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Abstract: Image scanning microscopy (ISM), an upgraded successor of the ubiquitous confocal
microscope, facilitates up to two-fold improvement in lateral resolution, and has become an
indispensable element in the toolbox of the bio-imaging community. Recently, super-resolution
optical fluctuation image scanning microscopy (SOFISM) integrated the analysis of intensity-
fluctuations information into the basic ISM architecture, to enhance its resolving power. Both of
these techniques typically rely on pixel-reassignment as a fundamental processing step, in which
the parallax of different detector elements to the sample is compensated by laterally shifting the
point spread function (PSF). Here, we propose an alternative analysis approach, based on the
recent high-performing sparsity-based super-resolution correlation microscopy (SPARCOM)
method. Through measurements of DNA origami nano-rulers and fixed cells labeled with
organic dye, we experimentally show that confocal SPARCOM (cSPARCOM), which circumvents
pixel-reassignment altogether, provides enhanced resolution compared to pixel-reassigned based
analysis. Thus, cSPARCOM further promotes the effectiveness of ISM, and particularly that of
correlation based ISM implementations such as SOFISM, where the PSF deviates significantly
from spatial invariance.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Super-resolution imaging enables the visualization of sub-diffraction limited objects, and has
become an invaluable tool in the study of biology [1,2]. High-end prevailing modalities, such
as stochastic optical reconstruction microscopy (STORM) [3], photo-activated localization
microscopy (PALM) [4] and stimulated emission depletion (STED) [5], offer a significant gain in
resolution that inevitably goes hand in hand with added experimental complexity, e.g. in the
optical setup, sample preparation and imaging conditions. Other techniques, such as structured
illumination microscopy [6] strive to achieve a more modest resolution improvement, with only
little compromise on ease of implementation. A recent addition to this class of techniques is
image scanning microscopy (ISM) [7,8]. Essentially, ISM relies on the ubiquitous architecture of
a confocal microscope, but replaces the bucket detector with a pixelated one, where each pixel
in the array acts as a sub-diffraction limited pinhole in a confocal scanning laser microscope.
Consequently, the integrated response of the entire array can be analyzed to yield enhanced
transverse resolution without any loss of signal. ISM has been incorporated into commercial
products [9], and has become a successful robust technique for the bio-imaging community [10].
The core concept of ISM is the basis for numerous upgrades, extending further its capabilities.
Examples include all optical realizations [11,12], point spread function (PSF) engineering [13,14]
and multiphoton excitation [15–17]. Furthermore, ISM has been hybridized with different
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imaging contrast mechanisms such as fluorescence lifetime [18], Raman scattering [19] and
photon antibunching [20,21].

Recently introduced, a method called ‘SOFISM’ merged classical correlation information
in the photon stream, the contrast agent used in super-resolution optical fluctuation imaging
(SOFI [22]), with an ISM microscope to further enhance its transverse and axial resolution [23].
Essentially, since in ISM every detector pixel sees the object at a slightly different parallax,
rather than summing the detected signal from all pixels as in a standard confocal microscope, the
contributions from different pixels are first shifted to account for the parallax and then summed.
This process is termed ‘pixel-reassignment’.

The inherent assumption when performing pixel-reassignment is that the PSF is nearly spatially
invariant. While this assumption is fulfilled in most ISM implementations, any deviation
thereof implies room for improvement in imaging performance. Upgrading the reassignment
process, which is equivalent to PSF averaging, to account for Stokes-shift, deviations from a
Gaussian profile, aberrations and other imaging conditions, might include assignment of adaptive
shift vectors to individual images [17,18,24,25]. Clearly, for SOFISM, which corresponds to
correlation-enhanced ISM, there is a significantly larger algorithmic component entailed in the
analysis of the correlation information. Furthermore, the assumption of spatial invariance is
far from being correct for any realistic PSF, since the functional form of a multiplication of the
PSF with its spatially shifted replica depends on the shift for most PSFs. Therefore, SOFISM
analysis accentuates the spatial variance of the PSF, relative to standard ISM. In this work, we
take advantage of ideas based on multi-measurement vector recovery and sparsity [26–28], to
enhance the analysis of correlation information in ISM.

