hill, Ball, and Schilling (2008) asserted that conceptualizing pedagogical content 

knowledge (PCK), a term that was coined by Shulman (1987), is still in the initial stage. 

Hsieh (2013) conducted a literature review and claimed that the development of 

conceptual frameworks for measuring mathematics PCK (MPCK) has been hindered 

because all of the MPCK models are either descriptions of certain ideas or are 

constructs that use broad and undetailed categories, and almost all of these models are 

based on Western views. 

Cross countries’ teachers’ MPCK have been compared through the Teacher Education 

and Development Study in Mathematics (TEDS-M), an international comparison study 

of preservice mathematics teachers sponsored by the International Association for the 

Evaluation of Educational Achievement (Tatto et al., 2008), and the Mathematics 

Teaching in the 21st Century study (MT21, Schmidt et al., 2011). The first author of 

the present study, as the national research coordinator for Taiwan in these two studies, 

discovered an eager to develop more conceptual frameworks and test items, especially 

for countries with non-Western educational cultures, for several reasons, including the 

following: knowledge types are not subdivided into specifically itemized topics in 

these studies, and the situations used in the MPCK items in the TEDS-M are too simple 

or do not accurately represent real mathematics classrooms at secondary schools in 

Taiwan. Hsieh (2009) proposed a theoretical framework for mathematics teaching 

competence (MTC). She used the term competence rather than knowledge to represent 

the skills, knowledge, qualifications, and capacity related to the cohesive unit of 

pedagogy and mathematics in the teaching context (Hsieh, 2013). Her model may 

include an “endless” list of competences. Thus, for a study with a limited scope, a 
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conceptual framework specific to the purpose of the study is required, for which 

Hsieh’s model may be referenced. The present study assumed that the main aim of 

teacher preparation is to cultivate teachers who can provide effective instruction. 

Developing measures for evaluating competence assemble to a practical teaching 

context should be a goal. Based on these premises, the present study had two goals: 

(1) To explore the conceptual framework and test items that are specific to the 

framework for measuring the real teaching situation-based MTC. 

(2) To investigate the MTC of Taiwan preservice secondary mathematics teachers 

by using conceptual frameworks that are integrated with the frameworks 

developed in (1). 

LITERATURE REVIEW 

Several projects and scholars have developed measures for assessing the knowledge 

component of teacher MTC, but different terms have been used, such as MPCK in the 

TEDS-M, mathematics pedagogy knowledge in the MT21, and mathematical 

knowledge for teaching (MKT) in the study by Hill, Schilling, and Ball (2004); others, 

such as Ernest (1989) from the United Kingdom and Krauss et al. (2008) from 

Germany, have used only general terms. Pepin (1999) reviewed and compared existing 

models for teaching in Anglo/American, French, and German settings and concluded 

that all the models are mere conceptual descriptions or include constructs that only list 

a few broad categories of knowledge. 

In the United States, Ball, Hill, and their colleagues, have delineated PCK in 

mathematics as being composed of knowledge of content and students (KCS), 

knowledge of content and teaching (KCT), and knowledge of content and curriculum 

(KCC; Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 2008). Hill, Ball, and 

Schilling (2008) further developed and tested the items specific to their model. KCS 

combines the knowledge of mathematics and that of students, including anticipating 

and interpreting student thinking and predicting what information is difficult or easy 

for students to comprehend. KCT combines the understanding of mathematics and that 

of pedagogy. Thus, KCT is pertinent to various aspects of teaching, such as teachers’ 

sequencing of content for instruction, choosing an introductory example for teaching a 

specific topic, and evaluating the advantages and disadvantages of using certain 

representations to teach a topic. KCC involves teachers’ comprehension of how topics 

are arranged and connected and the advantages, limitations of various curriculum 

design, etc. (Hill, Schilling, & Ball, 2004). 

The first author of the present study spent 4 years developing frameworks and 

indicators of MTC by conducting a series of studies in Taiwan (Hsieh, 2006, 2009, 

2012). Hsieh’s model of MTC frameworks is centered on three objects: elements, 

operations, and kernels. Hsieh (2013) identified 20 elements, such as mathematics 

representation, mathematics teaching method, mathematics thinking, etc. The elements 

would be engaged by three operations: recognizing and understanding, thinking and 

reasoning (TR), and conceptual executing (CE). The focus of the MTCs can be directed 
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through the three kernels of perspective: learning, teaching, and entity. For example, 

using the TR operation to engage the element mathematics language with the entity 

kernel as a focus, a MTC may be as follows: Being able to distinguish the features 

specific to mathematics language that are not inherent in daily life. 

METHODOLOGY 

Study Subjects 

One type of subject in this study was the objects: the conceptual framework for real 

teaching situation-based MTC and the test items specific to that framework. Another 

type of subject in this study was the preservice secondary mathematics teachers. The 

sample comprised 47 preservice mathematics teachers who were enrolled in teaching 

practice courses during their fourth year of undergraduate studies in the 2013 and 2014 

school years and 35 preservice teachers who were enrolled in school-based teaching 

practicums in 2014. 

Design and Instruments 

Hsieh’s theoretical frameworks of MTC (Hsieh, 2009, 2013) and Hill, Ball, and 

Schilling’s (2008) MKT model were used as a blueprint for developing the conceptual 

frameworks and test items for real teaching situation-based MTC. The research 

methods used were a literature review, observations of peer and field teaching, video 

analyses, and a focus group discussion, which involved seven experts, including 

researchers and secondary mathematics teachers with an average of 8.7 years of 

teaching experience. A total of 94 peer and field instructional sessions of the sample, 

who were enrolled in teaching practicum, were observed and videotaped. In this initial 

stage, approximately one-third of the videos were analyzed and used in this study. The 

experts identified typical and controversial teaching segments, discussed the MTC that 

is required to address the problems in the segments for developing frameworks, and 

used the segments to construct the test items, hereafter referred to as the Taiwan MTC 

items. The situations described in the items directly match situations that occurred 

during the observed mathematics instruction. 

