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Abstract 

The medial prefrontal cortex (mPFC) mediates a variety of complex cognitive functions 

via its vast and diverse connections with cortical and subcortical structures. Understanding 

the patterns of synaptic connectivity that comprise the mPFC local network is crucial for 

deciphering how this circuit processes information and relays it to downstream structures. 

To elucidate the synaptic organization of the mPFC, we developed a high-throughput 

optogenetic method for mapping large-scale functional synaptic connectivity. We show 

that mPFC neurons that project to the basolateral amygdala display unique spatial patterns 

of local-circuit synaptic connectivity within the mPFC, which distinguish them from the 

general mPFC cell population. Moreover, the intrinsic properties of the postsynaptic mPFC 

cell and anatomical position of both cells jointly account for ~7.5% of the variation in 

probability of connection between mPFC neurons, with anatomical distance and laminar 

position explaining most of this fraction in variation. Our findings demonstrate a functional 

segregation of mPFC excitatory neuron subnetworks, and reveal the factors determining 

connectivity in the mPFC. 
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Introduction 

The computational power of the neocortex is thought to be derived from the complexity 

and plasticity of connectivity patterns in cortical neuronal networks. Understanding these 

connections and their dynamics is therefore crucial to deciphering the principles of 

neuronal computation. Electrophysiological recordings from pairs or groups of neurons 

have revealed many of the factors which determine the probabilities and properties of 

cortical synaptic connections. The majority of this work has focused on primary sensory 

and motor cortical regions, aiming to delineate the streams of information that support 

sensory processing and motor control1–3. These studies have established that the pattern of 

synaptic connectivity among pairs of cortical pyramidal neurons is not homogeneous4 but 

rather depends, among other factors, on the pre- and postsynaptic cell types5,6, their 

intracortical laminar source of input5,7–9, and the long-range projection target of each of the 

neurons10–17. Moreover, the anatomical axodendritic overlap alone cannot account for the 

probability of connection11,18–20, indicating specific selection of synaptic partners. These 

findings suggest that cortical regions consist of interdigitated functional subnetworks of 

preferentially interconnected neurons2. In the primary visual cortex, pyramidal neurons 

which respond to similar visual stimuli are more likely to be synaptically connected18,21. 

Remarkably, connections between neurons sharing similar stimulus tuning are also the 

strongest22, emphasizing the preferential connectivity between cells that share a common 

role in the circuit. 

Despite this body of knowledge, little is known about the synaptic organization of 

associative cortical structures such as the medial prefrontal cortex (mPFC)23. In line with 

the complex morphology of its pyramidal cells24, the mPFC connects with numerous 

cortical and subcortical regions25,26 and plays a role in multiple cognitive functions and 

complex behaviors23,27–38. We set out to test whether similar principles of functional-

subnetwork organization can be applied to the mPFC. We focused on the population of 

mPFC cells extending long-range axonal projections to the basolateral amygdala (mPFC-

BLA cells) in order to test our hypothesis that their known involvement in associative fear 

learning33,39–43 is associated with a unique connectivity pattern that distinguishes them from 

other neuron populations in the mPFC, similar to principles found in the primary visual 

cortex11,18,21,22. For this purpose, we developed an optogenetic approach for large-scale, 
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unbiased mapping of functional synaptic connections at the level of specific neuron 

populations. Our approach is based on co-expression of the channelrhodopsin stCoChR44 

with the calcium indicator GCaMP6s45 in a targeted cell population. Under this 

configuration, we conducted whole-cell patch-clamp recordings from single neurons in the 

expressing region while semi-automatically detecting and stimulating other cells in their 

vicinity in three dimensions, in order to evaluate the input from each stimulated cell onto 

the recorded postsynaptic cell. We utilized the overlapping excitation spectra of stCoChR 

and GCaMP6s to perform simultaneous optogenetic stimulation and calcium recording 

using a single femtosecond laser source. This allows validation of spiking in stimulated 

cells, thereby providing information on the spatial selectivity of synaptic connections as 

well as accurate measures of connection probabilities. With this method, we mapped the 

functional connections among mPFC-BLA cells and among randomly labeled mPFC cells 

as reference. Our results reveal the detailed layer and projection target selectivity in the 

connectivity patterns of mPFC pyramidal cells. We further used the comprehensive 

connectivity maps to quantify the contribution of various anatomical and physiological 

features to the probability of connection between mPFC neurons. 

 

Results 

An optogenetic strategy for simultaneous two-photon stimulation and calcium recording 

of neurons in three dimensions using a single laser source. 

To achieve reliable, single-cell-targeted optogenetic stimulation of pyramidal cells in the 

mPFC, we used the recently published soma-targeted channelrhodopsin variant stCoChR, 

which allows highly efficient two-photon stimulation44. Since both stCoChR and 

GCaMP6s can be efficiently excited at λ = 940 nm, their co-expression allows 

simultaneous photostimulation and fluorescence-based activity readout using one 

wavelength. We co-expressed stCoChR and GCaMP6s in mPFC-BLA cells by injecting a 

Cre-expressing rAAV2-retro vector46 into the BLA, and Cre-dependent AAV vectors 

expressing stCoChR and GCaMP6s into the mPFC (Figure 1A,B). To calibrate the local 

and retrograde coverage of the rAAV2-retro-Cre vector, we injected different titers and 

volumes of this vector into the BLA of the reporter mouse line Ai947 (Figure S1A,B). 
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In order to validate spiking in response to two-photon stimulation, we performed cell-

attached recordings from mPFC-BLA cells expressing stCoChR and GCaMP6s in acute 

slices while scanning spiral patterns over the soma (Figure 1C). Two-photon spiral patterns 

were scanned at 10 Hz (spiral duration: 7.1 ms), and GCaMP6s fluorescence was recorded 

only during scan periods (Figure 1D). We found that spiral patterns scanned at 10 Hz 

evoked reliable spiking as well as an increase in GCaMP6s fluorescence over the spiral 

train (Figure 1D–F). Application of TTX (1 µM) blocked spiking and abolished the 

increase in GCaMP6s fluorescence (Figure 1D–H), indicating that GCaMP6s fluorescence 

can be used as a proxy for spiking activity in these conditions. Furthermore, reducing the 

duration of each spiral from 7.1 ms to 3.6 ms such that some spirals fail to evoke a spike, 

we found that GCaMP6s fluorescence increased only following successful spiral 

stimulations (Figure S2A). Since the rise and decay kinetics of GCaMP6s fluorescence are 

slower than the duration of a spiral and the inter-spiral interval, respectively (Figure 1I and 

ref. 45), the relative GCaMP6s fluorescence during each spiral in a train reports spiking in 

response to previous spirals in the train. We therefore used the raw GCaMP6s fluorescence 

slope to determine whether spiking occurred during a spiral train (Figure 1G, bottom; 

Figure 1H, right; and Figure S2B; see Methods). 

We next surveyed the space of two-photon scan parameters in order to optimize the 

GCaMP6s-based spike readout and the time precision of spiking. We performed cell-

attached recordings from mPFC-BLA cells expressing stCoChR and GCaMP6s and 

measured spiking and relative GCaMP6s fluorescence while scanning trains of 10 spirals 

over each cell (Figure 1I and Figure S2C). We modified the diameter of the spirals, their 

duration (by concatenating multiple spirals), their frequency in the train, and the light 

power on the cell. GCaMP6s ΔF/F0 was higher for smaller spirals (10 and 15 µm; Figure 

1I), mainly due to increased contribution from off-cell noise in larger spirals (20 µm; see 

Methods). Spike latency and jitter were lower for larger spirals (Figure S2C), leading us to 

proceed with 15 µm spirals for our experiments. We chose a spiral duration of 7.2 ms (a 

two-spiral sequence), stimulation frequency of 10 Hz, and light power of 10 mW on cell, 

since these parameters provided high GCaMP6s ΔF/F0 and high spike probability while 

maintaining low spike latency, jitter and number of spikes per spiral (Figure 1I and Figure 

S2C). Under these conditions, the spatial specificity for evoking spikes, measured as the 
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full width at half maximum (FWHM), was 55.9 ± 16.4 µm in the axial (z) axis and 24.2 ± 

7.2 µm in the radial (xy) plane (Figure S3A,B; see also Figure S3C–E and Supplementary 

Data and Discussion for the relationship between cell density and spatial specificity). The 

spatial specificity curve for GCaMP6s ΔF/F0 tended to be narrower than that of spiking 

(Figure S3A,B; FWHM for ΔF/F0: 23.9 ± 4.1 µm in z and 11.3 ± 1.8 µm in xy). 

We next applied our method for combined stimulation and imaging to a population of cells 

in three dimensions (Figure 1J). For this, we used an algorithm for automated detection of 

fluorescently labeled cell bodies in image-stack volumes48. Detection was based on 

mScarlet49 and nuclear dTomato50 co-expressed with stCoChR and GCaMP6s, 

respectively. Running the algorithm on n = 5 scanned volumes from two mice (volume size 

~420×420×300 µm3; n = 209.2 ± 8.9 detected cells per volume) and observing the 

detections, we found that 2.5 ± 0.4% of detections were false and 5.4 ± 0.5% were double 

(i.e., coordinates point to the center of two adjacent cells; Figure S1C). We tested the 

algorithm on additional n = 4 scanned volumes from four mice, where we manually 

registered the coordinates of all the cells in the volume, independent of and blind to the 

automated detection (n = 316.5 ± 45.8 manually registered cells per volume). The 

automated detection was biased to cells with higher fluorescence intensities compared with 

our manual cell registration (Figure S1D). In contrast, the distribution of cell positions 

along the depth of the slice was similar for automatically and manually detected cells 

(Figure S1E). Finally, we transformed the coordinates of the automatically detected cells 

into standardized brain-reference anatomical positions using anatomical landmarks (Figure 

1J; see Methods). 

Analysis of functional connectivity. 

In order to measure functional synaptic connectivity among mPFC-BLA cells, we co-

expressed stCoChR and GCaMP6s in mPFC-BLA cells (Figure 1A). In each experiment, 

we obtained a whole-cell recording from one mPFC-BLA cell in the acute slice. We then 

acquired a series of Z-sections covering the entire depth of the slice (λ = 1040 nm), detected 

the labeled mPFC-BLA cells within the scanned volume (Figure 1J), and stimulated them 

sequentially as described above while recording both their GCaMP6s fluorescence and the 

synaptic currents in the recorded postsynaptic cell. Cells whose GCaMP6s fluorescence 
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indicated they did not spike in response to stimulation (see Methods) were excluded from 

analysis.  

In order to determine which of the stimulated cells is connected to the recorded cell, we 

first used a template deconvolution-based method51 with a synaptic event waveform 

kernel52 to identify all excitatory postsynaptic currents (EPSCs) recorded during the period 

of sequential stimulation (see Methods). We clustered the detected EPSCs (both 

spontaneous and evoked) based on temporal proximity and fit EPSC clusters with a sum 

of functions describing the waveform of a synaptic current, such that compound events 

could be decomposed to determine the kinetics of each of the underlying events (Figure 

2A). 

We next developed a model to determine whether each stimulated cell is connected to the 

corresponding recorded cell. We used the rate and the stimulation-aligned time distribution 

of all EPSCs (Figure 2B and Table 5) to predict the EPSC distribution around the 

stimulation of each cell. We then fitted two models for each stimulated cell, one model that 

assumes no synaptic connection (whereby EPSCs distribute uniformly) and another model 

that assumes connection (whereby the EPSC distribution contains a bump following the 

stimulation; see Methods). To decide whether the stimulated cell is connected to the 

recorded cell, we used information criteria (see Methods) to determine which of the two 

models fits the EPSC distribution more accurately (Figure 2D). To validate and quantify 

the performance of our model, we examined the recording traces of all cells to identify 

synaptic connections manually. The area under the receiver operating characteristic curve 

was 0.996 (Figure 2E,F). To maximize accuracy, we relied both on the manual observation 

and on the model to identify synaptic connections, such that candidate connections which 

could not be resolved by manual observation (n = 44 stimulated cells) were settled by the 

model. 

Overall, we generated 92 functional input maps by recording from 92 mPFC cells and 

stimulating a total of 10817 cells (Tables 1 and 2). Out of the stimulated cells in each input 

map, 78.6 ± 1.6% responded with spiking based on GCaMP6s data, giving a total of 8780 

responsive cells. Of the maps, 75 were in the ventral mPFC (infralimbic and dorsal 

peduncular cortices) and 17 were in the dorsal mPFC (prelimbic and cingulate cortices). 
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An example of one functional input map of an mPFC-BLA cell in the ventral mPFC is 

shown in Figure 2G.  

Functional synaptic connectivity in mPFC cell populations. 

We used our technique to analyze the properties of functional synaptic connections among 

mPFC-BLA cells in the ventral mPFC (Figure 3A, left). As reference, we measured 

synaptic output from mPFC-BLA cells onto non-labeled cells, which likely do not extend 

projections to the BLA (given efficient retrograde labeling by rAAV2-retro46 and assuming 

that <10% of mPFC neurons project to the BLA53), by recording from non-labeled mPFC 

pyramidal cells while exciting mPFC-BLA cells in their environment (mPFC-BLA cells to 

non-mPFC-BLA cells; Figure 3A, middle). To measure the general, non-specific 

connectivity in the ventral mPFC, we sparsely expressed stCoChR and GCaMP6s in the 

mPFC (see Methods) and recorded from a randomly selected pyramidal cell while scanning 

over labeled cells in its environment (random mPFC cells to random mPFC cells; Figure 

3A, right). Figure 3B shows the overlay of all maps obtained for each of the three types of 

synaptic connection, aligned to the position of the corresponding recorded cell. 

We first asked whether the three types of connection differ in their probabilities and 

strengths. To avoid a bias between maps in the distances between presynaptic cells and the 

recorded cell, we restricted the measurement of overall probability for synaptic connection 

to a 300 µm distance from the recorded cell. Overall connection probability and connection 

strength (which was not restricted in distance) did not differ between the three map types 

(mPFC-BLA cells to mPFC-BLA cells, mPFC-BLA cells to non-mPFC-BLA cells, and 

random mPFC cells; Figure S5A–C, top and middle). To quantify the compound input that 

each recorded cell receives, we treated non-connected cells as having zero amplitude and 

calculated the average connection strength from all cells in the map (weighted input). 