Sparsity-based signal recovery has become a valuable tool in many fields [27], including
super-resolution imaging [29–36]. In [34] the authors developed a method named SPARCOM
(sparsity-based super-resolution correlation microscopy), which relies on concepts from the field
of sparse reconstruction, to algorithmically reconstruct super-resolved images out of fluorescence
intensity fluctuations information in a wide-field microscope. It was shown that sparse recovery
in the correlation domain, utilized in SPARCOM, extends the limits of image recovery from
correlation information.

Following SPARCOM, here we extend the correlation-domain sparsity analysis to suit
scanning microscopy modalities and name it ‘confocal sparsity-based super-resolution correlation
microscopy’ (cSPARCOM). We discuss the relation between cSPARCOM and pixel-reassignment,
and demonstrate that the naturally accentuated PSF spatial variance in scanning microscopy
enhances the advantage of cSPARCOM analysis. Strictly speaking, we aim to retrieve augmented
reconstructions of the underlying fluorescent objects in a confocal scan by formulating a convex
optimization problem which utilizes sparsity in the correlation domain. Remarkably, our
approach provides a means to improve on the process of pixel-reassignment, through bypassing
the very process itself. We show that cSPARCOM is capable of obtaining resolution-enhanced
reconstructions, and implement it first on simulated data, and subsequently on experimental data
from scans of DNA origami nano-rulers, resolving features down to less than 100 nm. Finally,
we implement cSPARCOM on experimental data acquired in scans of fixed cells labelled with
ATTO 647N. Our results demonstrate that cSPARCOM is capable of resolving fine spatial detail
which are obscured in pixel-reassignment based analysis.

2. ISM correlations and multi-detector reconstruction

In the following, we describe the empirical acquisition of temporal correlation information in a
confocal microscope, and the concept lying at the basis of cSPARCOM analysis.

The experimental setup is essentially a realization of an ISM microscope with fast detectors,
capable of probing fast fluorescence fluctuations, with a characteristic time of up to a few tens of
microseconds (described in detail in Supplement 1). A fluorophore-labeled object is scanned
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through a tightly focused laser beam, and the emitted fluorescence is collected, filtered and
imaged onto a pixelated detector whose overall size spans approximately one Airy unit (AU),
as depicted in Fig. 1(a). The pixelated detector consists of a fiber-bundle that guides the light
to 14 individual single photon avalanche detectors (SPADs). The SPADs are connected to
a time-correlated single-photon counting (TCSPC) card that records the arrival times of the
incoming photons [37]. The SPADs and TCSPC high temporal resolution (sub-nanosecond)
oversamples the fluorescence intensity fluctuations, and in fact temporal binning is carried out in
post processing.

Fig. 1. Data acquisition and analysis schemes. (a) Optical setup. The standard pinhole in
a confocal microscope is replaced by a fiber-bundle (FB), routing the fluorescent light to
14 individual SPADs. Exc, excitation laser; L, lens; DM, dichroic mirror; Obj, objective
lens; Inset shows the facet of the fiber-bundle. The green dot represents the intersection
of the optical axis with the image plane. (b) SOFISM SR image reconstruction procedure.
Second-order correlation is calculated between all combinations of detector pairs to yield a
stack of 142 images. An intermediate SOFISM image is created using pixel-reassignment
processing, followed by application of a SR algorithm. (c) cSPARCOM image reconstruction
procedure. The stack of correlation images is formed in the same manner as in (b). A
similar SR algorithm, only modified to address the exclusion of pixel-reassignment, is used
to reconstruct an image directly from the raw image stack.

The fact that each pixel is much smaller than the imaging PSF grants ISM lateral resolution
gain, up to a factor of two over the diffraction limit [8]. A useful way to illustrate the source
of resolution improvement is to consider the probability to detect a signal from emitters in the
object. In ISM, signal detection comprises the probability to excite an emitter, and the probability
to detect its emitted fluorescence, which amounts to multiplication of the excitation and imaging
PSFs, leading to a narrower effective PSF. SOFISM extends the capabilities of standard ISM
by analyzing temporal intensity fluctuations (blinking), naturally occurring in practically all
fluorescent emitters, rather than their integrated intensity value [23]. The key ingredient is that
fluorescent emitters blink independently from one another, excluding adjacent emitters which
might be affected by short-range inter-molecule interactions. As a result, calculating the nth order
statistics of the intensity holds the potential to an