To investigate preservice teacher MTC, both the TEDS-M MPCK and Taiwan MTC 

items were used form a questionnaire. Among the 29 TEDS-M MPCK items, only 16 

were regarded as measuring MPCK by the Taiwan team, all of which were included in 

the questionnaire. Thus, for Taiwan MTC items, 9 teaching segments were chosen to 

form 16 test items, among which 9 were open-ended and 7 were multiple-choice 

questions. The questionnaire was employed to survey 35 preservice teachers in 

teaching practicums. 

Data Analysis 

Scoring sessions were conducted to develop scoring rubrics through content and 

inductive analyses and to assign scores to responses to open-ended items. There were 

nine scorers: two professors, one Ph.D. student, and six secondary mathematics 
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teachers with master’s degrees. Each item was scored by two scorers; when their scores 

did not match, they consulted each other to reach a final decision. 

The quality of the test items was evaluated according to item difficulty (indexed with 

p) and item discrimination. An item was classified as easy if p≧0.7, moderate if 

0.7≧p≧0.3, and hard if p≦0.3 (Ahmananm & Glock, 1981). An item was classified as 

having excellent, good, acceptable, and poor item discriminations if D ≧ 0.4, 0.4 > D 

≧ 0.3, 0.3 > D ≧ 0.2, and D < 0.2, respectively (Ebel & Frisbie, 1991). The percent 

corrects for each element in the Taiwan MTC framework and the categories with 

combined elements in this framework (Table 1) were respectively calculated and 

compared using paired t tests. 

RESULTS 

Conceptual Framework and Measures of Real Teaching Situation-Based MTC  

The present study found that the inadequate teaching of Taiwan preservice teachers 

was manifested in various facets. The real teaching situation-based MTC frameworks 

and the developed Taiwan MTC items were classified into the aforementioned models, 

as displayed in Table 1. 

MKT 

model 

Hsieh’s model 

 Taiwan MTC 

items 

TEDS-M 

items 

 Operations 

Elements TR CE TR 

KCT 

Math teaching process (TP) 6 1  

Math teaching method (TD)  1  

Math teaching material (TM) 2 1 5 

Math language (L) 2 1  

Math representation (R) 4   

Math evaluation (E) 1  3 

KCS 

Math cognition and understanding (CU) 2 1  

Math competence (C) 4  1 

Math thinking (T) 1   

Math problem solving (PS) 1   

Math misconceptions (M) 1  4 

KCC Math curriculum (CR)   3 

 Total 16 16 

Table 1: Framework and measures of MTC integrated into the context of Taiwan 
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The TEDS-M items served as a reference for analyzing the Taiwan MTC items. 

Regarding item difficulty (Figure 1), most of the Taiwan MTC items (69%) were at the 

moderate level, but most of the TEDS-M items (75%) were at the easy level. Regarding 

item discrimination, more than half of the Taiwan MTC items (56%) were at excellent, 

good, or acceptable levels, but most of the TEDS-M items (69%) were below the 

acceptable level; this result was attributed to the high percent corrects (89%–100%) for 

these items (except two). For all the items that were determined to have poor 

discrimination, Kruskal–Wallis tests were conducted to compare the percent corrects 

among the three groups (the overall test scores ranged at top 25%, middle 50%, and 

bottom 25%). The results showed that all the items, except one TEDS-M item, did not 

yield significantly different percent corrects for the three groups. 

MTC of Taiwan Preservice Secondary Mathematics Teachers 

The average percent corrects of overall test, Taiwan MTC items, and TEDS-M items 

were 68%, 53%, and 83%, respectively. The average percent correct for the TEDS-M 

items in our sample did not significantly differ from that in the Taiwan sample tested 

in 2008 (82%), but significantly exceeded the international average (52%). 

 

Figure 1: Results of item analysis. The triangular marks indicate the Taiwan MTC 

items, and the rhombic marks indicate the TEDS-M items. 

To highlight real teaching situation-based MTC, only Taiwan MTC items are reported 

here. Moreover, the elements with more closed concepts were combined to form six 

categories to increase the number of items in each category, as displayed in Table 1. 

The findings (Figure 2) showed that our subjects performed the most highly in the 

categories of language and representation and student misconceptions, both with an 

average percent correct was 60%. The weakest category for the participants was 

managing teaching materials and homework; the average percent correct for this 

category was 36%. 
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Figure 2: Box plots of percent corrects of Taiwan MTC items. The numbers are the 

average precent corrects. See Table 1 for a description of the abbreviations. 

To illustrate the Taiwan MTC items and the performance of the participating preservice 

teachers, item MK7 is reported in this paper (Table 2). This item was used to 

investigate the preservice teachers’ competence in judging whether a problem is 

suitable for homework according to the classroom teaching context. The correct answer 

for this item was (4) because the students were recently taught the Pythagorean theorem; 

a continued ratio was not easy for the students to connect to this theorem without 

teacher instruction. Additionally, an item that requires calculation and deep thinking 

should not be provided in a true–false format. 

The fact that only 42.9% of the preservice teachers checked (4) illustrated that they did 

not master the ability to judge the suitability of the first homework assignment for a 

newly introduced concept. A total of 45.7% of the preservice teachers checked (2). 

These preservice teachers may have considered (2) as relating to understanding 

mathematics terminology rather than applying a2 + b2 = c2. However, (2) is appropriate 

in a true–false format for novice learners because Taiwan teachers often use the terms 

“leg” and “hypotenuse” in mathematics classes; understanding these terms is a basic 

requirement for further learning. 

Conclusion 

The Taiwan, MTC items are much more acceptable than the TEDS-M items regarding 

item difficulty and discrimination, and item development is still ongoing. It has been 

shown that Taiwan preservice secondary mathematics teachers ranked at the first place 

in TEDS-M MPCK items; our subjects, who had similar competence levels, did not 

perform highly on the Taiwan MTC items, which were developed according to real 

teaching contexts. Whether these preservice teachers can perform effectively in real 

Taiwan mathematics classes still merits investigation. The present study was the first 

to develop a conceptual framework for real teaching situation-based MTC and test 

items that are specific to this framework; this framework is still in the initial stage, and 

more analyses should be conducted to complete it. 
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MK7 Element: Mathematics evaluation Operation: TR 

Mr. Ho used an area exploration activity to introduce the Pythagorean theorem to his 

students. He then began to show the students how to solve Example 1, which is 

displayed in the following figure, by orally dictating the following four problem-

solving steps: 

(1) “The problem asks for the length of a side. Once one sees a question on the 

length of a side, one must suppose an unknown” 

(2) “Suppose the hypotenuse is c; the length of the 

three sides can be represented by (5,12, c).” 