Weighted input (restricted to 300 µm distance) did not differ between the three map types 

as well (Figure S5A–C, bottom). Moreover, we did not find correlation between the 

connection probability and mean connection strength across recorded cells (Figure 3C). 

We next divided the connectivity maps to layers, based on the laminar position of the 

recorded cell (Figure S4). We found that the weighted output from mPFC-BLA cells onto 

other mPFC-BLA cells was stronger in deeper layers than in superficial ones, whereas their 

output onto non-mPFC-BLA cells had an opposite laminar pattern (Figure 3D and Figure 
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S5D; layer 3 was not included in the analysis since random mPFC cells in L3 were not 

sampled due to the low density of labeled cells in this layer. See Figure S4). To further 

examine the directionality of excitatory input in each network, we measured the weighted 

input that each cell receives from a given anatomical direction. We found that mPFC-BLA 

cells tend to receive stronger input from other mPFC-BLA cells located medially to them 

(Figure 3E), yielding a superficial-to-deep flow of excitatory input. In contrast, we did not 

find such a pattern in output from mPFC-BLA cells onto non-mPFC-BLA cells or among 

random mPFC cells. Weighted input along the dorsoventral axis showed no particular 

directionality (Figure 3F). All connection types showed similar dependency of connectivity 

on distance (Figure S5B,C). Finally, synapses of all types and in all layers displayed similar 

short-term depression upon a presynaptic stimulation train (Figure S6; see Discussion). 

Determinants of functional synaptic connectivity in the mPFC. 

We next asked which parameters (of the ones recorded in our experiments) contribute to 

the variation in probability of connection between pairs of cells in the entire mPFC. For 

this purpose, in addition to the information about the anatomical locations of stimulated 

and recorded cells, we analyzed the intrinsic electrophysiological properties of each 

recorded cell, for the three classes of mPFC neuron (Figure 4A). We found that in the 

ventral mPFC, mPFC-BLA cells had higher output gain compared with non-mPFC-BLA 

cells (Figure 4B,D). mPFC-BLA cells showed stronger firing-rate adaptation compared 

with non-mPFC-BLA and with random mPFC cells (Figure 4C,E). Other 

electrophysiological properties did not differ between cell classes (Figure S7A and Table 

3; see Figure S7B for pairwise correlations between electrophysiological properties and 

connectivity features). Counterintuitively, cells receiving strong weighted input tended to 

have lower input resistance (Figure 4F), perhaps as a homeostatic mechanism to restrain 

excitation. When examining the relationship between anatomical position and intrinsic 

properties, we found that sag ratio and spike threshold were both strongly correlated with 

cells’ mediolateral (laminar) position, for all cell classes (Figure S7C). Spike half-width 

was also correlated with mediolateral position, but not in the mPFC-BLA cell class (Figure 

S7C). 

To identify the factors that play a role in determining synaptic connectivity, we treated the 

data as pairs of stimulated (candidate presynaptic) and recorded (postsynaptic) cells, and 
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included cell pairs in both the ventral and the dorsal mPFC (n = 7752 cell pairs; see 

Methods). We used a logistic regression model to predict whether each pair is connected 

(Figure 4G). As features, we used the electrophysiological properties of the recorded cell, 

the anatomical positions of both cells, their distance, the connection type (as in Figure 3A), 

and the anteroposterior position of the recorded slice (n = 20 features overall). In order to 

remove multicollinearity between features (Figure S7B), we performed zero-phase 

components analysis (ZCA) whitening (see Methods). To find the features which non-

redundantly affect connectivity, we imposed sparsity on the regression model by using 

Horseshoe priors54,55 (Figure 4H and Figure S8). We found that among all features, the 

distance between cells (Euclidean and lateral), the anatomical position of the presynaptic 

cell (mediolateral and dorsoventral), its bursting behavior, and the connection type had 

coefficients that center away from zero, suggesting that they contribute most to the 

variation in connectivity. The postsynaptic cell’s input resistance and the anteroposterior 

position of the slice also contributed to connectivity. In order to quantify the contribution 

of all features to variation in connectivity, we used the unregularized regression model 

(Figure 4G) and calculated the cross-entropy between predicted and true connectivity as a 

measure for the information that the features in the model have on connection probability 

(Figure 4I; see Methods). We found that using the selected features mentioned above (n = 

8 features) to predict connectivity reduced the cross-entropy by 7.5% compared with using 

shuffled connections (from 0.1161 to 0.1074). Using all features (n = 20) resulted in worse 

performance compared with using only the selected features, as demonstrated by higher 

cross-entropy and larger difference between the cross-validated and non-cross-validated 

models (Figure 4I). This finding supports the central role of these selected anatomical and 

physiological features in explaining variation in connectivity. When removing individual 

features from the model that uses selected features, we found that the largest effect on 

cross-entropy arises when removing Euclidean distance and the mediolateral position of 

the presynaptic cell (Figure 4I). These results suggest that anatomical position, especially 

along the mediolateral axis, and intersomatic distance dominate connectivity, while all 

features in our dataset can jointly account for ~7.5% of overall variation in connection 

probability. 
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Discussion 

Current knowledge about functional synaptic connectivity in cortical networks is derived 

largely from experiments using paired-patch recordings, where two or more cells are 

simultaneously recorded in the whole-cell patch-clamp configuration, and spikes are 

triggered in one cell while the others are recorded for synaptic responses6,9,21,23,56. These 

recordings are typically limited to a confined intersomatic distance and to cells located 

within ~60 µm of the surface of the slice. While this method provides high-precision 

information about the functional properties of the probed synapses, it suffers from very low 

yield, making it extremely difficult to detect sparse connections and to avoid bias in 

distances or positions of probed connections. In contrast, several recent studies have 

implemented recording from one cell while optogenetically stimulating a selection of cells 

in its vicinity. This approach allows unbiased mapping of synaptic connections in the 

network, thereby facilitating detection of sparse connections, but is restricted to measuring 

only unidirectional (in-degree) connectivity57–59. Here we presented a large-scale 

implementation of such an approach, combining it with calcium-based readout of activity 

using a single laser source. We utilized the overlapping excitation spectra of stCoChR and 

GCaMP6s to perform simultaneous stimulation and calcium recording. Using GCaMP6s 

recording to monitor the activity of each stimulated cell allowed us to accurately 

reconstruct the spatial architecture of synaptic connections by assigning an anatomical 

position to each connected and non-connected cell. Our semi-automated approach for cell 

detection and sequential stimulation and calcium recording allowed us to probe the input 

from 117.6 ± 5.0 cells (of which 95.4 ± 5.1 are confirmed to respond to stimulation via the 

GCaMP6s signal) onto each recorded cell in three dimensions. The use of a single light 

path makes this approach accessible and widely applicable using almost any commercially 

available two-photon microscope system. 

Among all the available anatomical and cellular features in our data, several seem to 

dominate the probability of synaptic connection between pyramidal cells in the mPFC 

(Figure 4G–I and Figure S8). The most prominent features are intersomatic distance and 

the laminar depth of the presynaptic cell. Connection probability tends to decrease with 

intersomatic distance, and cell pairs whose presynaptic cell is in deeper layers also tend to 

have a lower probability of connection (Figure 4H,I). Notably, laminar depth of the 
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recorded (postsynaptic) cell is not correlated with the cell’s input properties (connection 

probability and amplitude, p ≥ 0.12). Other features contributing to reduction in connection 

probability include the spike-bursting behavior of the postsynaptic cell (and, to a lesser 

extent, its input resistance), its dorsoventral anatomical position (whereby ventral position 

is associated with reduction in connection probability), and the anteroposterior position of 

both cells (whereby anterior position is weakly associated with reduction in connection 

probability). A connection type of mPFC-BLA cell to mPFC-BLA cell is positively 

associated with connection probability (Figure 4H and Figure S8). Notably, the negative 

correlation of input resistance with connectivity (Figure 4F) indicates that it is not an 

artefact of the detectability of synaptic connections (as higher resistance would facilitate 

detection of weaker EPSCs). Our regression analysis and cross-entropy calculations 

(Figure 4I) suggest that all features taken together can account for ~7.5% of variation in 

connectivity. This finding suggests that the probability of pyramidal cells in the mPFC to 

form a synaptic connection is determined mostly by features that were not available in our 

experimental paradigm. These could be the morphological features of the pre- and 

postsynaptic cells, the electrophysiological properties of the presynaptic cell (which are 

not accessible using optogenetic connectivity mapping)6,12,14,23, the activity patterns of the 

cells18,21, their gene-expression profile60,61, cell lineage61–64 (and lineage of projection-

target cells65), age and experience of the animal66–68, or sheer randomness. 

A previous transsynaptic tracing study has revealed that only ~20% of the synaptic inputs 

onto mPFC L5 cells are from local mPFC cells, whereas in L5 cells of the barrel cortex, 

input from local cells amounts to ~80% of the total synaptic input69. This property could 

translate to sparser local connectivity in the mPFC compared with other cortical regions. 

Accordingly, the overall synaptic connection rates in our dataset (Figure S5A–C, top) were 

low compared with connection rates found in sensory cortex6,9. This sparse connectivity is 

consistent with recent findings regarding connections among pyramidal neurons in the 

mPFC found using paired intracellular recording70. However, an earlier study found similar 

connectivity rates in the mPFC and the visual cortex of the ferret23. These differences could 

be attributed to experimental factors of our system, such as the temporal jitter in 

presynaptic spiking and in EPSC latencies, and the limitation in the number of stimulations 
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per presynaptic cell, set by the limited recording duration and the large overall number of 

putative connections to be probed. 

Synapses among pyramidal neurons in the ferret mPFC have been shown to be diverse in 

their kinetic properties, with some showing strong short-term facilitation23 compared with 

the largely depressing synapses among sensory pyramidal neurons in the mouse71 (although 

this may differ in vivo72,73). Although our connectivity-mapping protocol does not allow 

precise control over the number of presynaptic spikes per stimulation (Figure S2C), we 

used it to estimate the short-term plasticity in probed synapses. We found no differences in 

short-term plasticity between cell types and layers (Figure S6), suggesting either that this 

specific type of facilitating synaptic connection does not exist in the mouse mPFC, or that 

it was not represented in our dataset. 

Pyramidal cells in the mPFC are highly heterogeneous in their long-range input and output 

profiles25,26. Given their common projections to the BLA and their shared involvement in 

associative fear learning33,39–43, we hypothesized that mPFC-BLA cells would show unique 

connectivity patterns within the mPFC local circuit. Our data indicated that, at the 

population level, mPFC-BLA cells seem to be similar in their connectivity pattern to the 

general mPFC pyramidal cell population (Figure S5A–C). However, close examination of 

the spatial distribution of connections revealed that mPFC-BLA cells are selective in their 

synaptic output along the laminar axis (Figure 3D,E). The mPFC and the BLA have been 

shown to share preferentially strong reciprocal synaptic connections53,74,75. Axonal 

projections from the BLA onto the mPFC, which carry information about learned 

associations76, densely innervate L2 (and also L5)74,77, where they directly excite L2/3 

pyramidal cells53 and interneurons74. Our findings suggest a stream of information, 

whereby input from the BLA strongly excites back-projecting mPFC-BLA cells in 

superficial layers53, from which information diverges to two main routes. One route is 

directed laterally onto other mPFC-BLA cells in deeper layers (Figure 3D,E) to form a 

recurrent excitatory loop with the BLA. The other route spreads locally within the 

superficial layers onto other mPFC pyramidal cell populations (Figure 3D). One possible 

target population for this route is nucleus accumbens (NAc)-projecting neurons, which are 

abundant in superficial mPFC layers25,74 (as well as pyramidal neurons dually projecting 

to both the BLA and the NAc74). Therefore, this local processing of information from the 
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BLA in the mPFC could form a basis for the processing of sensory inputs associated with 

negative and positive valence, to guide action selection in the face of conflicting cues38,76. 
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Methods 

AAV expression plasmids. A Cre-dependent stCoChR expression plasmid, labeled with 

mScarlet (pAAV-EF1α-DIO-CoChR-Kv2.1-P2A-mScarlet), was generated as described in 

ref. 44. Cre-dependent GCaMP6s plasmid labeled with nuclear dTomato (pAAV-EF1α-

DIO-GCaMP6s-P2A-NLS-dTomato) was acquired from Addgene (plasmid #51082). Cre 

expression plasmids, used for local sparse expression of stCoChR and GCaMP6s in the 

mPFC, were either acquired from Addgene (pAAV-EF1α-NLS-Cre-P2A, plasmid #55636) 

or cloned based on pAAV-EF1α-NLS-Cre-P2A using standard restriction cloning (pAAV-

CaMKIIα-NLS-Cre-P2A). 

Production of recombinant AAV vectors. HEK293 cells were seeded at 25–35% 

confluence. The cells were transfected 24 h later with plasmids encoding AAV rep, cap of 

AAV1 and AAV2, and a vector plasmid for the rAAV cassette expressing the relevant 

DNA using the PEI method78. Cells and medium were harvested 72 h after transfection, 

pelleted by centrifugation (300 × g), resuspended in lysis solution ([mM]: 150 NaCl, 50 

Tris-HCl; pH 8.5 with NaOH) and lysed by three freeze–thaw cycles. The crude lysate was 

treated with 250 U benzonase (Sigma) per 1 ml of lysate at 37 °C for 1.5 h to degrade 

genomic and unpackaged AAV DNA before centrifugation at 3000 × g for 15 min to pellet 
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cell debris. The virus particles in the supernatant (crude virus) were purified using heparin-

agarose columns, eluted with soluble heparin, washed with phosphate-buffered saline 

(PBS) and concentrated by Amicon columns. Viral suspension was aliquoted and stored at 

−80 °C. Viral titers were measured using real-time PCR. Retrograde AAV vectors 

(rAAV2-retro) were kindly provided by the Janelia Viral Tools facility (rAAV2-retro-

hSyn-Cre) or generated as described in ref. 46 (rAAV2-retro-EF1α-Cre).  