√
n-fold resolution improvement compared to

the diffraction limit [22]. Furthermore, applying Fourier reweighting (deconvolution) one can
in principle achieve an n-fold improvement. In this work we chose to focus on second-order
correlations in fluorescence fluctuations, although the ideas presented here, may be applied to
higher correlation orders. The resolution improvement in second-order SOFISM is therefore the
merger of two contributions, blinking and ISM, enabling up to four-fold resolution improvement
over the diffraction limit. Attributing the resolution enhancement of SOFISM to the multiplication
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of native PSFs, the resulting PSF is composed of a multiplication of two ISM PSFs, representing
the correlation between pairs of detectors, or the auto-correlation of a detector with itself.

Pixel-reassignment is an integral part of ISM modalities: Indeed, resolution is enhanced owing
to the fact that each detector is much smaller than the PSF, nonetheless only a small fraction
of the light is collected by it. In order to fully capitalize on the enhanced resolution, without
a prohibitive degradation in the signal-to-noise ratio (SNR), the information from different
detectors should be merged. Because each detector sees the imaged object at a different parallax,
its recorded image features a respective spatial displacement. Thus, prior to summation, an
adequate lateral shift correction needs to be applied to each image. In ISM, reassignment can be
performed either in post processing or through all-optical realizations that alleviate the need for
a fast detector array and multiple exposures [11,12]. In contrast, in SOFISM, due to the need
to calculate correlations, pixel reassignment is implemented solely in post processing, using a
straightforward generalization of pixel-reassignment to account for all combinations of detector
pairs. However, as will be described in the next section, the very process of image summation
via pixel-reassignment causes degradation of the fine details in the correlation image, due to the
fact that the PSF in SOFISM is far from being spatially invariant.

In an effort to obtain enhanced super-resolved images, we propose an alternative approach
to analyze SOFISM scans, employing a sparsity-based reconstruction algorithm, and notably
circumventing pixel-reassignment. Following a SOFISM scan, deconvolution can be performed
in two distinct paths – either on pixel-reassigned data or on the raw data itself. The first
is schematically shown in Fig. 1(b), and includes three main steps. Initially, it undertakes
calculation of correlation images from all detector pairs. This is then followed by formation of
a SOFISM image, through a pixel-reassignment process. Finally, it involves implementing a
sparse reconstruction (SR) optimization algorithm on the pixel-reassigned image. In contrast,
the second path, depicted in Fig. 1(c), is comprised of only two stages. While calculation of the
stack of correlation images is identical, it is now followed directly by application of a modified
SR algorithm, cSPARCOM. Notably, we skip the intermediate step of generating a SOFISM
image by pixel-reassignment. It is important to mention that, in order to make a meaningful valid
comparison, the altered algorithm leaves the underlying type of optimization problem unchanged;
it only introduces an adaptation accounting for the fact that no pixel-reassignment was performed.
While these paths may seem, at first sight, perfectly interchangeable, careful inspection of the
role of pixel-reassignment shows that these two schemes are not equivalent. As a matter of
fact, the method in Fig. 1(c) exhibits greater potential for resolution improvement relative to
that in Fig. 1(b). The next section explores a secondary effect of pixel-reassignment processing,
unveiling a resolution improvement source, which we harness in our approach.

3. Exploiting PSF variations to enhance resolution

In scanning microscopy, the effective PSF pertaining to each detector depends on its position
with respect to the optical axis. This can readily be understood by recalling that the spatial profile
of the PSF corresponds to multiplication of the native PSFs, the excitation and the detection
one. In general, the shape of a multiplication of functions need not be invariant to relative
shifts between them. A special case is the multiplication of two Gaussians, which maintains
its functional profile up to a multiplicative factor, regardless of their relative position. Even
though a Gaussian approximation of the PSF is predominantly useful and convenient, when
considering the fine detail, the deviations from a Gaussian shape become significant. In the case
of circular-aperture optics, a more accurate model of the PSF is an Airy disk. Consequently,
different detectors are characterized by varying PSFs, as illustrated in Fig. 2. Panel (2.a) presents
an exemplary assortment of ISM PSFs of point-like detectors at different distances from the
optical axis, where the imaging system is characterized by an Airy shaped PSF. These PSFs
are formed by multiplying the laser excitation PSF with the detection PSF of each detector. It
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is clearly evident that the greater the distance between the detector and the optical axis, the
more distorted and asymmetric its PSF profile. In addition, the relative amplitudes of the PSFs
express the fact that detectors far from the optical axis naturally collect less light, and their overall
contribution is less dominant than detectors which are near the optical axis.