(3) “According to the Pythagorean theorem, we can 

obtain 52 + 122 = c2.” 

(4) “52 plus 122 equals 169. Therefore, c equals ±13; 

thus, the length of the hypotenuse is 13.” 

After solving Example 1, Mr. Ho solved three more 

examples and asked the students to solve four similar exercises. In all the problems, 

a right triangle and the lengths of two of its sides were provided, and the students 

were asked to determine the length of the third side. After all the problems were 

solved, the bell rang for class dismissal. Mr. Ho then assigned homework for the 

students. One of the problems was a true-false item which is displayed as follows: 
 

For each of the following statements, mark “O” if it is correct and “X” if it is incorrect: 

(    ) (1)  26, 24, 10 can be the lengths of the three sides of a right triangle. 

(    ) (2)  The longest side of a right triangle is called a leg. 

(    ) (3) If the lengths of the two legs of a right triangle are 3 and 3, then the length of 

the hypotenuse is shorter than 3.  

(    ) (4)  The continued ratio of the three sides of an isosceles right triangle is 1:1:2. 

For the aforementioned true–false item, please check the item that you think is the 

most inappropriate for homework. 

□ (1)   □ (2)   □ (3)   □ (4) 

Percentages of respondents that checked the aforementioned items  

(1) 8.6%   (2) 45.7%   (3) 2.9%   (4) 42.9% 

  Table 2: Preservice teacher responses to item MK7 
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ENGINEERING STUDENTS’ USE OF INTUITION TO DECIDE ON 

THE VALIDITY OF MATHEMATICAL STATEMENTS  

Chih-Hsien Huang 

Ming Chi University of Technology 

 

This study explored engineering students’ approaches to mathematical statements with 

unknown truth values. Task-based interviews utilizing the think-aloud method revealed 

students’ reasoning processes in depth. The students in this study used three distinct 

types of intuitive reasoning to decide the truth value of mathematical statements. The 

results of this study indicate that if the constructed intuitive representation accurately 

represents task structures, such related interpretations will have a positive effect on 

reasoning, but if intuitive representations are distorted or deficient, they may lead to 

negative effects on reasoning. 

INTRODUCTION 

Many educators believe that students' desire for proof will be stimulated by 

opportunities to explore the truth value of mathematical statements. “A main challenge 

in teaching argumentation and proof is to motivate students to examine whether and 

why statements are true or false” (Durand-Guerrier et al., 2012, p. 362). Unfortunately, 

in the standard process of mathematics teaching, students are seldom required to 

construct proofs of unknown statements or to determine the truth value of mathematical 

statements (de Villiers, 2010; Durand-Guerrier et al., 2012). Because of the emphasis 

on syntactic reasoning and prove this statements in the undergraduate curriculum 

(Weber & Alock, 2004), little is known about how engineering students approach 

mathematical statements with unknown truth values. 

Intuition is particularly important for determining the truth value of a mathematical 

statement, because in the absence of proof, it provides possibilities that students can 

then test (Burton, 2004; Fischbein, 1994). This study attempts to explore the use of 

intuitive reasoning and what types of systematic errors may inhibit success in the 

proving process during the processes of deciding on the truth value of mathematical 

statements by engineering students in an interview setting. 

THEORETICAL FRAMEWORK 

The intuition proposed by Fischbein (1982) is "a representation, an explanation or an 

interpretation directly accepted by us as something natural, self-evident, intrinsically 

meaningful, like a simple, given fact" (p. 10). Intuition takes into consideration the 

target of reasoning in prior knowledge, experience, conviction, task characteristics, and 

the creation of task representation (Evans, 2010). Furthermore, "intuition is able to 

organize information, to synthesize previously acquired experiences . . . to guess, by 

extrapolation, beyond the facts at hand" (Fischbein, 1982, p. 12). Organizing 

information intuitively provides a preliminary understanding of mathematical tasks 



Huang 

2–410 PME40 – 2016 

which can provide a starting point and suggest a direction can be followed (Burton, 

2004; Fischbein, 1982, 1987). Intuitive representation in mathematics may be either a 

visual image or a perceptual representation of a concept or object (Tall, 2008). 

Fischbein (1987) pointed out intuition is neither a source nor a method; it is a form of 

cognition. Unlike analytical thinking, it is a holistic leap of cognition. In his view, 

experience plays a crucial role in developing intuition. On the basis of stable and 

consistent experience, a thinker may learn to rely upon intuition, and it is quite 

autonomous in special circumstances. It may also impact individual judgment. 

Fischbein's (1987) classification is designed to clarify the complicated areas of 

intuitive cognition into two main types. The first type is classified according to the 

roles played by intuition (affirmatory, conjectural, anticipatory, and conclusive), and 

the second type by the origin of intuition (primary and secondary). Fischbein (1999) 

distinguished between affirmatory intuitions, which he described as direct and self-

evident cognition without the need for checking or proving, and anticipatory intuitions, 

a sense of intrinsic conviction of one's ideas without any extrinsic encouragement. 

Intuition is based on mental representations of tasks constructed from the clues given 

in a task and from the information retrieved from memory (Glockner & Witteman, 

2010). This production of representations makes intuition significant in decision-

making (Fischbein, 1987). Due to the inconsistency and incorrectness of previous 

learning experiences, the intuitive representation of individuals may not be able to 

authentically present the situation at hand. The reliability of intuition often depends on 

how intuition develops through related experiences (Burton, 2004; Evans, 2010). Many 

intuitive errors can be categorized as accessibility errors (Glockner & Witteman, 2010). 

Accessibility is the ease with which certain knowledge is evoked or certain task features 

are perceived and is a crucial component of intuitive reasoning and decision-making. 

There are two main types of accessibility errors, namely (1) attribute substitution, and 

(2) knowledge and task feature relevance. 