Animals. All experimental procedures were approved by the Institutional Animal Care and 

Use Committee (IACUC) at the Weizmann Institute of Science. C57BL/6J male mice aged 

four weeks postnatal were obtained from Envigo and used for AAV vector injections and 

for recordings. Ai9 mice47 (Cre-dependent tdTomato reporter line, used for calibrating 

retrograde expression from the BLA) were obtained from Jackson Laboratory and bred in-

house. Up to five mice were housed in a cage in a 12 h light–dark cycle with food and water 

ad libitum. Following viral injection surgery, mice were housed for at least four weeks 

before being recorded to allow for recovery and virus expression. 

Stereotactic injection of AAV vectors. Four- to six-week-old mice (29–46 days postnatal) 

were initially induced with ketamine (80 mg/kg) and xylazine (10 mg/kg) by 

intraperitoneal injection and then placed into a stereotaxic frame (David Kopf Instruments) 

and put under isoflurane anesthesia (~0.9% in O2, v/v). A craniotomy (∼1 mm diameter) 

was made above each injection site. A Nanofil syringe (World Precision Instruments) with 

a 34 G beveled needle was filled with virus suspension (or mixture of viruses, according to 

injection site). The needle was inserted into the injection site, bevel facing anteriorly, and 

left in place for 5 min, followed by slow injection of the virus mixture (10–100 nl/min). 

After injection, the needle was left in place for additional 10 min and then slowly 

withdrawn. The surgical incision was closed with tissue adhesive (3M), and buprenorphine 

(0.05 mg/kg) was subcutaneously injected for post-surgical analgesia. Mice were 

monitored daily for the first week after surgery and twice weekly afterward. Injections 

coordinates, in mm relative to bregma (injected volume): mPFC: 1.95 anterior, 0.3 lateral, 

2.85 ventral (400–500 nl); BLA: 1.15 posterior, 3.0 lateral, 5.0 ventral (100–350 nl). AAV 

vectors used for intracranial injections had genomic titers ranging 5.3×1011–3.1×1013 

genome copies per milliliter (gc/ml, before dilution; see below). When AAV vectors were 
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injected together for co-expression, their titers were matched by up to one order of 

magnitude. To achieve local sparse expression of stCoChR and GCaMP6s, Cre-dependent 

vectors were injected together with a titer-matched Cre-expressing vector that was first 

diluted in PBS by a factor of 1:100 before being mixed with the Cre-dependent vectors and 

injected. This dilution factor was based on calibration injections performed using dilutions 

of 1:20 to 1:1000 in order to achieve cell density comparable to that of mPFC-BLA cells. 

Calibration of retrograde expression in mPFC-BLA cells. Ai9 mice were injected with 

varying volumes of rAAV2-retro-Cre into the BLA (100 nl at injection rate of 10 nl/min, 

200 nl at 20 nl/min, or 300 at 30 nl/min). The left BLA of each mouse was injected with 

rAAV2-retro-EF1α-Cre at a titer of 4.1×1012 gc/ml, and the right BLA was injected with 

the same volume of rAAV2-retro-hSyn-Cre at a titer of 2.5×1013 gc/ml. At least four weeks 

after injection, mice were deeply anesthetized with an intraperitoneal injection of 

pentobarbital (400 mg/ kg) and perfused transcardially with ice-cold PBS followed by a 

solution of 4% paraformaldehyde (PFA) in PBS (pH 7.4). Brains were removed and 

incubated overnight in 4% PFA at 4 °C, and then transferred to 30% sucrose in PBS for at 

least 24 h at 4 °C until cryosectioning. Coronal sections (40 µm thickness) were cut on a 

microtome (Leica Microsystems) and collected in cryoprotectant solution (25% glycerol 

and 30% ethylene glycol in PBS, pH 6.7). Sections were washed in PBS, stained for 3 min 

with DAPI (5 mg/ml solution diluted 1:30,000 prior to staining), washed again with PBS, 

mounted on gelatin-coated slides, dehydrated, and embedded in DABCO mounting 

medium (Sigma). Images of sections from each mouse, located approximately at the same 

anteroposterior position, were acquired using a slide-scanning microscope (VS120, 

Olympus), with acquisition settings being kept constant across all sections. Regions of 

interest (ROIs) for quantification of cell number and fluorescence intensity were selected 

based on DAPI fluorescence and on atlas reference images to cover the BLA and the ventral 

mPFC. Cell bodies in the ventral mPFC ROIs were counted manually from z-stack images 

that were reacquired under a confocal microscope (Zeiss LSM 700). Cell bodies in the 

BLA could not be clearly discerned due to local expression of the rAAV2-retro-Cre vector 

and therefore were not counted. Fluorescence intensity was calculated as the mean for the 

entire ROI from the z-stack images acquired using the slide scanning microscope. 
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Acute brain slice preparation. Mice were injected intraperitoneally with pentobarbital 

(130 mg/kg) and perfused transcardially with carbogenated (95% O2, 5% CO2) ice-cold 

slicing solution ([mM] 2.5 KCl, 11 glucose, 234 sucrose, 26 NaHCO3, 1.25 NaH2PO4, 10 

MgSO4, 0.5 CaCl2; 340 mOsm/kg). After decapitation, 300 µm-thick coronal mPFC slices 

were prepared in carbogenated ice-cold slicing solution using a vibratome (Leica VT 1200 

S) and allowed to recover for 20 min at 33 °C in carbogenated high-osmolarity artificial 

cerebrospinal fluid (high-osmolarity aCSF; [mM] 3.21 KCl, 11.8 glucose, 131.6 NaCl, 27.8 

NaHCO3, 1.34 NaH2PO4, 1.07 MgCl2, 2.14 CaCl2; 320 mOsm/kg) followed by 25 min 

incubation at 33 °C in carbogenated iso-osmotic aCSF ([mM] 3 KCl, 11 glucose, 123 NaCl, 

26 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2; 300 mOsm/kg). Subsequently, slices were 

kept at room temperature in carbogenated aCSF until use. 

Electrophysiological recording in acute brain slices. Whole-cell patch-clamp recordings 

were obtained under visual control using oblique illumination on a two-photon laser-

scanning microscope (Ultima IV, Bruker) equipped with a femtosecond pulsed laser 

(Chameleon Vision II, 80 MHz repetition rate; Coherent), a 12 bit monochrome CCD 

camera (QImaging QIClick-R-F-M-12) and a 20×, 1.0 NA objective (Olympus 

XLUMPlanFL N). Borosilicate glass pipettes (Sutter Instrument BF100-58-10) with 

resistances ranging 3–6 MΩ were pulled using a laser micropipette puller (Sutter 

Instrument Model P-2000). The recording chamber was perfused with carbogenated aCSF 

at 2 ml/min and maintained at ~26–32 °C. Pipettes were filled with K-based low-Cl 

solution ([mM] 130 K-gluconate, 5 KCl, 10 HEPES, 10 Na2-phosphocreatine, 4 ATP-Mg, 

0.3 GTP-Na; 285 mOsm/kg; pH adjusted to 7.25 with KOH) for most of the connectivity-

mapping experiments, and with Cs-based intracellular solution for the rest ([mM] 120 Cs-

gluconate, 11 CsCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 11 EGTA, 5 QX-314; 280 mOsm/kg; 

pH adjusted to 7.3 with CsOH). In cell-attached recordings, used for correlating GCaMP6s 

fluorescence with electrophysiological recording of the same cell, pipettes were filled with 

150 mM NaCl. Alexa Fluor 350 dye (<1 mM; Thermo Fisher Scientific) was added to the 

intracellular solutions, as well as Neurobiotin Tracer (0.3 mg/ml; Vector Laboratories) in 

some of the experiments. Recordings were performed using a MultiClamp 700B amplifier, 

filtered online at 8–10 kHz, digitized at 20–50 kHz using a Digidata 1440A digitizer and 

acquired using pClamp 10 software (Molecular Devices). 
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Full-field illumination and light power calibration. Full-field illumination was performed 

using a 470 nm light-emitting diode (29 nm bandwidth LED; M470L2-C2; Thorlabs) 

delivered through the microscope illumination path including a custom dichroic in order to 

reflect the 470 nm activation wavelength. Light power densities were calculated by 

measuring the light transmitted through the objective using a power meter (Thorlabs 

PM100A with S142C sensor) and dividing by the illumination area, which was directly 

measured by placing an autofluorescent micrometer in the image plane and illuminating 

with the LED to measure the fluorescent area observed through the microscope eyepiece. 

Sequential two-photon spiral scanning of candidate presynaptic cells. A region in an acute 

mPFC slice containing cells expressing stCoChR and GCaMP6s was selected using brief 

wide-field green illuminations so as to minimize activation of stCoChR in the slice. A cell 

(either expressing stCoChR and GCaMP6s or non-expressing) was patch-clamped and 

sections spanning the entire depth of the slice were scanned (5 µm interval, 1040 nm, ~9–

55 mW under objective) using Prairie View software (Bruker) to obtain a volume of 

~420×420×300 µm3 containing the recorded cell. Cell bodies were detected in the volume 

using a custom script written in Matlab (MathWorks)48. Coordinates for two-photon spiral 

scanning of each of the cells (15 µm diameter, 1 µm revolution distance, scanning inward 

and outward for 7.16 ms) were generated using a custom-written Matlab script. An 

additional Matlab script was generated for sequential scanning of all the cells while 

adjusting focus and light power between cells. Detected cells were sequentially scanned at 

940 nm using Prairie View while the patched cell was continuously recorded in voltage-

clamp mode at –70 mV. The GCaMP6s fluorescence signal was recorded through a GaAsP 

PMT (Bruker) during scan periods. Each cell was scanned with 10 or 15 spirals delivered 

at 10 Hz. Light power on each cell was 10 mW (after adjustment for attenuation through 

the tissue; see below). If the recorded cell remained viable after all putative presynaptic 

cells were stimulated, up to three repetitions were executed with the same set of scan 

patterns. At the beginning and at the end of each protocol repetition, a series of 5 mV square 

hyperpolarizing voltage pulses were delivered in order to monitor the recorded cell’s input 

resistance, membrane capacitance, and access resistance. At the beginning of each 

recording (prior to the presynaptic cell scanning protocol), full-field light pulses were 
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delivered to verify stCoChR expression, or to look for active synaptic contacts across the 

entire field of illumination in case the recorded cell was non-expressing. 

Detection and modeling of synaptic events. The process of detecting and modeling EPSCs 

in a voltage-clamp recording trace was composed of six steps. 

(1) Detrending. To standardize event detection, we inverted the recording trace (multiplied 

by –1) and then downsampled it to 5000 Hz using polyphase resampling. To compensate 

for drifts in the holding current and other slow fluctuations in the signal, we estimated a 

baseline for the recording trace by applying a 10th percentile filter of 50 ms width, followed 

by smoothing, which was done by downsampling to 200 Hz, median filtering with a 15 ms 

window, and upsampling back to 5000 Hz. The baseline was then subtracted from the 

recording trace to yield a “zero-baseline” trace 𝑆 (shifted to have a zero median) which was 

used for all subsequent analyses. The noise in the trace was characterized by an estimated 

standard deviation 𝑆𝐷$  of 1.4826×MAD, where MAD is the median absolute deviation 

around the median.  

(2) Deconvolution. To detect the EPSCs in the zero-baseline trace, we deconvolved it with 

a kernel similar to the waveform of a typical EPSC52,79: 

𝑘(𝑡) = 𝑒𝑥𝑝-−𝑡 𝜏01234⁄ 6 × -1 − 𝑒𝑥𝑝(−𝑡 𝜏9:;1⁄ )6 

We used the OASIS implementation of this deconvolution51 originally intended for fast 

and accurate detection of spikes from calcium signals. We used a kernel with time constants 

𝜏01234 = 3.5 ms and 𝜏9:;1 = 0.7 ms and ran the OASIS algorithm for up to 10 iterations 

with a sparsity-imposing L1 penalty and noise level of 0.8 𝑆𝐷$ . For subsequent analyses we 

used two outputs from the OASIS algorithm: the deconvolved trace and the denoised trace 

(convolution of the deconvolved trace with the kernel). 

(3) Detection. Detection of EPSCs was performed by finding peaks in the deconvolved 

trace after filtering it with a triangular kernel of 2.5 ms width. We only used peaks with 

height and prominence of at least 0.5 𝑆𝐷$  and a minimum distance of 2.0 ms between them. 

The location of the peak was used as an estimate of onset time (𝑜B), and the area under the 

curve of the deconvolved trace between –0.4 ms and +0.8 ms from 𝑜B was used to estimate 

the height (ℎD) of the event. 
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(4) Clustering. Detected EPSCs were clustered such that two consecutive events were in 

the same cluster if the second event started before the first had decayed back to baseline. 

To achieve this, we took all segments of the denoised trace where it was higher than 1.8 

𝑆𝐷$ . We extended each segment by 10 ms before its beginning and 20 ms after its end, and 

further extended it by 10 ms around events. We merged overlapping segments, such that 

all events within the same segment were included in the same cluster. 

(5) Fitting. To accurately determine the time and the shape of synaptic events, we used two 

steps of curve fitting to refine our parameter estimates iteratively. For this, the zero-

baseline trace for each cluster of events was fit to the sum of synaptic kernels with separate 

parameters: 

𝑠̃ = 𝑐 +I𝑘-𝑡; ℎ, 𝑜, 𝜏01234 , 𝜏9:;16
L

:MN

 

where 𝑘-𝑡; ℎ, 𝑜, 𝜏01234, 𝜏9:;16 is a synaptic kernel of height ℎ at onset time 𝑜 with shape 	

𝑘(𝑡) = 𝑒𝑥𝑝-−𝑡 𝜏01234⁄ 6 × -1 − 𝑒𝑥𝑝(−𝑡 𝜏9:;1⁄ )6, 𝑐 is the constant offset for each cluster, 

and 𝑛 is the number of events in the cluster (for simplicity, we assumed that in the soma, 

where the recordings are made, synaptic events are summed linearly). 