Fig. 2. Variations of the PSF in scanning microscopy. (a) First order PSFs of detectors
at various distances from the optical axis: (i) On axis detector; (ii) 0.4 AU; (iii) 0.8 AU;
(iv) 1.3 AU. PSFs in (a) were normalized to the highest value in (a-i); (b) Second order
auto-correlation PSFs of the same detectors as in (a). (i) On axis detector; (ii) 0.4 AU; (iii)
0.8 AU; (iv) 1.3 AU. PSFs in (b) were normalized to the highest value in (b-i); Scale bar:
1 AU.

Similarly, second-order correlation SOFISM PSFs are comprised of multiplication of three of
the native system PSFs, one of the excitation squared, and two of detection. Alternatively, one
can think of second-order SOFISM PSFs as the multiplication of two ISM PSFs. Panel (2.b)
portrays profile variations in SOFISM PSFs, corresponding to the auto-correlation of detectors
located at the same positions as in panel (2.a). We note that many other PSF shapes occur,
upon considering cross-correlation between pairs of detectors, rather than a single detector’s
auto-correlation. The former involves multiplication of two distinct ISM PSFs, whereas the latter
involves a single ISM PSF squared. In the interest of simplicity, panel (2.b) includes examples of
single detector auto-correlation PSFs only.

Figure 2 intuitively establishes the reason why pixel-reassignment of the image stack leads to
loss of information in the final image [25,38]. Essentially, every image in the stack is characterized
by a slightly different blurring, dictated by its PSF. As a result, translation and summation of
different images, amounts to averaging images which are blurred in different ways. In particular,
fine details originally present in each raw image, can become obscured due to this averaging
process, impairing the resolution of the final image. An upgraded scheme for image summation
is called adaptive pixel-reassignment [22–25]. Even though adaptive pixel-reassignment does
not eliminate PSF averaging, it achieves improved results, as compared with, for example, the
all-optical reassignment methods, which feature a predetermined shift vector [11,12,15].

cSPARCOM bypasses PSF averaging and takes advantage of the various PSF shapes naturally
occurring in SOFISM measurements, to improve the resolution of the final image. In principle,
we alleviate the need for pixel-reassignment using the approach of algorithmic fusion of individual
images with complementary properties (see for example [35,39,40]). More specifically, we
incorporate the inherent PSF variations into a sparsity-based algorithm, and achieve enhanced
reconstructions from both simulated and experimental measurements. We further revisit the
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SPARCOM algorithm for wide-field images and note that it too circumvents pixel-reassignment
which is usually performed in SOFI when assigning the correlation signal between different pixels
to new ‘virtual’ pixels [22]. In the case of wide-field SOFI and SPARCOM, the significance of
PSF averaging is relatively minor since the effective PSFs are comprised of a multiplication of only
two detection PSFs. However, in SOFISM and cSPARCOM, the effective PSFs are comprised of
a multiplication of four PSFs, two of the excitation PSF and two detection PSFs. Consequently,
the spatial variance of the PSFs in cSPARCOM is more pronounced, thus enhancing the benefit
of circumventing pixel-reassignment.

4. Reconstruction algorithms

In the following section we describe the two analysis algorithms, corresponding to Figs. 1(b)-(c).
Essentially, these algorithms are used to computationally reconstruct the underlying object of
interest out of the measured data. This is achieved by formulating and solving an appropriate
optimization problem which encompasses the imaging process and prior knowledge about the
properties of the object.

4.1. SOFISM SR

We start with standard image SR, which serves as a means for comparison for the cSPARCOM
algorithm, presented subsequently. Consider the setting depicted in Fig. 1(b). In the framework
of image SR, one aims to recover a high resolution N × N image, from a low resolution M × M
image, where M<N. The image is mathematically modeled by a discrete linear system y = Ax+n.
The vector yM2×1 is a column stacking of the measured image, nM2×1 is unknown noise, and
the vector xN2×1 is the high resolution image to be estimated. The matrix AM2×N2

is a known
blurring operator, its columns being subpixel shifted copies of the PSF of the imaging system.
Reconstruction means solving an optimization problem, namely minimizing a cost function, in
order to retrieve the ‘true’ deblurred object x.