Method  

This research has interpretive approaches (Cohen et al., 2000, p.22). Case study is used 

as a research strategy to make an in-depth examination of students’ intuitive reasoning 

in this study (ibid., p.181-182).The 23 first-year engineering students who participated 

in this study were enrolled at a university of technology and had learned the concepts 

of derivative and integration. This study explores the results of this process among 

engineering students rather than mathematicians, a choice more likely to produce 

values in teaching and "suggest learning trajectories that might be applicable for many 

other students as well" (Weber, 2009, p. 201).The mathematical task in this paper 

included two wrong statements regarding the concepts of differentiation and 

integration. For students, they were neither completely routine problems nor 

completely non-routine ones. The tasks refer to general objects and their properties and 

should be amenable to intuitive reaction. Participants completed the tasks in which they 
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were asked to determine the truth value of the given mathematical statements and prove 

or disprove the statement accordingly. 

Statement 1: If ∫ 𝑓(𝑥)𝑑𝑥 ≥  ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
, then𝑓(𝑥)  ≥  𝑔(𝑥), ∀𝑥 ∈ [𝑎, 𝑏]. 

Statement 2: If 𝑓(x) and 𝑔(𝑥) are all differentiable and f ′(𝑥) > 𝑔′(𝑥), ∀𝑥 ∈ (𝑎, 𝑏),   

then 𝑓(𝑥)  >  𝑔(𝑥), ∀𝑥 ∈ [𝑎, 𝑏],, ∀𝑥 ∈ (𝑎, 𝑏). 

The data generated from (a) transcripts from the participants' task-based interviews 

using the think-aloud method, (b) participants' written work on the tasks in the 

interviews, and (c) my field notes from the interviews were categorized and coded 

(Miles & Huberman, 1984). As the process evolved, continuous comparisons were 

made between each category and the emerging new categories. 

EMPIRICAL DATA AND ANALYSIS 

The students used three distinct types of intuitive reasoning to decide the truth value of 

mathematical statements. 

Logic-based Intuitive Reasoning 

Logic-based intuition was the first type of intuitive reasoning used by students. It 

occurred only when determining the truth value of Statement 1. Three students made a 

logical mistake when determining the truth value of Statement 1. They intuitively 

believed that the mathematical statement and its converse are equivalent. For instance, 

the converse that S4 made in judging Statement 1 was correct, and hence Statement 1 

is correct. 

S4: This statement is apparently correct. Comparing f(x) = x2 + 1 and g(x)= x2, 

the value of f(x) is greater. The integral of f(x) from 0 to 1 is 4/3, while the 

integral of g(x) from 0 to 1 is 1/3. The integral of f(x) is also greater. 

I: Did you find out f(x) and g(x) in the first place and that f(x) is greater than 

g(x), and then figured out that the integral of f(x) is greater than that of g(x). 

S4: That's right! The greater the function is, the greater the integral will be. 

I: Statement 1 says the integral is relatively greater, does this mean that the 

function is greater, too? The example that you provided just now indicates 

that the greater the function is, the greater the integral will be. 

S4: Indeed. They work in the same way. If the function becomes greater, the 

integral will be greater as well, and vice versa. 

According to Fischbein (1987), we can confirm that the equivalence of a statement and 

its converse (error) is a kind of intuition. Is it true that these three students did not 

possess formal logical schemas? Apparently this was not the case. 

I: If f(x) is differentiable, will f(x) be continuous? 

S4: Yes, f(x) is differentiable, so f(x) is continuous. 

I: If f(x) is continuous, will f(x) be differentiable? 
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S4: If f(x) is continuous, I am not sure whether f(x) is differentiable. It is certain 

that if f(x) is discontinuous, then it could not be differentiated. 

Apparently, a sufficient condition for determining the truth value of mathematics does 

not rely on whether the logical rules are well understood, and the student did not 

correctly apply logical rules to other scenarios. This supports the argument by 

Fischbein (1999), that intuitions are not absolute, they depend on the context. We can 

interpret these phenomena by describing two convictions (Fischbein, 1982) that may 

coexist: The first one is intuitive conviction, which means that a statement and its 

converse are equivalent; the second one is non-intuitive conviction, which means a 

statement and its contrapositive are equivalent. These three students like S4 could write 

out the statement that contrapositive is equivalence when elaborating on the 

relationship between differentiation and continuity. However, when determining the 

truth value of mathematical statement 1, more of their intuitive conviction came into 

play; they also confirmed that a statement and its converse are equivalent. In 

Fischbein's words, the first one was an intuitive intrinsic type of conviction, and the 

second one was a formal extrinsic type of conviction. In our view, the latter seems to 

have no impact on the former, which continued to be an obstacle. 

Property-based Intuitive Reasoning 

The second type of intuitive reasoning students used was property-based intuition. 

Students in this subgroup drew quick conclusions about the truth value of mathematical 

statements by using diagrams to represent "prototypical" examples of such 

mathematical statements. When confronting Statement 1, the property that students 

immediately thought of was area, and subsequently they directly used region areas 

surrounded by functional graphs to decide on the truth value of mathematical 

statements. Generally speaking, the students produced two different types of visual 

representation according to their intuitive representations. The first type of visual 

representation is one in which the diagram of functions f and g is located on two non-

intersecting curves above the x axis. However, such diagrams may lead to wrong 

conclusions. Taking S6 as an example: 

S6: This statement is apparently correct. This is because whenever I see 

integral, area comes to my mind. The integral value represents area, so the 

greater the integral value is, the greater the area will be, just like this figure 

I drew (Figure 1a). If the graph of f is here, then the graph of g will have to 

be drawn in this way, so that area will be bigger, and the function value of 

f will also be greater than that of g. Therefore, this statement is correct. 

I: The functional graphs you have drawn are all above the x axis. If they are 

all under the x axis, or if one of them is above the x axis while the other is 

below the x axis, will the results be the same? 

S6:                They will be the same, as long as the graph of f is above that of g. 
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The second type of visual representation the students have developed is reflected in the 

graph of functions f and g, the two non-intersecting curves of which are under the x 

axis, but such graphs are unable to refute Statement 1. Take S9 as an example: 

This statement is certainly wrong. Seeing this problem, I think of area. The integral value 

means the area, not necessary to calculate the integral. Just as this graph (Figure 1b) I drew. 