We minimized 

𝑅𝑀𝑆(𝑆 − 𝑠̃)
𝑆𝐷$

+
𝑅𝑀𝑆(𝑜 − 𝑜B)

5  

where 𝑅𝑀𝑆 is the root mean square error, 𝑆 is the zero-baseline trace, and onset times of 

all the events are in milliseconds. The height and the two time constants (rise and decay) 

were optimized in the logarithmic scale to ensure the same relative accuracy across event 

heights and timescales. The search space of the parameters height SℎD 15⁄ , 3ℎDT and onset 

time [𝑜B − 10, 𝑜B + 10] was set relative to the estimate for each event, whereas the search 

space for the time constants (0.5 < 𝜏01234 < 50, 0.1 < 𝜏9:;1 < 10, in ms, with a constraint 

𝜏01234 > 𝜏9:;1) was identical across all the events. The first round of minimization was 

done using Dual Annealing80, a global minimization method based on simulated annealing 

in SciPy81. The number of iterations and function evaluations were increased with the 

number of events in the cluster. The second round of minimization was done using the 
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SciPy implementation of Powell’s method, a derivative-free local optimization method, 

with the starting point from the optimum found by dual annealing. 

(6) Thresholding. After the fitting, only events with heights of more than 2.5 𝑆𝐷$  were kept. 

See Table 4 for all parameter used in the procedure. 

Modeling the distribution of EPSCs and assessing functional connectivity. The recorded 

(postsynaptic) cell receives spontaneous EPSCs from cells in the network that are 

independent of the stimulation of the targeted (candidate presynaptic) cells. Moreover, 

evoked EPSCs can have large jitter resulting from the jitter in stimulation-evoked 

presynaptic spikes (Figure S2C) and in synaptic latency. These two factors served as 

motivation for developing a statistical model to determine which stimulated cell is 

connected to the recorded cell. 

(1) Bayesian “rate-and-time” models. To this end, we combined two types of information 

using Bayesian models whose posteriors were sampled using a Markov chain Monte Carlo 

(MCMC) method. First, if a stimulated cell is connected to the recorded cell, a bump in the 

rate of EPSCs is expected between ~5–25 ms from stimulation onset (see Figure 2B–D). 

Second, if a cell is connected, evoked events appear in addition to spontaneous events, such 

that a higher rate of events is expected during the evoked time period (90 ms after the 

stimulation, disregarding the last 10 ms before the next stimulation) compared with 

reference 90 ms intervals where no stimulation occurred (spontaneous intervals). Model 1 

assumes that the stimulated cell is not connected to the recorded cell, and thus expects the 

distribution of events in the evoked time periods to be uniform and the same rate to explain 

the number of events in both spontaneous and evoked periods. Model 2 assumes that the 

cell is connected, and thus expects the distribution of events in the evoked time periods to 

have a bump following the stimulation time on top of a uniform distribution. These two 

models (1 and 2) are referred to as “rate-and-time” models. We sampled from the posteriors 

of these two models using the No-U-Turn Sampler (NUTS)82 in PyMC383. Then, using the 

Pareto-smoothed importance sampling leave-one-out (PSIS-LOO)84 information criterion, 

we chose the hypothesis (connected or not connected) with a better fit for each cell. The 

priors for these models were based on either empirical data or biologically plausible values 

(Table 5). 
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(2) Data. The rate-and-time models fit the following data for each stimulated cell for each 

protocol repetition: 

• Spont_time = duration of the given spontaneous segment (≤90 ms); these segments 

were within 5 seconds of the time of stimulation of the stimulated cell. 

• Evoked_time = duration of the given evoked segment (=90 ms). 

• Num_events_spont = total number of events in each spontaneous segment. 

• Num_events_evoked = total number of events in each evoked segment. 

• Event_times = exact times of all the events which occur in the evoked time segment 

(relative to stimulation onset). 

(3) Parameters. We fit the aforementioned data to infer two parameters for each stimulated 

cell: 

• Spont_rate = spontaneous event rate (inferred separately for each protocol repetition). 

• Evoked_per_trial = number of events evoked per trial (shared across repetitions and 

inferred only if the model assumes the cell is connected). 

(4) Mathematical formulation. 

Model 1 (assuming no synaptic connection): 

• Priors: 

𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒~𝐺𝑎𝑚𝑚𝑎(𝑟𝑎𝑡𝑒_𝑚𝑢, 𝑟𝑎𝑡𝑒_𝑠𝑖𝑔𝑚𝑎) 

• Distributions: 

𝑏𝑢𝑚𝑝 = 𝐺𝑎𝑚𝑚𝑎(𝜇 = 𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟, 𝜎 = 𝑏𝑢𝑚𝑝_𝑤𝑖𝑑𝑡ℎ) 

𝑢𝑛𝑖𝑓 = 𝑈𝑛𝑖𝑓(𝑙𝑜𝑤𝑒𝑟 = 0, 𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒) 

• Likelihood: 

𝑁𝑢𝑚_𝑒𝑣𝑒𝑛𝑡𝑠_𝑠𝑝𝑜𝑛𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝑆𝑝𝑜𝑛𝑡_𝑡𝑖𝑚𝑒) 

𝑁𝑢𝑚_𝑒𝑣𝑒𝑛𝑡𝑠_𝑒𝑣𝑜𝑘𝑒𝑑~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒) 

𝐸𝑣𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠~𝑀𝑖𝑥𝑡𝑢𝑟𝑒([𝑏𝑢𝑚𝑝, 𝑢𝑛𝑖𝑓], 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = [0, 1]) 

Model 2 (assuming synaptic connection): 

• Priors: 

𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒~𝐺𝑎𝑚𝑚𝑎(𝑟𝑎𝑡𝑒_𝑚𝑢, 𝑟𝑎𝑡𝑒_𝑠𝑖𝑔𝑚𝑎) 

𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙~𝐺𝑎𝑚𝑚𝑎(𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙_𝑚𝑢, 𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙_𝑠𝑖𝑔𝑚𝑎) 

• Distributions: 

𝑏𝑢𝑚𝑝 = 𝐺𝑎𝑚𝑚𝑎(𝜇 = 𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟, 𝜎 = 𝑏𝑢𝑚𝑝_𝑤𝑖𝑑𝑡ℎ) 
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𝑢𝑛𝑖𝑓 = 𝑈𝑛𝑖𝑓(𝑙𝑜𝑤𝑒𝑟 = 0, 𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒) 

• Likelihood: 

𝑁𝑢𝑚_𝑒𝑣𝑒𝑛𝑡𝑠_𝑠𝑝𝑜𝑛𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝑆𝑝𝑜𝑛𝑡_𝑡𝑖𝑚𝑒) 

𝑁𝑢𝑚_𝑒𝑣𝑒𝑛𝑡𝑠_𝑒𝑣𝑜𝑘𝑒𝑑~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒 + 𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙) 

𝑤 = 𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙 (𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙 + 𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒)⁄  

𝐸𝑣𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠~𝑀𝑖𝑥𝑡𝑢𝑟𝑒([𝑏𝑢𝑚𝑝, 𝑢𝑛𝑖𝑓],𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = [𝑤, 1 − 𝑤]) 

These two models were fit in PyMC3 using NUTS. 

(5) Model comparison. Since the two rate-and-time models use the same priors and fit the 

same likelihoods, we compared them using expected log pointwise predictive density 

(ELPD) using Pareto-smoothed importance sampling leave-one-out cross-validation 

(PSIS-LOO-CV)84. Specifically, the two models were combined into a single model using 

the Bayesian bootstrap-pseudo-Bayesian model averaging (BB-pseudo-BMA) method85 

applied to the PSIS-LOO calculated using the “compare” function of the ArviZ package86. 

This procedure gives weights to the two models (connected and not connected) which sum 

up to 1. These weights can be interpreted as the probability of the particular model to be 

correct, assuming that one of the models is indeed correct. We used the weight of the rate-

and-time connected model (model 2) as the output of the procedure (𝑤9n). 

(6) Bayesian “rate-only” and “time-only” models. The rate-and-time models described 

above combine the information from both the rates and the times of EPSCs. However, for 

some cell pairs, the time information may indicate a bump implying a connection, while 

the rates may suggest no extra evoked events over the expected spontaneous rate (or the 

opposite: the rate information may imply a connection while the time information does 

not). Such borderline cell pairs may be misclassified by these models. To resolve this, we 

further fit two pairs of reduced versions of the rate-and-time models. 

Models 3 and 4: A pair of “time-only” models where we only used the Mixture likelihood 

of the event times. As with the rate-and-time models, one of the time-only models assumes 

no synaptic connection (model 3), and the other assumes a connection (model 4). For this 

pair of time-only models we used priors with distribution 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 2) on the 

weight of the bump directly. Note that the model which assumes no connection (model 3) 

has no priors.  
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Models 5 and 6: A pair of “rate-only” models where we only used the Poisson likelihoods 

of the rates. As before, one model assumes no connection (model 5) and the other assumes 

a connection (model 6). We used the same priors for spontaneous rate (Spont_rate) and 

evoked per trial (Evoked_per_trial). 

The posteriors of these pairs of models (models 3–6) were similarly sampled using NUTS. 

ELPD was calculated and the relative weights of the connected and not connected 

hypotheses were calculated the same way as for models 1 and 2 (rate-and-time). We used 

the weights of the connected models (models 4 and 6) as the outputs of the procedure (𝑤n 

and 𝑤9). 

(7) Connectivity determination. To determine whether a stimulated cell is connected to the 

corresponding recorded cell, we relied both on the models and on manual observation. 

Cells whose weights of the connected models (models 2, 4, and 6) crossed a threshold, 

namely cells satisfying 	

(𝑤9n ≥ 0.5) ∧ (𝑤n ≥ 0.4) ∧ (𝑤9 ≥ 0.4), were considered as putatively connected. The use 

of the “rate-only” (𝑤9) and “time only” (𝑤n) models in the criterion ensured that we only 

considered cells to be connected if both types of information agreed independently that the 

cell is likely to be connected, thus helping reduce false classifications. For manual 

identification of synaptic connections, traces recorded during stimulation of each cell were 

aligned to stimulation onset and observed in search of EPSCs that appear near the 

stimulation with high reliability and low jitter. Cases of disagreement between the model 

and the manual observation (n = 212 stimulated cells) were reexamined manually and 

settled by manual observation (leaving n = 177 cases of disagreement). Cases where 

manual observation was uncertain (n = 44 stimulated cells) were settled by the criterion 

above, namely (𝑤9n ≥ 0.5) ∧ (𝑤n ≥ 0.4) ∧ (𝑤9 ≥ 0.4). Performance of the model (Figure 

2E,F) was measured after handling all cases of disagreement and uncertainty as described. 

(8) Bump estimation. For the connected cells, we used another Bayesian model (model 7) 

to estimate the location and width of the bump in EPSCs. Since the bump represents the 

distribution of evoked EPSCs, we used this model in order to calculate the strength of 

synaptic connection (see below). This model was similar to the rate-and-time model 

assuming synaptic connection (model 2), except for the use of a normal distribution for the 

bump (which also makes calculations numerically more stable) and that the center and the 
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width of this normal distribution have prior distributions for which we infer the posteriors 

(for determining connectivity, these were fixed numbers and thus it was always the same 

bump). 

Model 7 (assuming synaptic connection with variable bump): 

• Priors: 

𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟~𝐺𝑎𝑚𝑚𝑎(𝜇 = 𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟_𝑚𝑢, 𝜎 = 𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟_𝑠𝑖𝑔𝑚𝑎) 

𝑏𝑢𝑚𝑝_𝑤𝑖𝑑𝑡ℎ~𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐺𝑎𝑚𝑚𝑎(𝜇 = 𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟_𝑚𝑢, 𝜎

= 𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟_𝑠𝑖𝑔𝑚𝑎, 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = 3.0, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = 8.0) 

𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒~𝐺𝑎𝑚𝑚𝑎(𝑟𝑎𝑡𝑒_𝑚𝑢, 𝑟𝑎𝑡𝑒_𝑠𝑖𝑔𝑚𝑎) 

𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙~𝐺𝑎𝑚𝑚𝑎(𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙_𝑚𝑢, 𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙_𝑠𝑖𝑔𝑚𝑎) 

• Distributions: 

𝑏𝑢𝑚𝑝 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑏𝑢𝑚𝑝_𝑐𝑒𝑛𝑡𝑒𝑟, 𝑏𝑢𝑚𝑝_𝑤𝑖𝑑𝑡ℎ) 

𝑢𝑛𝑖𝑓 = 𝑈𝑛𝑖𝑓(𝑙𝑜𝑤𝑒𝑟 = 0, 𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒) 

 

• Likelihood: 

𝑁𝑢𝑚_𝑒𝑣𝑒𝑛𝑡𝑠_𝑠𝑝𝑜𝑛𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝑆𝑝𝑜𝑛𝑡_𝑡𝑖𝑚𝑒) 

𝑁𝑢𝑚_𝑒𝑣𝑒𝑛𝑡𝑠_𝑒𝑣𝑜𝑘𝑒𝑑~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒 + 𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙) 

𝑤 = 𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙 (𝐸𝑣𝑜𝑘𝑒𝑑_𝑝𝑒𝑟_𝑡𝑟𝑖𝑎𝑙 + 𝑆𝑝𝑜𝑛𝑡_𝑟𝑎𝑡𝑒 × 𝐸𝑣𝑜𝑘𝑒𝑑_𝑡𝑖𝑚𝑒)⁄  

𝐸𝑣𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠~𝑀𝑖𝑥𝑡𝑢𝑟𝑒([𝑏𝑢𝑚𝑝, 𝑢𝑛𝑖𝑓],𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = [𝑤, 1 − 𝑤]) 

Measurement of synaptic connection strength. The timing of evoked EPSCs could not be 

accurately predicted due to the jitter in presynaptic spike and in postsynaptic response, such 

that spontaneous EPSCs occurring adjacent to stimulation could be mistaken for evoked 

EPSCs. To minimize this potential error, we used the normal distribution which describes 

the time distribution of evoked EPSCs (the bump) from model 7 described above. The 

strength of synaptic connection at each stimulation was thus taken as the weighted average 

of the EPSCs during a 2–30 ms time window following that stimulation, where the weight 

of each EPSC was determined by the probability density function of the fitted normal. 