Importantly, since the number of measurements M2 is smaller than the number of variables
N2, generally one needs to regularize the solution in order to obtain a meaningful recovery. A
very powerful approach in super-resolution imaging, and compressed sensing in general, is to
enforce sparsity in the solution, meaning that only a small percentage of its elements are non-zero
[27,28]. The requirement for sparsity in some basis representation is a very prevalent property in
nature [29,41]. Utilization of the l1 norm as a measure for sparsity, alongside a least squares data
fidelity term, leads to the well known convex optimization problem

minimize
x

{| |Ax − y| |22 + λ | |x| |1}, (1)

where | | · | |2 denotes the l2 norm, | | · | |1 is the l1 norm, and λ ≥ 0 is a regularization parameter.
In the setting shown in Fig. 1(b), y represents the pixel-reassigned SOFISM image, and the

constituent PSF of A corresponds to the averaged SOFISM PSF.

4.2. cSPARCOM

Next, we turn to consider the case where instead of forming a reassigned image we have a
multiplicity of sub-images yi, the index i running through the image stack at our disposal. In
addition to multiple images, we have their concomitant PSFs Ai, as was elucidated earlier. In
light of the above, we formulate the following revised convex optimization problem

minimize
x

{

R∑︂
i=1

| |Aix − yi | |
2
2 + λ | |x| |1}, (2)

where R is the number of sub-images. The reconstruction problem expressed in Eq. (2) correlates
with the diagram in Fig. 1(c), in which the raw image stack is input to the algorithm. In
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this formulation, each image yi, originating from the correlation between a pair of detectors,
contributes a separate term to the sum of least squares. Importantly, it enters the sum with
its associated measurement matrix Ai, that may encapsulate lateral shifts as well as shape
distortions in the PSF. Clearly, the problems in Eq. (1) and Eq. (2) both represent optimization
problems of a similar form. The substantial difference between them is, that the former handles
the pixel-reassigned image, whereas the latter takes into account the original multiplicity of
sub-images without pixel-reassignment. We note that in the case of a Gaussian PSF, the solution
of Eq. (2) becomes equivalent to that of Eq. (1), since reassignment does not alter the shape of
the resulting PSF.

The problem in Eq. (2) can be transformed to a more concise form, in the spirit of the work
by Solomon et al. [34], where the authors exploited correlations in a widefield microscope
through SPARCOM analysis. The equivalent representation is derived in detail in Supplement 1.
Essentially in this alternative form of cSPARCOM, the temporal correlations between detectors
are calculated as part of the algorithm, and not in a pre-processing stage. In turn, this simplifies the
input to the algorithm. Relating to the optical setup used here, the input reduces to 14 detectors’
time traces and PSFs, instead of 142 images and PSFs. Nevertheless, we chose to present the
problem in its current form [Eq. (2)], inasmuch as it allows for a straightforward comparison to
Eq. (1). We note, that both problems are solved using the fast iterative shrinkage-thresholding
algorithm (FISTA) method [42,43] (see Supplement 1).