From it, I found that the area surrounded by f, x = a, x = b and x axis is larger than that 

surrounded by g. The integral value of f is greater than that of g, but the functional value 

of f is less than that of g. 

                                       

(1a)                                          (1b)                                           (1c) 

Figure 1: Students’ visual representation of Statement 1 and Statement 2 

When confronting Statement 2, students employing graphical representation would 

immediately think of the slope of tangent under the geometric property, and then 

perform intuitive reasoning by replacing the size of derivatives with that of slope of 

tangent. Take S2 as an example: 

This statement is certainly correct, because derivative is just the slope of tangent. The 

derivative of f(x) is greater than that of g(x), and hence f(x)'s slope of tangent is greater 

than that of g(x). The simplest graph of slope is a straight line, just like this figure (Figure 

1c). The slope of f(x) is greater than that of g(x), and f(x) is greater than g(x). This 

statement is correct. 

S2 only noticed that the graph above the x axis meets the conditions of Statement 2, 

but failed to notice that g(x) is greater than f(x) when x is less than 0. S2 had difficulties 

interpreting the dynamic relationship of the basic concepts of calculus. He relied on 

two kinds of interconnected schema (i.e., interval and property), but he was unable to 

integrate them.  

As suggested by Fischbein (1987), these visualizations play an important role in 

anticipatory solutions, as they are established on the basis of how they can be 

constructed and manipulated. As a result, they are conducive to converting 

mathematical statements into graphs. 

Students' intuitive strategies can be categorized as accessibility errors (Glockner & 

Witteman, 2010). It is irrelevant that relevance errors take place in intellectual and 

narrative features. When students develop an intuitive representation of mathematical 

statements, the interval restrictions of narrative features that are less accessible are 

often neglected. This error is crucial for determining the truth value of two 

mathematical statements, because interval restriction is the key to determining if the 

two mathematical statements are wrong. Students intuitively believe that interval 
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restrictions are irrelevant to determine the truth value of mathematical statements, so 

reach a wrong solution. 

Similarity-based Intuitive Reasoning 

The third type of intuitive reasoning used by students is Similarity-based Intuition. 

Students determined the truth value of a mathematical statement by replacing the 

relevant attributes of mathematical statements with similar attributes. Only one student 

used this type of intuitive reasoning when confronting Statement 1, whereas 12 

students used it when confronting Statement 2. This supports the argument of Fischbein 

(1999) that intuitions are not absolute, they depend on the context. S7 thought 

Statement 1 is correct, because "I am sure this statement is correct as I met similar 

problems that the integral of f is bigger than or equal to that of g; by transposing and 

then subtracting, the integral of f will be larger than or equal to zero after subtracting 

that of g; so 'f minus g' is greater than or equal to zero, the proof is completed." She 

quoted the proving process of a theorem, "If f and g are integrable on [a, b] and if 

𝑓(𝑥)  ≥  𝑔(𝑥), ∀𝑥 ∈ [𝑎, 𝑏], then the definite integral of f from a to b is greater than or 

equal to the definite integral of g from a to b," which was proven by her teacher in 

class. The twelve students quoted similar attributes of various sizes of numbers, 

replacing the sizes of functions, to determine whether Statement 2 is correct. Take S10 

as an example. 

S10: When I see that the derivative of f is greater than that of g, I think of the 

size of numbers, e.g., 2 is greater than 1. Therefore, f(x) = 2x and g(x) = x, 

and 2x is greater than x. 

I: Why is 2x greater than x? 

S10: 2x is the double of x, so it is greater. For example, when x is equal to 1, 2 

is greater than 1. 

Their errors in intuitive strategies, called attribute substitution (Glockner & Witteman, 

2010), occur when a more readily accessible attribute is substituted in a task for a less 

readily accessible attribute. For instance, similarity is a highly accessible attribute, 

because it is processed intuitively. S7 intuitively noticed the similarity between 

Statement 1 and mathematical theorems he knew. S10 noticed the similarity in the size 

of coefficient and function. Both of them replaced less accessible attributes with more 

accessible attributes. Similar to the students using property-based intuition, most of the 

students who noticed the similarity in the sizes of coefficient and function made 

relevance errors (Evans, 2010) and neglected interval restrictions. 

The interviewer subsequently asked students to draw graphs of algebraic function, in 

order to examine whether they could overcome intuitive relevance errors after 

visualizing mathematical statements. Results show that eight students overcame this 

error after drawing function graphs. Taking S10 as an example: 

S10: These are the graphs of f(x) and g(x), and f(x) is greater than g(x)...... No, 

that's not right. The graph below (referring to the graph below x axis) is 

something I didn't take notice of just now. From the graph, it can be seen 
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that when x is negative, f(x) is beneath g(x), indicating that f(x) is less than 

g(x), so..... I am wrong. In fact, this statement is wrong. Although the 

derivative of f(x) (2) is greater than that of g(x) (1), it is not certain that 

within the interval including 0, e.g., [−1,1] or [−2,3], f(x) may be greater 

than g(x). How come I did not notice it just now? I noticed it only after 

drawing. 

Therefore, graphical representation allowed S10 to understand the necessity of interval 

restrictions and overcome relevance errors. As for these students, the concreteness of 

visual images is an important factor for creating self-evidence and immediacy. A visual 

image not only organizes data at hand under a meaningful structure, but is also an 

important factor guiding the analytical development of a solution; visual representation 

serves as an important anticipatory device. The rest of the four students like S2 had 

difficulties in interpreting the dynamic relationship of the basic concepts of calculus. 

They relied on two types of interconnected schema (i.e., interval and property), but 

they were unable to integrate. Intuition exerts a coercive influence on the reasoning 

methods of individuals. An intuition subjectively generated by an individual is often a 

representation or interpretation that is absolute, while other representations or 

interpretations are excluded and unacceptable. 