Logistic regression model. To understand which features contribute to connectivity, we fit 

a logistic regression model from the features of the cell pairs to their binary connectivity. 

For this analysis we used all pairs of stimulated (candidate presynaptic) cells and their 
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corresponding recorded (postsynaptic) cells in the entire mPFC. We removed cell pairs 

where the stimulated cell was excluded according to the criteria detailed below (removing 

2376 pairs), as well as cell pairs where not all of the intrinsic electrophysiological 

properties of the postsynaptic cell could be measured (removing 689 pairs). This left n = 

7752 cell pairs used for the model. 

(1) Preprocessing. First, to have all the features on similar scales, we log-transformed 

features that were only positive or spanned many orders of magnitude (adaptation index, 

bursting index, membrane capacitance, output gain, input resistance, and spike half-width), 

and logit-transformed features that took values between 0 and 1 (sag ratio), so that the 

distribution of each feature was similar to a normal distribution with relatively low 

skewness and kurtosis. We included the cell type features (“mPFC-BLA to mPFC-BLA 

connection” and “mPFC-BLA to non-mPFC-BLA connection”) as either 0 or 1 (where 

“random to random connection” was encoded as 0 for both cell type features). In order to 

compare the relative contribution of the features to connectivity, they must also be 

normalized, such that the relative magnitudes of the regression coefficients correspond to 

the information gained by a change in feature value in units of its standard deviation. 

However, several features in the data have strong correlations with each other, 

demonstrating multicollinearity (see Figure S7B for correlations between 

electrophysiological properties). This makes the interpretation of the coefficients difficult, 

as they no longer correspond to the amount of information gained by a change of value in 

each feature. To resolve the multicollinearity, we applied a robust zero-phase components 

analysis (ZCA) transform to both whiten and normalize the data, so that all the pairwise 

correlations are removed, and the variance along each transformed feature is 1. We used 

the SciPy81 implementation of the minimum covariance determinant estimator87 

(MinCovDet) to estimate the correlation matrix, which we eigen-decomposed to calculate 

the ZCA transform. 

(2) Sparsity-inducing Horseshoe priors. We next performed feature selection to reduce 

noise and to capture the predictive features in the data. For this, we used a Bayesian 

generalized linear model whose posteriors of the model were sampled using a MCMC 

method. We applied Horseshoe priors54 using the formulation in ref. 55 and based on its 

PyMC383 implementation in https://mellorjc.github.io/HorseshoePriorswithpymc3.html. 
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• Priors: 

𝑣 = 3 

𝑟wx23w	~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) [for each feature] 

𝑟ywxz3w~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) 

𝜌wx23w~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼 = 0.5 × 𝑣, 𝛽 = 0.5 × 𝑣) [for each feature] 

𝜌ywxz3w~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼 = 0.5, 𝛽 = 0.5) 

𝑧~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) [for each feature] 

𝛽~~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = −3.67, 𝜎 = 1) 

𝜏 = 𝑟ywxz3w × �𝜌ywxz3w  

𝜆 = 𝑟wx23w × �𝜌wx23w  

𝛽 = 𝑧 × 𝜆 × 𝜏 

𝜇wxy:n = 𝑋 ⋅ 𝛽 + 𝛽~ 

where 𝑋 is the ZCA-transformed features (model input data). 

• Likelihood: 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑑𝑎𝑡𝑎~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 �𝑝 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐿𝑜𝑔𝑖𝑡-𝜇wxy:n6� 

We sampled the posteriors from this model using NUTS82 in PyMC3. We selected features 

whose median posterior coefficient was larger than 0.05 in absolute value as features which 

provide significant information about connectivity (Figure 4H). The reason for this choice 

is that a ±0.05 coefficient value corresponds to a change of 0.05 in log odds (which in turn 

corresponds to a change of approximately 5% in odds) when the value of the feature moves 

by 1 standard deviation from its mean. 

(3) Unregularized, cross-validated logistic regression and cross-entropy calculations. To 

quantify the information that the features have on connectivity, we used an unregularized, 

cross-validated logistic regression model implemented in Matlab using the glmfit function. 

We used the preprocessed features and n = 191 stratified cross-validations (equal to the 

number of connected cell pairs in the dataset to have one connected pair per fold). We 

calculated the cross-entropy between the model prediction 𝑦B (continuous probability) and 

the true connections 𝑦 (binary) as 

𝐻 = (1 𝑛⁄ ) × (−𝑦 ⋅ log(𝑦B) − (1 − 𝑦) ⋅ log(1 − 𝑦B)) 
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where 𝑛 is the number of cell pairs in the test set (or the total number of cell pairs in the 

dataset in case of no cross-validation). We ran this model and calculation using all features, 

using only the selected features, and using the selected features minus one of them, and for 

each run we calculated the distribution of cross-entropies across the cross-validations as 

well as the cross-entropy when running the model without cross-validation (Figure 4I). The 

same stratified folds were used for all cross-validations so that models using different 

features could be compared using a paired test (see Statistics below). As control, we ran 

the model using shuffled connections (without cross-validation) and calculated the cross 

entropy between the prediction using shuffled connections and the true connections across 

10000 shuffles. As another control, we calculated the cross-entropy between the true 

connections and a constant connection probability of 0.025 (the mean connection 

probability across all cell pairs). 

Subtracting evoked photocurrents. While recording from an stCoChR-expressing cell, 

stimulation of some targeted cells can evoke unwanted photocurrents in the recorded cell. 

This is a result of imperfect restriction of the channelrhodopsin molecules to the soma, and 

can obscure EPSCs. To resolve this, we identified cells whose stimulation evoked direct 

photocurrent by manually observing the recording traces after aligning them to the 

stimulation pulse. Photocurrents were identified by their minimal latency and jitter, their 

reliability and their reproducible waveform across consecutive stimulations of the same 

cell (Figure 2C). Cells whose stimulation evoked photocurrent stronger than 20 pA at the 

soma of the recorded cell were excluded from analysis. Traces corresponding to cells 

whose stimulation evoked ≤ 20 pA photocurrent were manually examined for synaptic 

connections by searching the stimulation-aligned traces for reliable, low-jitter EPSC 

occurrences. Cases where stimulation evoked a compound response consisting of both a 

photocurrent and an EPSC were identified by the rapid rise constant of the EPSC as 

compared with the photocurrent (e.g., Figure 2C, left, third cell). In order to remove the 

photocurrent so as to accurately measure these EPSCs, we identified stimulation-aligned 

traces where no EPSCs were evoked (within a time window of 30 ms after stimulation), 

and subtracted the mean of these photocurrent-containing traces from the rest of the traces. 

The resulting traces contained only EPSCs with approximately no photocurrent. Synaptic 

strength for each stimulation was then calculated by subtracting the mean of a baseline 
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window preceding stimulation (–20 to +2 ms relative to pulse onset) from the minimum of 

a window following stimulation (+2 to +25 ms relative to pulse onset). In order to improve 

separation of evoked photocurrents from EPSCs, we repeated the stimulation protocol in 

several of the recorded cells, in the presence of APV (25 µM) and CNQX (10 µM) to block 

glutamate transmission (Figure 2C). We then subtracted the mean of the traces obtained in 

presence of glutamate-receptor blockers from the corresponding traces without blockers. 

Quantification of intrinsic electrophysiological properties. At the beginning of recording 

from each cell (prior to the synaptic-mapping protocol), a series of square current pulses 

(~ –200 to +400 pA, interval 25–50 pA) were injected in current-clamp mode (unless the 

intracellular solution was Cs-based). Input resistance Rin was calculated based on the peak 

hyperpolarization during injection of the smallest negative current. Membrane capacitance 

Cm was calculated based on Rin and on the membrane time constant τm, using an 

exponential fit [𝑎 × -1 − 𝑒�n ��⁄ 6 + 𝑐] of 10 to 90% of the peak hyperpolarization during 

injection of the smallest negative current. Maximal firing rate was taken as the maximal 

rate among all injected current pulses. Output gain was taken as the slope of the input-

output curve in the range between the minimal and maximal firing rates. Bursting and 

adaptation indices were based on traces with closest to 80% of the maximal firing rate per 

cell. Bursting index was taken as the ratio between the second and the first ISIs. Adaptation 

index was taken as the ratio between the last and the second ISIs. Spike half-width, 

amplitude, and threshold were calculated based on the first spike in the trace with the lowest 

firing rate (that is, the first evoked spike). Sag ratio was based on the trace with the 

strongest hyperpolarizing current, and calculated as (𝑉�:L − 𝑉;;) (𝑉�:L − 𝑉zw)⁄ , where 

Vmin is the minimal voltage during the first 30% of the hyperpolarizing pulse, Vss is the 

steady-state voltage during the pulse, and Vbl is the baseline just before the pulse. 

Transformation of cell coordinates into brain-reference anatomical positions. In order to 

standardize the coordinates of all cells (pre- and postsynaptic) across all experiments and 

calculate their positions in the brain, three orthogonal planes were defined for each slice. 

The anatomical position of each cell was based on its distance from each of these planes. 

(1) A slice-surface plane was defined by a collection of points (n = 17.4 ± 0.64) on the 

surface of the scanned volume. Recorded slices typically had small curvatures on their 
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surface, possibly caused by the harp that is used to hold them in place during recording, 

creating an angled volume surface relative to the image plane (θ = 11.2 ± 0.7 °). The points 

used to define this plane were imaged during the scanning of the volume for connectivity 

mapping. Distance from this plane defined a cell’s depth inside the slice (referred to as AP 

position). (2) A midline plane was defined by passing through the dorsal end and the ventral 

end of the midline of the slice (both ends were recorded) and by being orthogonal to the 

slice-surface plane. Distance from this plane defined the ML position of the cell. (3) A 

dorsal-end plane was defined by passing through the dorsal end of the slice and by being 

orthogonal to the other two planes. The distance from this plane defined the DV position 

of the cell. The DV and ML positions of each cell were then projected on a reference Atlas 

image (Unified Anatomical Atlas project, https://kimlab.io/brain-map/atlas/) that matched 

the slice’s AP position relative to bregma, which was determined based on anatomical 

landmarks such as the shape of the corpus callosum. The region of the cell was determined 

by its projected coordinates on the corresponding intensity-labeled Atlas image, using a 

Matlab script. The layer was determined based on Figure S4. 

Compensation for light power attenuation inside the tissue. In all experiments, we 

maintained light power constant on cell bodies located at different depths in the tissue by 

compensating for scattering with increased light power. To calculate the light power at the 

focal point as function of its depth in the brain slice, we designed an “inverse fiber” model. 

We used an existing model to calculate the spatial distribution of power in tissue for an 

optic fiber with given NA, tip radius and wavelength88. We modeled the power distribution 

for a point fiber (tip of 1 µm) with properties as in our system (NA = 1.0 and λ = 940 nm). 

At a given distance d below the fiber, the acceptance angle of the fiber, set by the NA, 

defines a circular plane centered at the fiber axis and perpendicular to the fiber axis. By 

symmetry, the integrated light density over this plane is equivalent to the light power at the 

focal point when an objective with the same NA focuses into depth d in the tissue. With 

this model, we found that the dependence of light power on depth in the tissue fits 

monoexponential decay with τdecay = 147.6 µm. We modulated the absolute light power 

accordingly throughout all experiments. 
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Analysis of GCaMP6s fluorescence and validation of spiking in response to stimulation. 

The fluorescence trace recorded during a single spiral-pattern scan (as in Figure 1D) was 

averaged such that a complete spiral was treated as one time point. To determine whether 

a targeted cell spiked in response to spiral scanning, we calculated the slope of GCaMP6s 

fluorescence using a linear fit over the raw GCaMP6s fluorescence trace obtained during 

the entire spiral-scan train (10 or 15 spirals). Notably, when scanning populations of cells 

in the presence of TTX, GCaMP6s fluorescence can still accumulate, supposedly due to 

strong light-induced depolarization without spiking (Figure 1H, middle). We found that the 

slope of the raw GCaMP6s fluorescence trace across a spiral train generally decreases after 

application of TTX (Figure 1G, bottom; Figure 1H, right; and Figure S2B). We therefore 

used the lower 95% confidence bound of the raw GCaMP6s fluorescence slope as a 

measure for spiking. Cells whose lower 95% confidence bound was negative were 

excluded from analysis. For calculation of GCaMP6s ΔF/F0, the first spiral in the train was 

taken as baseline (F0), due to the slow onset kinetics of GCaMP6s relative to spiral 

duration. 

Exclusion of interneurons from connectivity analysis. The AAV vectors encoding for 

stCoChR and for GCaMP6s are both under the ubiquitous EF1a promoter. To express 

stCoChR and GCaMP6s in a sparse, random set of mPFC cells and map connectivity 

among random mPFC cells, we injected a low-titer AAV-Cre vector into the mPFC which 

was either under the EF1a promoter or under the more pyramidal cell-specific CaMKIIa 

promoter (see above, under AAV expression plasmids). This could lead to expression of 

stCoChR and GCaMP6s in interneurons. To minimize the resulting bias, we excluded from 

analysis any cell whose stimulation evoked hyperpolarizing currents in the recorded cell 

(under a –70 mV clamp). In some of the experiments, we repeated the sequential 

stimulation under a depolarized holding potential (–60 to –40 mV, and 0 mV in cases the 

intracellular solution was Cs-based) to facilitate identification of inhibitory connections. 