5. Simulation

We first examine cSPARCOM on simulated data, emulating a confocal scan of a known scene of
stochastically fluctuating emitters (see Supplement 1). Figure 3(a) shows the ground truth for this
scan, comprising a preset arrangement of emitters with variable-brightness, smoothened with a
narrow Gaussian PSF. The resulting SOFISM image, is presented in Fig. 3(b). As described earlier,
SOFISM image processing includes calculation of temporal correlations between all detector
pairs, adequate pixel-reassignment, and summation of all contributing images. While some
coarse structural details are already apparent in the SOFISM image, application of reconstruction
algorithms is expected to yield an improved representation of the hidden ground truth. In
Fig. 3(c) we applied cSPARCOM reconstruction on non pixel-reassigned data, according to
Eq. (2). As a reference for the performance of cSPARCOM, we use the results of a standard
image SR [see Eq. (1)], implemented on the processed SOFISM image [Fig. 3(d)]. Visually
inspecting the reconstruction results in Figs. 3(c-d), we observe that cSPARCOM delivers a better
representation of the ground truth than regular SOFISM SR. Even though both reconstructions
share many similarities in either readily resolvable situations or challenging ones, cSPARCOM
is able to resolve more emitters, at a borderline separation range of about 60 − 70 nm, and to
better estimate the distances between them. We conducted many such simulations, with different
scene, noise and fluctuation realizations, and in all of them cSPARCOM performed at least as
well as SOFISM SR. In the majority of cases, it obtained better results. As discussed earlier,
pixel-reassignment prior to reconstruction is the only substantial difference between the two
methods. Thus, we attribute the enhanced performance of cSPARCOM to its deliberate evasion
of pixel-reassignment. Put differently, the simulation results in Fig. 3 demonstrate that the
common practice of pixel-reassignment in correlation microscopy is accompanied by some loss
of information, which otherwise can be accessible through alternative analysis. Although the
resolution gain potential is modest, it nevertheless reaches to the extent where it bears discernible
differences in algorithmic reconstructions.

We conclude this section with a discussion on the effect of PSF averaging on ISM reconstructions.
Purportedly, the negative effect of PSF averaging on SOFISM is expected to hamper ISM image
reconstruction in an analogous manner. Likewise, if we were to exploit the different PSFs in ISM
[see Fig. 2(a)] and bypass pixel-reassignment in the reconstruction, we might similarly harvest
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Fig. 3. Performance of cSPARCOM and standard SOFISM SR algorithms on simulated
data. (a) Ground truth of a scene of emitters. (b) SOFISM image analyzed from a scan
featuring 30 ms pixel dwell time and 40 nm step size. (c) cSPARCOM reconstruction of
correlation image stack (not shown). (d) SR reconstruction implemented on (b). Marked
frames designate an area where cSPARCOM resolves more particles than SOFI SR. Scale
bar, 250 nm.

the hidden resolution potential. Therefore, based on Eq. (2), we ran algorithmic reconstructions,
where correlation sub-images and PSFs were substituted by intensity images recorded by the
individual detectors, and their corresponding PSFs. We refer to this type of reconstruction as
multi-detector ISM SR. Finally, we compared multi-detector ISM SR to regular ISM SR, the
latter following Eq. (1). Surprisingly nonetheless, repeated simulations showed no substantial
difference in the performance of the two algorithms. We strongly believe, that the reason for the
lack of discernable improvement in multi-detector ISM SR is rooted at the distribution of energy
among the different PSFs. In ISM, a large portion of the light is divided between few central
detectors, exhibiting marginally different PSF shapes. In contrast, in the case of correlation
between detectors, the same amount of light is distributed between a much larger variety of PSF
shapes, featuring greater distortions, since they are constructed from multiplication of two ISM
PSFs. Thus, the overall effect of PSF inhomogeneity in SOFISM is accentuated, reinforcing the
potential resolution gain to a significant level.

5.1. Sparsity in different domains

The fundamental principle of exploiting different PSF shapes in confocal measurements can
be implemented using alternative types of regularizers, other than the l1 norm (i.e. sparsity
assumption in the positions of the emitters) in the basic formulation appearing in Eq. (2). The
choice of a suitable regularizer depends on the prior knowledge about the object. In particular,
since most natural images are found to be sparse in some basis representation [29,41], one might
exploit sparsity in other domains, and not necessarily in the emitter-position domain. In the
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case of a densely labeled sample, involving more continuous filaments, assuming sparsity in the
wavelet domain can prove beneficial, and assist in recovering an image that represents better
the real object. In what follows, we explore the application of cSPARCOM on simulated data,
assuming sparsity in the wavelet domain. We utilize a Daubechies wavelet decomposition of order
two with eight taps (see [44] for details). The ground truth in the simulation is two 400 nm-long
parallel strands, with 20 nm separation between consecutive emitters. The distance between the
lines is 95 nm. Panel (a) of Fig. 4 shows the ISM image, superimposed with the ground truth
locations of the emitters, and panel (b) presents the SOFISM image. Reconstructions utilizing
sparsity in the wavelet domain are shown in panels (c)-(d). For reference, panels (e)-(f) present
reconstructions assuming sparsity in the emitter-position domain (according to Eq. (1) and (2)).
Comparing the four reconstructions, we see that wavelet-based recovery produces smoother,
less grainy super-resolved images, compared to l1-based recovery. Most importantly, observing
panels (c) and (d), we see that cSPARCOM yields a better reconstruction than SOFISM SR. In
particular, cSPARCOM manages to resolve the right end of the underlying structure, and exhibits
an overall slightly sharper image. This example, though somewhat simplistic, illustrates that in
some cases, assuming sparsity in domains other than the original emitter-position domain may
help produce reconstructions which are more faithful to the underlying object and have smoother
textures.