CONCLUDING REMARKS 

The students in this study used three distinct types of intuitive reasoning to decide the 

truth value of mathematical statements. Each type of intuition provided students with 

a different starting point when approaching the tasks. With regard to logic-based 

intuition, we can conclude that for some students the equivalence between a statement 

and the converse is an intuition. With Fischbein (1982), we can remark that the formal 

extrinsic type of conviction does not seem to have any effects on the intuitive intrinsic 

type of conviction, which can remain an obstacle. When using property-based intuition, 

the students based their decisions on vague ideas about properties in the task and 

always used graphical representations. Moreover, judging the truth value of 

mathematical statements and generating counterexamples by visualization is mediated 

by the intuition of the generality of the conclusions obtained by means of it. Similarity-

based intuition was used when students identified a statement that was similar enough 

to the given statement to suggest the truth value of the given statement, but always used 

symbolic representations. Students' intuitive decision on the truth value of Statement 2 

supports Buchbinder and Zaslavsky’s (2009) claim, is deeply rooted in the clues in the 

mathematical statement. From students' performance in this study, if the constructed 

intuitive representation accurately represents task structures, such related 

interpretations will have a positive effect on tasks, but if intuitive representations are 

distorted or deficient, they may lead to negative effects on reasoning. 
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The effects of two sets of interventions involving the same instructional approach, time 

and estimation strategies, but with different levels of self-checking of estimates, on 

fourth-grade children’s immediate and retention achievements of solving problems 

involving length and area estimation were examined. The results displayed the 

treatment effects exhibited on children’s retention performance rather than on the 

immediate achievement. Based on the interview data, the interviewees indicated that 

they extended their personal repertoire of benchmarks and learned to select an 

appropriate measure unit for improving the accuracy of their estimates.  

INTRODUCTION 

Using strategies for efficiently making good measurement estimates such as the guess-

and-check procedure and reference point (benchmark) strategies are frequently 

recommended for the instruction on measurement estimation (Joram, Subrahmanyam, 

& Gelman, 1998). Moreover, examining the appropriateness of one’s estimations is an 

important skill of measurement estimation (Bright, 1976), particularly, for length and 

area (Hildreth, 1983). Self-checking, which is an essential process of self-monitoring, 

may improve awareness of one’s own cognitive process (Montague, 2007). Therefore, 

in the domain of measurement estimation, self-checking estimate activities aid children 

in taking control of their estimation actions, which in turn benefits the development of 

their measurement sense.  

As for instruction on measurement estimation, Jones and Rowsey (1990), Joram, 

Gabriele, Bertheau, Gelman, and Subrahmanyam (2005) and Jones, Taylor, and 

Broadwell (2009) all examined the immediate effects estimation strategy instruction 

on students’ measurement estimation abilities. Although Jones and Rowsey provided 

a brief discussion of seventh-grade students’ retention of the estimation skill 

applications, what the delayed effects of instructional interventions involving 

estimation strategies are on elementary school children’s retention of measurement 

estimation skills remains unclear. In the meantime, self-checking estimate activities 

which are recommended for nurturing children’s estimation ability (Bright, 1976; 

Hildreth, 1983), have not been highlighted in the previous studies mentioned above. It 

is therefore worth exploring the role that self-checking plays in children’s measurement 

estimation. 

The use of interviews to collect learners’ verbal explanations of their uses of strategies 

learned from interventions is a suitable method for understanding children’s 
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mathematical conceptions and problem-solving strategies (Huang & Witz, 2011). Thus, 

to understand what skills children obtained from the interventions for solving 

measurement estimation problems, interviews were included in this study.   

The present study aims at examining the effects of the interventions that contained 

concepts of measurement estimation and strategies, but with different levels of self-

checking of estimates, on promoting fourth-grade children’s performance of 

measurement estimation, particularly, in the domain of length and area. The research 

questions included in the study are presented as follows:. 

1. What are the effects of the interventions on children’s immediate achievements 

of measurement estimation?  

2. What are the effects of the interventions on children’s retention achievements of 

measurement estimation?  

3. What are estimation skills that the children obtained from the interventions? 

THEORETICAL FRAMEWORK 

Mathematical thinking involved in measurement estimation 

In mathematics, to make a measurement estimate means to determine a quantitative 

value of an object without using a measuring tool such as length or area (Bright, 1976). 

To mentally measure a to-be-measured (TBE) object, the process of estimation 

includes using a known unit of measure as a mental reference unit, repeatedly 

comparing the unit with the object mentally, and then computing a quantitative answer 

(Jones, Taylor, & Broadwell, 2009).  

For making length and area estimations, proportional reasoning (Jones et al., 2009) and 

visual-spatial thinking (Joram et al., 1998) are demanded. Both of those types of 

thinking are complex cognitive skills, which may develop with increase in age and 

learning experience (Tourniaire & Pulos, 1985). 

Strategies and self-checking of estimates in measurement estimation 

Guess-and-check and the use of body parts as reference points are commonly 

recommended in length measurement activities in Taiwan (Huang, 2015). The guess-

and-check procedure includes guessing (or thinking of) the size of a unit for estimating 

and judging the number of units needed to replicate the size of the TBE object, and 

then checking the answer by actually measuring the object. In contrast, using reference 

points for performing estimation involves imaging and comparing an object for which 

the measurement is known with the TBE object (Joram et al., 2005).  

In addition to the uses of estimation strategies, Bright (1976) suggested that self-

checking after estimating provides “an experiential background from which errors in 

measuring can be explained and accurate measuring skills can be isolated, studied, and 

improved” (p. 94). The process of self-checking, which is highly related to awareness 

of one’s own cognitive processes, may help the development of one’s feelings of 

knowing and retrospective judgment of performance (Montague, 2007). As Bright 
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(1976) suggested, self-checking of one’s estimates assists in discriminating the 

measuring action from the abstract concept of measurement.  

Previous studies on the interventions involving various estimation strategies 

In the field of length, mass, and capacity measurements, Jones and Rowsey (1990) 

compared a treatment group that received measurement instruction involving the 

estimation strategy (guess-and-check procedure) with a control group that focused only 

on direct measurements without any estimation strategies. Jones and Rowsey found no 

differences in the immediate achievements between the two groups, but did find 

treatment effects exhibited in the students’ retention performance of metric 

applications, which was assessed five weeks after the post-test. This implies that the 

development of estimation competence takes some time.  