Since connections from interneurons to pyramidal neurons appear at very high 

probabilities, both in sensory cortex6 and specifically in the mPFC70,89, and since 

interneurons are estimated to amount to ~20% of cortical neurons90, the remaining 

stimulated interneurons that were not connected to the recorded cell likely introduce a very 

small bias to connection probability. 
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Summary of exclusion criteria. Stimulated (candidate presynaptic) cells were excluded 

from analysis if they met at least one of these conditions: Lower 95% confidence bound 

for the slope of the raw GCaMP6s fluorescence trace across the spiral train was negative; 

stimulation evoked a direct photocurrent larger than 20 pA; stimulation evoked an IPSC; 

recording trace during stimulation was too noisy or leaky. 

Data analysis. Detection and modeling of synaptic events and analysis of synaptic 

connectivity were performed using custom scripts written in Matlab and in Python. 

Analysis of GCaMP6s fluorescence was performed using Matlab. Analysis of 

electrophysiological recordings for intrinsic properties was performed using Matlab and 

Clampfit (Molecular Devices). Image analysis was performed using Matlab and Fiji. 

Statistical analysis was performed in Matlab. Data are presented as mean ± SEM unless 

otherwise stated. 

Statistics. In comparisons of connectivity features between map types (Figure S5A) and in 

comparisons of electrophysiological properties between cell types (Figure 4D,E and Figure 

S7A), we used the Kruskal-Wallis test with multiple post hoc comparisons using Tukey’s 

Honestly Significant Difference (HSD) procedure. Two-way analysis of variance 

(ANOVA) was used to test interaction between connection type and layer (Figure 3D). 

Wilcoxon signed rank test was used for comparing weighted synaptic input along the 

mediolateral axis (Figure 3E) and along the dorsoventral axis (Figure 3F), for comparing 

connectivity measures above and below the recorded cell (Figure S5E), and for comparing 

spatial specificity (FWHM) of spiking vs. GCaMP6s ΔF/F0 (Figure S3B). Two-sample 

Kolmogorov-Smirnov test was used for comparing properties of automatically vs. 

manually detected cells (Figure S1D,E). To compare regression models to the model using 

all (and only) selected features (Figure 4I), the same cross-validations were used for all 

models (except for the shuffled connections and mean connection prediction), and a paired-

sample Student’s t-test was performed. The model using shuffled connections did not use 

cross validation and therefore the comparison with the model using selected features was 

performed with a two-sample Student’s t-test. Finally, to compare the mean probability 

prediction model, one-sample t-test was used.  
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Markov chain Monte Carlo (MCMC) sampling parameters. The MCMC sampling in the 

cell connectivity determination was done using the NUTS algorithm in PyMC3 with 5000 

steps for tuning for a ‘target_accept’ of 0.95 and 2000 steps after the tuning for sampling 

in 4 independent chains. We used the ‘jitter+adapt_full’ initialization. The MCMC 

sampling for the Horseshoe-prior logistic regression was done using the NUTS algorithm 

in PyMC3 with 10000 steps for tuning for a ‘target_accept’ of 0.95 and 2000 steps after 

the tuning for sampling in 4 independent chains. We used the ‘advi+adapt_diag’ 

initialization with a maximum of 50000 steps for initialization. 

 

Supplementary Data and Discussion 

The effect of spatial specificity of stimulation on measured probabilities of synaptic 

connection. Targeted optogenetic stimulation of one cell may lead to co-stimulation of 

adjacent cells, depending on the local density of opsin-expressing cells. If two (or more) 

adjacent cells respond with spiking and with elevated GCaMP6s fluorescence to 

stimulation of either one of them, and only one (or some) of them is synaptically connected 

to the recorded cell, it will seem as though both (or all) stimulated cells are connected to 

the recorded cell, introducing an overestimation bias. To address this scenario, we 

manually registered the positions of all labeled cells in four scanned brain-slice volumes. 

For each cell in each volume, we defined an ellipsoid centered at the center of mass of the 

cell. The primary axes of the ellipsoid were defined as the FWHM of the spiking probability 

at the corresponding axes (Figure S3C–E). We calculated the number of cells that fall 

within this ellipsoid as a proxy for the probability to stimulate two (or more) cells together. 

The fraction of cells having at least one neighboring cell within their FWHM ellipsoid was 

0.13 ± 0.02 (Figure S3C, blue). Among the cells having adjacent within-ellipsoid 

neighbors, the number of neighbors was 1.06 ± 0.02 (Figure S3D, blue). The fraction of 

cell pairs, among all possible pairs in a scanned volume, that are within each other’s 

ellipsoid was 4.2×10–4 ± 3.2×10–5 (Figure S3E, blue). These data suggest that in ~13% of 

cells targeted for photostimulation, two cells might be co-stimulated instead of only one. 

In the case where all opsin-expressing cells in the volume are sequentially stimulated and 

respond with spiking, the probability of synaptic connection is therefore overestimated, on 
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average, by 13%. This is because 13% of the connected cells are expected to lie adjacent 

to a cell that is being co-stimulated with them and is also targeted separately for stimulation. 

However, in our hands, only 58 ± 7% of the total opsin-expressing cells in a scanned 

volume are targeted for stimulation. When stimulating a subset of the opsin-expressing 

cells in a tissue volume during a mapping experiment, an additional 13%, on average, are 

effectively being stimulated. Since the number of connections found in each experiment is 

not affected by these unintended stimulations, the actual connection probability may be 

lower by 11.5% than that calculated in our experiments. We did not correct for this bias. 

Importantly, it only affects the absolute probability of connections. It does not affect 

calculations involving connection strength or the identity of the connected and non-

connected cells (such as laminar distribution of connections and prediction of connectivity 

using the regression model in Figure 4). 

Estimate of the total number of connected cells from the EPSC distribution. The 

distribution of stimulation-aligned EPSCs in our data (Figure 2B) can be used to estimate 

the expected number of connected presynaptic cells in the entire dataset. 

Let E be the total number of synaptic events in Figure 2B, f be the fraction of events in the 

evoked bump (and 1–f the fraction of events in the uniform part), N be the number of 

stimulated cells, c be the fraction of connected cells among all stimulated cells, n be the 

average number of stimulations on each targeted cell (including protocol repetitions), and 

ep be the average number of evoked EPSCs per stimulation for a connected cell. 

Then the number of evoked events can be expressed as 

#𝑒𝑣𝑜𝑘𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠 = 𝐸 × 𝑓 = (𝑁 × 𝑐) × 𝑛 × 𝑒� 

The fraction of connected cells can therefore be estimated as 

𝑐̂ =
𝐸 × 𝑓

𝑁 × 𝑛 × 𝑒�
 

From the data used in Figure 2B, E = 151797, N = 10445, n = 27.2 ± 0.14, and f = 0.046 

(the weight of the Gamma in the mixture model). Assuming ep = 0.5 (a combination of the 

number of evoked spikes per spiral from Figure S2C with synaptic failure), we get 

𝑐̂ =
151797× 0.046

10445 × 27.2 × 0.5 = 0.049 
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This value roughly resembles the fraction of connected cells in our dataset (excluding 

stimulated cells that evoke a direct photocurrent in the recorded cell, and keeping all other 

cells regardless of their GCaMP6s signals): 𝑐 = 243 10445⁄ = 0.023. 

The effect of acute brain slice preparation on connectivity. One of the major drawbacks of 

our methodology is that the connections are measured in acute brain slices, and not in the 

live animal. During the slicing of the brain, neuronal projections are inevitably cut. We 

took several measures to minimize the loss of neuronal connections due to this cutting 

process: we recorded from coronal slices, which are cut parallel to the axis of the apical 

dendrites of pyramidal cells in the mPFC; we recorded from cells located relatively deep 

in the brain slice (depth in slice = 66.9 ± 2.0 µm, range 26.7–125.1 µm); and we stimulated 

presynaptic cells spanning the entire depth of the slice, thereby mapping inputs from cells 

that are otherwise inaccessible using the conventional multiple-patch configuration. By 

estimating the fraction of the anatomical axodendritic overlap volume between the pre- and 

postsynaptic neurons that is removed after slicing, a recent study suggested that the cutting 

process scales down connection rates globally, with little bias to specific connection 

types91. Other studies using similar anatomical simulations suggest that within the 

intersomatic displacement ranges used in our dataset, ≥60% of the synaptic contacts remain 

intact in 300 µm-thick brain slices71,92. Only a few studies have directly examined 

functional synaptic connectivity in vivo. Connection probabilities from L2/3 pyramidal 

neurons onto nearby interneurons in the barrel cortex seem similar in vivo and in vitro93,94, 

and among pyramidal neurons the connections in vivo seem even sparser than in vitro73,94. 

This may be attributed to increase in synapse density after slicing, as observed in 

hippocampal slices95. To quantify the possible loss of synapses due to severing of 

projections, we performed the following analysis. For each connectivity map in our dataset, 

we considered two groups of presynaptic cells: one containing all the cells that are located 

in the volume between the slice surface and the depth of the recorded (postsynaptic) cell, 

and another containing all the cells located in the volume between the depth of the recorded 

cell down to twice its depth. Since these two groups reside in equally sized tissue volumes, 

and they differ only in their distance from the cut surface, the difference in connectivity 

features between them represents the downscaling of connections caused by slicing. We 

found that connection probability deeper in the slice was 1.77 times higher than close to 
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the surface (0.038 vs. 0.021; Figure S5E). Mean connection strength did not differ between 

the two volumes (16.6 pA below vs. 16.2 pA above the recorded cell; Figure S5E). This 

downscaling of connections is expected to be approximately uniform across map types91, 

allowing us to compare the connection probabilities and strengths between them. 

Therefore, the artefacts of the slicing process should not undermine the comparative 

qualities of our findings. 
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Figure 1. Simultaneous optogenetic stimulation and GCaMP6s-based spike readout 

using a single laser source. A, Top, Intersectional viral strategy for expressing stCoChR 

(co-expressed with mScarlet) and GCaMP6s (co-expressed with nuclear dTomato) in 

mPFC cells projecting to the BLA (mPFC-BLA cells). Bottom, Schematic of expression 

of stCoChR and GCaMP6s exclusively in mPFC-BLA cells. B, Confocal image of a 

coronal section showing expression of stCoChR and GCaMP6s in mPFC-BLA cells. C, 

Two-photon images of a cell targeted for spiral scanning, with the spiral-scan pattern 

overlaid (right). D–E, Cell-attached recordings from an mPFC-BLA cell expressing 

stCoChR and GCaMP6s. Trains of 10 spiral patterns (7.1 ms each) were scanned at 10 

Hz over the soma as in C to excite stCoChR and GCaMP6s, and GCaMP6s fluorescence 

was recorded during the scan of each spiral. D, Raw GCaMP6s fluorescence (normalized 

to the maximum) during four selected spirals in absence of TTX (top, aCSF) and after 
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application of TTX to block spiking (bottom, aCSF+TTX). E, Cell-attached recording 

traces from the same cell shown in D, in absence (black) and presence (red) of TTX. Red 

ticks denote spiral-scan times. F–G, Cell-attached recordings from three mPFC-BLA 

cells during spiral scanning as in D–E. F, GCaMP6s ΔF/F0 without TTX (black) and with 

TTX (red) over 10 spirals for each cell. Plotted symbols indicate individual cells. G, 

Probability for at least one spike per spiral (top), maximal GCaMP6s ΔF/F0 (middle), and 

slope of the linear fit of the raw GCaMP6s fluorescence trace (bottom), with and without 

TTX. Shaded regions in the fluorescence slope indicates the 95% confidence interval of 

the slope for each cell. Here and elsewhere, error bars indicate mean ± SEM, unless 

indicated otherwise. H, Raw GCaMP6s fluorescence of automatically detected mPFC-

BLA cells across 15 spirals scanned at 10 Hz, in absence (left) and presence (middle) of 

TTX (see J for the soma-detection process). Right, Slope of GCaMP6s fluorescence 

traces for the same cells. Vertical lines inside boxes indicate median, boxes indicate 25th 

and 75th percentiles, and whiskers represent 5th and 95th percentiles. n = 645 cells from 

six slices in two mice. See also Figure S2B. I, Effects of scan parameters on maximal 

GCaMP6s ΔF/F0 (top; normalized per cell to the maximal value across conditions) and on 

probability for at least one spike per spiral (bottom). Cell-attached recordings were 

acquired from mPFC-BLA cells expressing stCoChR and GCaMP6s, while the cells were 

scanned with trains of 10 spirals. The following scan parameters were varied: diameter 

and duration of each spiral (left; n = 11 cells; light power on cell = 13.9 mW, inter-spiral 

interval = 100 ms), time interval between consecutive spirals (middle; n = 11 cells; light 

power on cell = 13.9 mW, spiral duration = 3.6 ms), and light power on cell (right; n = 10 

cells; spiral duration = 3.6 ms, inter-spiral interval = 100 ms). See Figure S2C for 

additional measurements. J, Process of targeting a group of cells for photostimulation and 

imaging. First, a two-photon image stack is acquired (left). An algorithm then 

automatically detects the cell bodies within the acquired image volume (middle; color 

scale indicates relative fluorescence intensity) and targets the detected cells for 

consecutive individual stimulation and imaging using spiral scans. Finally, the positions 

of the cells are transformed into brain-reference anatomical coordinates (right; the same 

cells are shown in red overlaid on a reference coronal atlas image). Cortical region 

abbreviations: Cg, cingulate; PL, prelimbic; IL, infralimbic, DP, dorsal peduncular; M1, 
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primary motor; M2, secondary motor. fmi, forceps minor of the corpus callosum. DV, 

dorsoventral axis; ML, mediolateral axis; AP, anteroposterior axis. 