Moreover, Joram et al. (2005) indicated that a group which received treatment 

involving the use of the benchmark strategy performed better on length estimation than 

another group which received treatment involving the guess-and-check procedure 

without using the benchmark strategy. Jones et al. (2009) reported that students gained 

improvement in estimating linear size and scale after receiving the treatment involving 

the use of body rulers. 

In sum, providing instruction that includes either the guess-and-check procedure or the 

use of benchmark strategy for measurement estimation may improve children’s 

immediate achievements. However, what the delayed effects of treatments involving 

estimation strategies on children’s retention of estimation skills are uncertain. 

METHODOLOGY  

A quasi-experimental design was used to examine the effects of two interventions 

involving the same instructional approach (guided instruction approach), teaching time, 

and estimation strategies, but different levels of self-checking of estimates, on 

children’s immediate and retention achievements. Moreover, one-on-one interviews 

were conducted to understand what estimation skills the children learned from the 

interventions provided. 

Participants 

In the study, three fourth-grade classes (N = 88) were recruited from a public 

elementary school in Taipei, Taiwan. One of the three participating classes, which was 

the instructor’s homeroom class, served as the control group (n = 20). The two sets of 

interventions were randomly assigned to the remaining two classes. One of these two 

classes (n = 35) received the experimental curriculum stressing estimation with self-

checking of estimates post estimation, while the other class (n = 33) was provided with 

the experimental curriculum involving estimation with a low level of self-checking of 

estimates post estimation. All of the participants had learned length and area 

measurements with some exposure to length estimation mainly provided by their 

mathematics textbooks in previous lessons. 
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Instruments 

Two sets of experimental curricula and three assessments (i.e., the pre-test, post-test, 

and retention test) were administered in the study. The series of measurement 

estimation tasks developed for the experimental curricula and the questions designed 

for the assessments were based on the theoretical framework (e.g., Bright, 1976; Jones 

et al., 2009; Joram et al., 1998) and the previous studies on measurement estimation 

(Huang, 2015, in press). One set of the experimental curricula highlighted the uses of 

estimation strategies with self-checking of estimates post estimation (abbreviated as 

the ESC curriculum hereafter), whereas the other involved the use of estimation 

strategies that are the same as those in the ESC but with fewer occasions for the self-

checking of estimates (abbreviated as the EST curriculum hereafter) than those 

provided in the ESC curriculum. Each intervention was carried out for 5 class-periods. 

Most of the TBE objects described in the tasks of the curricula or assessment questions 

were visually presented to the participants using real objects or figures. 

During the experimental period, the control group studied a textbook unit which 

involved computations with three-to-four-digit numbers and computational estimation 

excluding measurement estimation, based on the regular schedule.  

The sets of experimental curricula consisted of four main components as follows. (A1) 

The meaning of estimation and how estimation plays a role in measurement and 

estimating length and area measures. (A2) The use of metric-system units (e.g., cm, m, 

and cm2) and the language of estimation such as “about,” “close to,” and “between.” 

(A3) The uses of the estimation strategies for solving estimation problems: (a) the 

guess-and-check procedure and (b) the benchmark strategy. Moreover, Jones and 

Taylor (2009) suggested that the physical act of moving around in a field may help 

students learn about size and scale. In the study, in addition to using a known unit to 

mentally perform unit iterations, recalling the known size of a unit and performing unit 

iteration through gestures or physical movements were allowed in each intervention. 

(A4) Self-checking of estimates. To recognize the difference between estimates and 

the actual measurement of a TBE object, self-checking of estimates has been suggested 

as a feasible approach for checking the errors in measuring (Bright, 1976). The specific 

features of each intervention were indicated are indicated as follows.  

The ESC intervention. The treatment implemented 16 tasks underlying components A1 

to A4 with an emphasis on A4. Each task was provided with a table that required 

recordings of the estimate and the actual measurement of the TBE object and the 

difference between the two measures. Children who received the ESC curriculum were 

requested to fill the estimation results in the tables and check the reasonableness of the 

estimate during post-estimation discussion conducted by the instructor. In the study, 

the tables served to assist self-checking of the estimates.  

The EST intervention. The treatment implemented 21 tasks underlying components A1 

to A4 but with a minor emphasis on A4. About one-third of the estimation tasks were 

provided with tables for self-checking of estimates as given in the ESC curriculum. 
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The process of discussion for checking the estimates post-estimation administered in 

the EST group was similar to that in the ESC group. 

In the study, the pre-test, the post-test, and the retention test were equivalent 

assessments. The pre-test was used to examine the children’s ability to measurement 

estimation prior to the interventions, whereas the post-test, which was undertaken 

within a week after completing the interventions, was used to assess their immediate 

achievements. To measure the children’s retention of the applications of their 

estimation skills, the retention test was conducted about five weeks after the post-test.  

Each test consisted of 13 questions. There were four or six questions that required 

estimating large TBE objects. For example, for the length questions, a TBE object with 

length exceeding 100 cm was defined as “large.” For the area questions, a TBE object 

with area larger than 1,000 cm2 was regarded as “large.” The number of items that 

demanded a large estimated quantity included in the pre-test, post-test, and retention 

test was six, four, and six, respectively.   

In order to understand the children’s learning gains from the interventions, one-on-one 

interviews were conducted after the interventions. The interviews were audio taped and 

transcribed for analysis. The present paper focuses on the block of questions regarding 

learning gains, that is, “Did you change your initial methods used for estimating length 

to make your estimates more reasonable after the instruction? Why? If you did not 

change your initial methods, why not?” The analysis of the interview data was based 

on a pair of interviewees recruited from each experimental group based on the scores 

of the post-test. Each pair included one high-achiever and one low-achiever.  

Scoring   

In the study, a “reasonable” estimate was defined as being within ± 10% of the actual 

value, as described by Huang (in press), and was scored 2 points. An “acceptable” 

estimate was defined as being between +10% and +25% or -10% and -25% of the actual 

value and was scored 1 point. If an estimate was greater than +25% or lower than -25% 

of the actual value, then a score of “0” was allocated.  