 

 

Figure 2. Analysis and modeling of synaptic connections. A, Detection and modeling 

of excitatory postsynaptic currents (EPSCs) in continuous voltage-clamp recording traces 

obtained during stimulation of candidate presynaptic cells. Top, The zero-baseline 

version of the inverted recording trace (gray) was deconvolved with a synaptic-event 

waveform kernel using OASIS (purple trace). Putative EPSCs were detected based on 

peaks in the deconvolved trace. Dots and vertical dashed lines mark the fitted onset times 

of detected events (see Bottom). Middle, Putative events were then clustered by temporal 

proximity, and each cluster was fit with a model which assumes linear summation of 

EPSCs (blue traces). Bottom, Clustered events were decomposed and their kinetic 

features were extracted. EPSCs with amplitude below a 2.5 𝑆𝐷$  threshold (dashed line) 

were discarded (red traces). B, Peristimulus time histogram of EPSCs (n = 151797 

EPSCs recorded during stimulation of n = 10445 cells, bin size = 1 ms), overlaid with a 

fitted mixture model of gamma and uniform distributions. Parameter fits [95% 

confidence interval]: Gamma shape k = 4.1896 [3.7063, 4.6729]; gamma scale θ = 3.0942 

[2.6602, 3.5283]; weight w = 0.0455 [0.0421, 0.0489]. Only stimulated cells that did not 

evoke any direct photocurrent in the recorded cell were considered for this distribution. 
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C, Example traces obtained during stimulation of six mPFC-BLA cells while recording 

from another mPFC-BLA cell (left), and during repeated stimulation in the presence of 

glutamate-receptor blockers (right). The top three cells were synaptically connected to the 

recorded cell, and the bottom three were not. Note the compound photocurrent+EPSC 

response in the third cell (see Methods). D, Identification of synaptic connections based 

on EPSC distribution. Top, Overlaid traces recorded during stimulation of a synaptically 

connected cell (left) and a non-connected cell (right). Red shaded area denotes 

stimulation period, shaded lines are individual traces (n = 20 per cell), and dark lines 

indicate mean of all traces. Middle, Raster plots of the EPSCs. Bottom, Estimated 

probability density functions of the EPSC times, using either a model that assumes 

synaptic connection or a model that assumes no connection. The kernel density 

estimation (KDE) of the true EPSC times is presented as reference. E–F, Connectivity 

model performance, based on n = 10445 cell pairs, of which 243 are synaptically 

connected. E, Receiver operating characteristic curve. F, Precision and recall as a 

function of the model score threshold. G, A representative synaptic connectivity map 

describing the functional inputs onto a recorded mPFC-BLA cell from neighboring 

mPFC-BLA cells. Blue box on Atlas image (left) marks the anatomical location of the 

map. 
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Figure 3. Functional synaptic connectivity in cell populations of the ventral mPFC. 

A, Description of the three types of synaptic connections measured. B, Overlay of all 

connectivity maps obtained for each connection type in A. Stimulated cells are in shaded 

black, and connected (presynaptic) cells are color coded for connection strength. All cell 

locations are relative to their corresponding recorded (postsynaptic) cell position (within 

the same map), which is presented as a cyan triangle at the center of the overlaid maps. 

Positions along the depth of the slice (anteroposterior axis) are collapsed. C, Lack of 

correlation between the probability of connection and connection strength across all 
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connection types (n = 38 cells in mPFC-BLA to mPFC-BLA connections, n = 19 cells in 

mPFC-BLA to non-mPFC-BLA connections, and n = 18 cells in random mPFC to 

random mPFC connections). The shaded region around the regression line represents the 

95% confidence bounds. D, Weighted synaptic input according to the layer of the 

postsynaptic cell, for each connection type. Zero weighted input indicates that none of the 

stimulated cells was connected to the recorded cell. * Two-way ANOVA interaction 

effect between layer and connection type, F(2) = 6.7, p = 0.003. See also Figure S5. E, 

Weighted synaptic input as function of mediolateral position of the stimulated cells 

relative to the postsynaptic recorded cell. * p = 0.029; n.s. p ≥ 0.67. F, Weighted synaptic 

input as function of dorsoventral position relative to the recorded cell. † p = 0.091; n.s. p 

≥ 0.22. 
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Figure 4. Determinants of functional synaptic connectivity among mPFC pyramidal 

neurons. A–E, Electrophysiological properties of cell populations in the ventral mPFC (n 

= 36 mPFC-BLA cells, n = 19 non-mPFC-BLA cells, and n = 17 random cells). A, 

Representative current injection traces recorded from the three cell types corresponding 

to the connectivity maps in Figure 3. B, Firing rate as function of injected current for all 

cell types. Shaded areas represent SEM. C, Ratio between the n-th and the first inter-

spike intervals (ISIs). ISIs are taken from the current injection traces evoking closest to 

80% of the maximal firing rate per cell. D, Output gain for each cell type. * p = 0.015; 

n.s. p ≥ 0.26. E, Adaptation index for each cell type. ** p = 6.0×10–6; * p = 0.016; n.s. p 

= 0.24. See Figure S7A for additional electrophysiological properties and Table 3 for full 

statistics. F, Correlation between weighted input and input resistance across all cell types. 

G, Logistic regression model for predicting connectivity using all available features (n = 

20 total features; n for each category is mentioned in parentheses) on all cell pairs in the 

entire mPFC (n = 7752 cell pairs). Right, Model score calculated for connected cell pairs 

and for non-connected cell pairs. H, Feature selection performed using Horseshoe priors 

on the regression model. For each coefficient, the median (vertical line), 25th and 75th 
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percentiles (box), and 90% highest density interval (HDI, whiskers) of the posterior 

distribution are shown. Shaded area spans ±0.05 to represent change of 5% in odds (see 

Methods). See Figure S8 for the full posterior distributions. I, Cross-entropy between 

predicted connection probability (calculated using logistic regression as in G) and true 

connections, using different sets of features based on their selection in H. Cross-entropy 

of shuffled connections is calculated between true connections and predictions run on 

shuffled connections (n = 10000 shuffles). Mean probability prediction presents the 

cross-entropy between the true connectivity and a constant connection probability equal 

to its mean over all data. The bottom rows present cross-entropies calculated when using 

only selected features, while the denoted one is removed. Vertical lines present the mean 

and error bars present the SEM of cross-validated distributions of cross-entropies. 

Vertical blue lines present the cross-entropy calculated without cross-validation. Shaded 

vertical line indicates the mean of the cross-validated distribution of the model using 

selected features as reference. Note that the SEM of shuffled connections is too small to 

be discernible. P values on the right are based on comparison with the model that uses 

selected features (see Methods). 
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Figure S1. Retrograde labeling of mPFC-BLA cells and automated detection of cell 

bodies. A–B, Injection of Cre-expressing rAAV2-retro vectors into the BLA of Ai9 mice, 

which contain a Cre-dependent tdTomato expression cassette. A, Coronal sections (40 

µm thickness) containing the BLA (left) and the mPFC (middle and right) of three 

different mice, each injected with a different volume of the viral vector (top, 100 nl at 

injection rate of 10 nl/min; middle, 200 nl at 20 nl/min; bottom, 300 at 30 nl/min). The 

left BLA of each mouse was injected with rAAV2-retro-EF1α-Cre with titer of 4.1×1012 

genome copies per milliliter (gc/ml), and the right BLA was injected with the same 

volume of rAAV2-retro-hSyn-Cre with titer of 2.5×1013 gc/ml. Images on the right are 
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high-resolution confocal scans of the mPFC of the same mice as the images in the 

middle. Notice that rAAV2-retro-Cre leads to retrograde expression of Cre (and thereby 

tdTomato) in cells at presynaptic sites as well as at the injection site (BLA). This leads to 

fluorescent cell bodies in the BLA and to dense fluorescent axonal fibers at the mPFC (as 

well as retrograde cell bodies) which originate at the BLA. All scale bars are 1 mm. B, 

Quantification of cell density (top) and mean fluorescence intensity (bottom) in the 

mPFC and in the BLA, as a function of injected AAV volume and its titer. n = 2 mice for 

each volume. Circles represent individual mice and lines represent means. Measured 

regions are marked in cyan in A for three of the mice. Cell density in the BLA was not 

measured due to the high density of axonal fibers originating from retrogradely labeled 

presynaptic sites. C–E, Performance of the algorithm for automated detection of cell 

bodies in a scanned tissue volume. C, Fraction of false detections (where detection does 

not point to a cell) and double detections (where detection points between two adjacent 

cells) out of a total of 1046 automated detections in n = 5 scanned volumes from two 

mice. D, Distribution of fluorescence intensity across automatically detected cells (n = 

704) and manually registered cells (n = 1266) in four scanned volumes from four mice. * 

One-tailed, two-sample Kolmogorov-Smirnov test for manually vs. automatically 

detected cells: D1266,704 = 0.14, p = 2.2×10–8. All intensities are normalized to the 

maximal fluorescence among all cells within the same volume. Bin size is 0.02. Inset 

shows a Venn diagram of the manually registered and automatically detected cell bodies. 

E, Distribution of cell positions along the depth of the slice for the same cells as in D. 

Two-sample Kolmogorov-Smirnov test: D1266,704 = 0.04, p = 0.49. Bin size is 10 µm. 
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Figure S2. Spiral stimulation parameters and detection of spiking using GCaMP6s. 

A, Cell-attached recording (top) and GCaMP6s ΔF/F0 (bottom) from an mPFC-BLA cell 

during a train of 20 spirals (3.56 ms each) delivered at 10 Hz. Red ticks denote spiral-

scan periods, and spike-triggering spirals are highlighted by circles over the ΔF/F0 trace. 

B, Distribution of the difference between the GCaMP6s fluorescence slope in presence of 

TTX and its slope in absence of TTX, based on the cells in Figure 1H. The distribution is 

presented separately for cells that were determined to have spiked (blue) and those that 

did not spike (red) based on the lower bound of the confidence interval of the GCaMP6s 

fluorescence slope. Bins are 0.0015. C, Cell-attached recordings from mPFC-BLA cells 

expressing stCoChR and GCaMP6s during scanning with trains of 10 spirals. Diameter 

and duration of each spiral (left; n = 11 cells; light power on cell = 13.9 mW, inter-spiral 

interval = 100 ms), time interval between consecutive spirals (middle; n = 11 cells; light 

power on cell = 13.9 mW, spiral duration = 3.6 ms), and light power on cell (right; n = 10 

cells; spiral duration = 3.6 ms, inter-spiral interval = 100 ms) were varied, while the 
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number of evoked spikes per spiral (top), latency to first spike (middle), and jitter of first 

spike (bottom) were measured. See Figure 1I for additional measurements. 

 

 

Figure S3. Spatial specificity of stimulation and imaging relative to the labeled-cell 

density in the slice preparation. A, Spatial specificity of stimulation and imaging 

measured using cell-attached recordings from mPFC neurons while spiral patterns were 

scanned at varying positions relative to the cell. Left, Specificity across focal planes 

(axial, z). Right, Specificity within the focal plane (radial, xy). Top, Probability for 
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evoking at least one spike per spiral (brown) and maximal ΔF/F0 in a spiral train (green). 

Bottom, Latency to first spike, normalized to the latency on the cell. n = 6 cells for axial 

specificity and n = 4 cells for radial specificity. B, Full width at half maximum (FWHM) 

for axial specificity (left, z) and for radial specificity (right, xy), based on individual-cell 

data in A. FWHM of spiking vs. ΔF/F0: p = 0.44 in z and p = 0.12 in xy. C, Fraction of 

cells in a scanned tissue volume which have at least one neighboring cell that is found 

within their spiking FWHM ellipsoid. Data is presented for all cells in a volume as 

registered manually (blue) and for cells detected automatically using the soma-detection 

algorithm (purple). n = 4 scanned volumes from four mice. D, Mean number of within-

FWHM-ellipsoid neighbors, among the cells having within-ellipsoid neighbors. E, 

Fraction of cell pairs, among all possible pairs in a volume, which reside inside each 

other’s FWHM ellipsoid. 
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Figure S4. Distribution of stimulated-cell positions in anatomical space. A, Positions 

of all cells that were stimulated during recording from corresponding cells located 
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throughout the mPFC (PL, IL, and DP), in dorsoventral (DV) and mediolateral (ML) 

coordinates. mPFC-BLA cells are in red (n = 7737 cells from 67 experiments 

corresponding to 67 recorded cells), and randomly labeled mPFC cells are in black (n = 

2802 cells from 22 experiments corresponding to 22 recorded cells). Vertical dashed lines 

indicate division into layers, based on cell density shown in B (layer borders: 90, 205, 

and 300 µm from midline). L1 contains excitatory projection cells, consistent with known 

presence of L2 cells in L1 of the mPFC96. Horizontal dashed lines indicate division into 

subregions (PL/IL border: 1.5 mm; IL/DP border: 2.2 mm from dorsal midline edge). 

Notice that the anteroposterior (AP) position was collapsed (range of AP positions in all 

experiments: 1.2 to 2 mm from bregma), such that the IL/PL/DP borders are not 

consistent across experiments and are drawn based on average AP position. B, Number of 

cells in each experiment in 20 µm bins along the ML axis. Shaded areas indicate SEM. 

Borders of L3 were determined based on local reduction in cell density in the random-cell 

class. C, Total number of cells in all experiments in 20 µm bins. 
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Figure S5. Anatomical distribution of synaptic connections. A, Overall probability of 

connection within a distance of 300 µm from the recorded cell (top), mean connection 

strength (middle, with no restriction to the distance from the recorded cell), and weighted 

input onto the recorded cell within a 300 µm distance (bottom), for each connection type 

(n = 38 cells in mPFC-BLA to mPFC-BLA connections, n = 19 cells in mPFC-BLA to 

non-mPFC-BLA connections, and n = 18 cells in random mPFC to random mPFC 
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connections). Points are individual recorded cells corresponding to single maps, and error 

bars are mean ± SEM. Zero probability of connection (and, accordingly, zero weighted 

input) indicates that the recorded cell did not receive input from the stimulated cells. n.s. 

p ≥ 0.52. B, Probability of connection (top), connection strength (middle), and weighted 

input (bottom) as function of the radius of the sphere around the recorded cell where 

connections are measured. C, Probability of connection (top), , connection strength 

(middle), and weighted input (bottom) as function of the center of the annulus (50 µm 

thickness) around the recorded cell where connections are measured. D, Summary of 

cross-layer connections measured by weighted input. E, Connectivity properties arising 

from the slice volume located above the recorded cell and from an equally sized volume 

below the recorded cell. n = 92 cells of all types in the entire mPFC. * p = 0.006; n.s. p = 

0.30. 
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Figure S6. Short-term plasticity of synaptic connections. A, Amplitude of evoked 

EPSC as function of the stimulation pulse, normalized to the mean of the last five pulses, 

for the three connection types as in Figure 3A. Only the first 10 pulses were considered in 

experiments with a 15-pulse train, and in experiments with multiple repetitions of the 

stimulation protocol, all repetitions were averaged. B, Same as A, but pooling all 

connection types and separating according to the layer of the presynaptic cells (left) or 

layer of the postsynaptic cells (right). C, Same as B, but pooled according to both the 

presynaptic and the postsynaptic cell layer. 
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Figure S7. Electrophysiological properties of pyramidal neuron populations in the 

ventral mPFC. A, Electrophysiological properties of the different cell types. Color code 

as in Figure 4. See Figure 4B–E for additional properties. Notice that the apparent 

difference in sag ratio between the cell types stems from this parameter’s correlation with 

mediolateral position (C) and the larger fraction of mPFC-BLA cells in L5/6 compared 

with the other cell types (Table 1). B, Pairwise correlations between electrophysiological 
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properties and connectivity properties. Top, P values of pairwise correlations. Bottom, 

Correlation coefficients for pairwise correlations. Connection probability, connection 

amplitude, and weighted input are calculated as in Figure S5A. C, Correlation between 

cells’ mediolateral position and their electrophysiological properties, for each cell type 

and for all cells pooled (right). Lines are linear fits and shaded regions represent 95% 

confidence intervals of the linear fit. Magenta (right) represents fits for all cells pooled. 
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Figure S8. Posterior distributions of regression coefficients calculated using 

Horseshoe priors. Thick horizontal lines represent the 90% highest density interval (HDI). 

Density scaling is identical for all features. See Figure 4H for summary of the distributions. 
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Table 1. Total numbers of cells and animals in each experiment type. 

 Map type 
mPFC-BLA to 
mPFC-BLA 

mPFC-BLA to 
non-mPFC-BLA 

Random to 
random 

Number of 
postsynaptic 
cells (maps) 

Ventral 
mPFC 
(IL+DP) 

L2 10 7 10 
L3 9 8 0 
L5/6 19 4 8 

Dorsal 
mPFC 
(PL+Cg) 

All 
layers 9 2 6 

Number of 
stimulated 
cells 
(responsive) 
*, ** 

Ventral 
mPFC 
(IL+DP) 

L2 883 586 1169 
L3 1161 846 0 
L5/6 1439 500 913 

Dorsal 
mPFC 
(PL+Cg) 

All 
layers 659 150 474 

Number of 
animals *** 

Ventral 
mPFC 
(IL+DP) 

L2 7 6 4 
L3 8 5 0 
L5/6 14 3 6 

Dorsal 
mPFC 
(PL+Cg) 

All 
layers 8 2 4 

* In this Table, all stimulated cells within a given map are considered to be in the same 

layer as the postsynaptic cell of the same map. 

** Only stimulated cells determined to have spiked in response to stimulation by their 

GCaMP6s signal are counted. 

*** The same animal can be counted multiple times when it was used for recording from 

cells in different regions or from different cell types (mPFC-BLA cells and non-mPFC-

BLA cells). n = 38 animals were used in total for recording in this study. 

 

 

 

 



59 
 

Table 2. Numbers of cells per each individual experiment. 

Map 
type 

Recorded (postsynaptic) cell Stimulated cells 
Region Layer # total # spiking # included * % spiking 

mPFC-
BLA to 
mPFC-
BLA 

IL 5/6 45 35 34 77.8 
IL 2 204 143 138 70.1 
IL 3 160 141 129 88.1 
IL 3 116 89 81 76.7 
IL 3 246 242 228 98.4 
IL 3 179 159 154 88.8 
DP 5/6 32 13 13 40.6 
DP 5/6 236 234 233 99.2 
PL 5/6 245 215 112 87.8 
PL 5/6 169 72 70 42.6 
IL 5/6 118 104 101 88.1 
PL 5/6 79 67 65 84.8 
IL 5/6 94 83 81 88.3 
PL 3 63 21 20 33.3 
IL 2 152 130 128 85.5 
PL 2 89 49 48 55.1 
PL 5/6 41 21 21 51.2 
IL 3 186 166 162 89.2 
IL 5/6 175 153 152 87.4 
PL 3 117 97 95 82.9 
PL 2 77 61 61 79.2 
DP 5/6 179 136 131 76.0 
IL 3 118 111 106 94.1 
IL 5/6 88 56 56 63.6 
PL 3 93 56 54 60.2 
IL 2 94 74 70 78.7 
IL 5/6 56 43 43 76.8 
IL 2 94 82 81 87.2 
IL 2 66 54 54 81.8 
IL 5/6 95 45 44 47.4 
IL 5/6 59 26 20 44.1 
IL 5/6 64 42 40 65.6 
IL 3 76 50 44 65.8 
DP 5/6 90 63 47 70.0 
DP 5/6 119 67 67 56.3 
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IL 3 126 121 108 96.0 
IL 5/6 89 63 58 70.8 
IL 5/6 80 51 50 63.8 
IL 2 40 31 31 77.5 
IL 2 78 76 71 97.4 
IL 2 103 87 78 84.5 
IL 2 111 96 84 86.5 
IL 2 145 110 109 75.9 
IL 3 113 82 79 72.6 
IL 5/6 118 101 101 85.6 
IL 5/6 134 93 92 69.4 
IL 5/6 47 31 31 66.0 

mPFC-
BLA to 
non-
mPFC-
BLA 

Cg 5/6 118 88 88 74.6 
IL 3 246 225 224 91.5 
IL 2 148 70 68 47.3 
IL 5/6 211 194 194 91.9 
IL 5/6 113 106 106 93.8 
IL 3 100 88 88 88.0 
IL 3 93 79 78 84.9 
IL 2 110 86 86 78.2 
IL 2 66 35 35 53.0 
DP 5/6 181 136 136 75.1 
IL 2 101 90 90 89.1 
IL 2 124 106 106 85.5 
IL 2 135 110 110 81.5 
IL 5/6 70 64 64 91.4 
IL 3 114 77 77 67.5 
IL 3 151 131 130 86.8 
IL 3 109 102 101 93.6 
IL 3 104 99 99 95.2 
IL 2 100 89 88 89.0 
PL 3 92 62 62 67.4 
IL 3 71 45 45 63.4 

Random 
to 
random 

IL 5/6 155 143 141 92.3 
Cg 5/6 91 78 78 85.7 
IL 5/6 106 105 104 99.1 
IL 5/6 106 104 102 98.1 
IL 5/6 156 137 135 87.8 
PL 5/6 109 63 63 57.8 
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PL 5/6 142 129 129 90.8 
PL 5/6 50 43 42 86.0 
PL 5/6 126 115 114 91.3 
IL 5/6 151 132 131 87.4 
IL 5/6 163 143 142 87.7 
IL 5/6 129 109 109 84.5 
IL 2 104 90 88 86.5 
IL 5/6 117 40 40 34.2 
Cg 2 69 46 46 66.7 
IL 2 201 193 161 96.0 
IL 2 148 144 142 97.3 
IL 2 158 152 138 96.2 
IL 2 93 72 70 77.4 
IL 2 73 57 57 78.1 
IL 2 176 170 166 96.6 
IL 2 85 68 63 80.0 
IL 2 157 147 121 93.6 
IL 2 97 76 75 78.4 

* Cells included in the analysis, after exclusion of all stimulated cells according to criteria 

detailed in Methods. 

 

Table 3. Statistics for electrophysiological properties of all cell types. 

Property Cell type Kruskal-Wallis test Post hoc comparisons (p value) 
mPFC-BLA Non-mPFC-BLA Random mPFC χ2 p value mPFC-BLA 

vs. non-
mPFC-BLA 

mPFC-BLA 
vs. random 
mPFC 

Non-mPFC-
BLA vs. 
random mPFC n Mean SEM n Mean SEM n Mean SEM 

Rm (MΩ) 36 217.4 12.3 19 188.8 15.0 17 188.1 21.1 2.7 0.26 0.49 0.29 0.93 
Cm (pF) 36 119.2 9.2 19 139.2 8.8 17 129.6 6.5 6.0 0.051 0.063 0.23 0.89 
Max firing rate (Hz) 36 30.9 1.3 19 30.5 1.9 17 33.1 2.4 0.56 0.75 0.97 0.82 0.75 
Output gain (Hz/pA) 36 0.13 0.0077 19 0.10 0.005 17 0.12 0.010 7.8 0.020 0.015 0.63 0.26 
Adaptation index 36 3.3 0.21 19 1.95 0.16 17 2.3 0.20 24.1 5.8×10–6 6.0×10–6 0.016 0.24 
Bursting index 36 1.82 0.078 19 1.87 0.095 17 1.80 0.12 0.69 0.71 0.74 0.99 0.74 
Sag ratio 36 0.14 0.014 19 0.076 0.015 17 0.10 0.016 11.7 0.0029 0.0021 0.25 0.31 
Spike threshold (mV) 36 –38.5 0.66 19 –36.8 0.91 17 –39.3 0.93 3.9 0.14 0.24 0.86 0.16 
Spike half-width (ms) 36 1.52 0.069 19 1.29 0.065 17 1.27 0.09 6.3 0.044 0.10 0.10 1.00 
Spike amplitude (mV) 36 85.1 0.66 19 85.0 1.6 17 87.0 2.2 3.3 0.19 0.94 0.17 0.39 
Holding current (pA) 34 –44.6 6.2 19 –10.7 5.7 18 –15.2 7.4 15.2 5.0×10–4 0.0013 0.014 0.83 
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Table 4. Parameters used for detection and modeling of EPSCs. 

Parameter Value Description 
Detrending parameters 

f_sample 5000 Hz Frequency to which the signal was 
downsampled (using the resample_poly 
function) 

order_filter_len 50 ms Sliding window of the 10th percentile filter 
f_to_decimate 200 Hz Frequency to which the percentile-filtered 

trace was downsampled to find the 
baseline 

Median filter order 3 points Median filter width applied to the 200 Hz 
signal 

𝑆𝐷$  1.4826×MAD Standard deviation was estimated robustly 
using this formula, where MAD is the 
median absolute deviation around the 
median.  

Deconvolution parameters (OASIS) 
noise_factor 0.8 Noise is this factor × 𝑆𝐷$  
𝜏01234  3.5 ms Decay time constant of the kernel 
𝜏9:;1  0.7 ms Rise time constant of the kernel 
Kernel formula 𝑛 × 𝑒𝑥𝑝-−𝑡 𝜏01234⁄ 6

× -1
− 𝑒𝑥𝑝(−𝑡 𝜏9:;1⁄ )6 

where 𝑛 normalizes the peak to 1 
 

max_iter 10 Number of iterations OASIS algorithms 
runs for 

penalty 1 1 means it uses the L1 penalty to sparsely 
reconstruct the signal.  

oasis.functions.dec
onvolve 

 The function in the OASIS library used 
for the deconvolution 

Peak detection parameters 
noise_factor 0.5 Minimum peak height and prominence is 

this factor × 𝑆𝐷$  
split_gap_ms 2.0 ms Minimum gab between two peaks 
conv_filt_ms 2.5 ms Width of the triangular filter used on the 

deconvolved trace 
scipy.signal.find_p
eaks 

 The function used to find peaks in the 
deconvolved trace 

Segmentation (clustering) parameters 
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thresh 1.8 This factor × 𝑆𝐷$  is the height below which 
the denoised trace must go to split it. 
Lower thresh leads to more events per 
cluster. 

pre_c_ms 10 ms The previous cluster is combined if it is 
within this distance when it falls below the 
threshold 

post_c_ms 20 ms The next cluster is combined if it is within 
this distance when it falls below the 
threshold 

pre_j_ms 10 ms The previous cluster is combined if it is 
within this distance of the first event 

post_j_ms 10 ms The next cluster is combined if it is within 
this distance of the last event 

Fitting parameters 
jitter 10 ms How far the event onset time 𝑜 can be fit 

from the initial estimate 𝑜B 
height_factor_high 3 how many bigger times the event height ℎ 

can be fit from the initial estimate ℎD 
height_factor_low 15 how many smaller times the event height 

ℎ can be fit from the initial estimate ℎD 
tau1_min 0.5 ms Lower bound of 𝜏01234  
tau1_max 50 ms Upper bound of 𝜏01234  
tau2_min 0.1 ms Lower bound of 𝜏9:;1  
tau2_max 10 ms Upper bound of 𝜏9:;1  
noise_factor 1 The root mean square error between the 

signal and its reconstruction [𝑅𝑀𝑆(𝑆 −
𝑠̃)] is divided by noise_factor×𝑆𝐷$  to 
normalize it. 

regularization 0.2 The root mean square error between the 
onset time and its estimate [𝑅𝑀𝑆(𝑜 − 𝑜B)] 
is multiplied by this number to get the 
regularization. Using these values of 
noise_factor and regularization yields 
���(��;̃)

��$
+ ���(x�xB)

�
 which is being 

minimized. 
maxiter_DA 5000×num_events_in

_cluster 
num_events_in_cluster is the number of 
events in the cluster 
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maxfev_DA 5000×sqrt(num_event
s_in_cluster) 

 

maxiter_Powell 300×num_events_in_
cluster 

 

maxfev_Powell 3000×num_events_in
_cluster 

 

 

Table 5. Priors used in the Bayesian connectivity models. 

Prior Value Comments 
evoked_window 90 ms Disregarding the last 10 ms before the next 

stimulation 
rate_mu 4.83 Hz Calculated empirically from the distribution of 

rates during spontaneous intervals over all cells rate_sigma 3.79 Hz 
Evoked_per_trial_mu 1.0 An informative prior; these values define a 

connected cell in the model assuming connection 
(model 2) 

Evoked_per_trial_sigma 0.35 

bump_center_mu 12.7 ms Calculated empirically from the data used in Figure 
2B bump_width_mu 6.33 ms 

bump_center_sigma 6.33 ms 
bump_width_sigma 1.5 ms A small value to for computational stability 
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