The level of difficulty of estimating a large quantity is greater than that of estimating a 

small quantity (Huang, in press). Hence, a weighted method was used for scoring the 

questions with large TBE objects in each test. That is, when scoring the questions 

requiring a large estimated quantity, weighted scores were given to a reasonable 

estimate (4-points) and an acceptable estimate (2-points), respectively. The maximum 

total scores of the pre-test, post-test, and retention test were 42 points, 38 points, and  

42 points, respectively.  

RESULTS  

The comparisons of the immediate achievements and retention performance 

The means of the total scores and standard deviations of the pre-test, post-test, retention 

test, and the adjusted means of the post-test and retention test by group are displayed 

in Table 1. As can be seen in Table 1, the total scores of the pre-test obtained by the 
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three groups from high to low are the control group, the EST group, and the ESC group.  

To compare the effectiveness of the two interventions (ESC vs. EST) on the children’s 

immediate achievements and retention performance of measurement estimation, 

ANCOVAs with the pre-test score as the covariate were executed.  

 Table 1. The mean scores of the pre-test, post-test, and retention test by group 

 n 

Pre-test Post-test Retention test 

M (SD) M (SD) 
Adjusted 

M 
M (SD) 

Adjusted 

M 

ESC group 35 16.46 (6.25) 17.80 (5.59)      18.35 26.34 (5.27)      26.79 

EST group 33 17.61 (5.92) 18.36 (4.67)      18.43 26.15 (4.91)      26.21 

Control group 20 19.25 (5.87) 18.95 (6.55)      18.34 21.20 (6.75)      20.69 

 

For the immediate achievements, the results of the ANCOVAs with the pre-test score 

as covariate showed no significant difference among the three groups, F (2, 84) = .001, 

p = .99. The results indicated that the two experimental groups did not obtain higher 

immediate achievements on the post-test compared to the control group. Moreover, the 

post-test scores of the ESC group were close to those of the EST group.   

For the retention performance, the results of the ANCOVAs with the pre-test score as 

covariate showed a significant main effect of treatment, F (2, 84) = 9.65, p < .01, partial 

ƞ2 = .19. The results of pair comparisons among the three groups revealed that both the 

ESC and the EST groups outperformed the control group. However, no differences 

were found between the ESC group and EST group.  

The interviewees’ learning gains obtained from the interventions 

Based on the interview data, the four interviewees expressed that they extended their 

personal repertoire of benchmarks and learned to select an appropriate measure unit 

for improving the accuracy of their estimates. For example, the low-achieving 

interviewee from the EST group expressed that at first she just used the length of her 

outstretched thumb and index finger as her only one reference point for estimating, but 

then learned to use multiple body parts as measures depending on the size of the TBE 

objects, for example, the width of a finger, an outstretched arm and two open arms. 

Similarly, the high-achieving interviewee from the EST group expressed that “I did not 

know how to estimate but used a ruler at the beginning of the classes. Afterwards, I learned the use 

of body parts.” The body parts that she indicated included the length of a little finger and 

the length of her outstretched thumb and index finger, body length, foot-steps, and open 

arms.  

Moreover, the four interviewees did in fact change their initial estimation methods after 

the interventions. For example, the low-achieving interviewee from the ESC group 

indicated the changes of using an eraser as a measure unit initially to using the length 
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of his outstretched thumb and index finger with unit iteration afterwards. The high-

achieving interviewee from the ESC group indicated that,  

“Prior to the classes and in the first session, I estimated visually because I did not know 

what else can be used…  I then learned to use known items as references. For example, 

this item, I knew it though I estimated it visually before…I used my eyes all the time but 

it is possible to produce a big margin of error… Now I frequently use the ways I know. 

For example, I used the length of my palm and the width of a finger to measure when 

measuring a short rope before. Now I attempt to watch the objects around me and (select 

one item to) compare (the object). ”  

In sum, the common consideration of the interviewees for changing their original 

methods was to improve the accuracy of the estimate made by the individual. 

Furthermore, three of the four interviewees addressed changing methods to improve 

their efficiency (i.e. obtaining a reasonable estimate fast). 

DISCUSSION AND IMPLICATION  

The findings of the study exhibited that the two experimental groups which received 

the interventions involving estimation strategies for length and area estimations with 

different levels of self-checking did not outperform the control group, which received 

the textbook unit involving computational estimation, on the immediate achievements. 

In contrast, the two experimental groups obtained higher scores than the control group 

on the retention test. These findings imply that both the interventions showed delayed 

effects rather than immediate effects on improving the children’s performance of 

measurement estimation. The results seem to echo the findings of Jones and Rowsey 

(1990).   

Kwon, Lawson, Chung, and Kim (2000) suggested that developing complex cognitive 

skills such as reasoning requires prefrontal maturity and instructional activity that 

provides sufficient experiences of physical manipulation with verbal interaction. 

Children may need a period of time for elaborating and transforming learning 

experience to improve their reasoning skills (Tourniare & Pulos, 1985). Thus, in this 

study, the two sets of interventions involving physical manipulations and verbal 

discussion for solving estimation problems showed delayed effects on the children’s 

retention performance rather than immediate effects on their performance of the post-

test.    

It was found that there were no differences in the immediate and retention 

achievements of the ESC and the EST groups which received the same estimation 

strategies (guess-and-check and benchmark strategies) but with different levels of self-

checking. In this study, the same instruction time was given to each group, but the EST 

group engaged in a lower level of self-checking activities than the ESC group did. In 

contrast, the EST group undertook a little more estimation practice through solving the 

estimation tasks (21 tasks) than the ESC group (16 tasks) did. Although self-checking 

estimate activities may help enhance children’s estimation skills, such skills may also 

be taught and retained through more practice (Joram et al., 1998). Thus, the ESC group 
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and EST group performed equivalently on both tests after instruction. Such gains can 

also be supported by the interview data.  

Interestingly, the interviewees from the two experimental groups constructed new 

reference points from the given interventions, they tended to address the use of body 

parts as measure units and performed the unit repeated strategy through gestures rather 

than making mental estimations. To help children make mental estimations, the factors 

that may lead to their preference for the unit repeated strategy with physical movement 

may need further studies.      
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