Fig. 4. Performance of cSPARCOM and standard SOFISM SR algorithms on simulated
densely labeled lines, utilizing sparsity in the wavelet domain. (a) ISM image with overlaid
emitter positions (blue circles); distance between the lines is 95 nm. (b) SOFISM image. (c)-
(d) Wavelet reconstructions (sparsity in the wavelet domain): (c) cSPARCOM; (d) SOFISM
SR. (e)-(f) l1 reconstructions (sparsity in the emitter-position domain): (e) cSPARCOM;
(f) SOFISM SR. Marked frames designate a region where cSPARCOM manages to resolve
better than SOFISM SR. Scale bar, 250 nm.
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6. Experimental results

We continue and demonstrate cSPARCOM reconstruction from experimental data, obtained in
scans of samples labelled with the fluorescent dye Atto 647N. In general, in order to facilitate
viable fluctuation based super-resolution microscopy, one has to utilize an appropriate fluorophore
and control the statistics of transitions between emissive states (‘on’) and dark states (‘off’), by
carefully tailoring the imaging conditions, such as imaging buffer, laser power, and often the use
of additional light sources that induce photoswitching [45–47]. The use of self-blinking dyes
decouples the blinking properties from the illumination and can substantially simplify SOFI
imaging [48]. Typically, in wide-field SOFI applications the frame exposure time is a few tens of
milliseconds, and should roughly match the characteristic ‘on’ time of the fluorophore [22,48–51].
Thus, a typical wide-field SOFI measurement, which involves the acquisition of a sequence of
tens or hundreds of wide-field images would lead to yet acceptable prolonged exposure times.
In contrast, in scanning microscopy, where the measurement is performed pixel-by-pixel, the
required long exposure times would render the measurement completely impractical. However,
utilizing the high sensitivity and temporal resolution of our fiber-bundle single-photon camera, we
were able to take advantage of fast intensity intermittencies, occurring at the sub millisecond level
[52], and obtain moderate SNR images with pixel dwell time of 30 ms. Contrary to wide-field
SOFI applications, we tried to suppress long intermittencies, since these could not have been
estimated well within the time frame of a confocal scan. Notably, no specialized measures were
necessary for tuning the blinking of Atto 647N dye molecules. Instead, we employed a rather
broad application antifade buffer (Prolong Gold/Glass, Invitrogen) to enhance photo stability, and
lessen photo-bleaching. Importantly, although the fluorophores showed stable emission averaged
over time scales of a wide-field EMCCD frame rate, fast fluctuations persisted, and could be
accessed in our experimental setup.

6.1. Resolution tests with nano rulers

In order to empirically investigate the potential advantages of cSPARCOM close to the resolution
limit, we conducted scans of DNA origami nano-rulers (GattaQuant) labelled with 2-4 Atto 647N
molecules at each emitting point, and mounted in ‘Prolong Gold Antifade Mountant’ (Invitrogen).
The rulers fulfilled the role of a ground truth for the measurements. Figure 5 presents the results
obtained from measurements of nano-rulers of three different types. ISM images are shown
as well for reference, although they take no part in the algorithmic reconstructions. Panels
5(a)-(b) show, respectively, the ISM and SOFISM images analyzed from the scan of two-site
rulers with 160 nm separation between their emitting sites. We used adaptive pixel-reassignment,
as the shift vectors were derived from a calibration measurement of a single fluorescent bead
(see Supplementary of [23]). The calibration measurement was also used to estimate the PSFs
required for the following algorithmic reconstructions, as shown in Supplement 1. While the
SOFISM image is noisier, it already discloses the structure of the scene, unlike the ISM image.
The composition of the underlying object is fully unraveled in Figs. 5(c) and 5(d), corresponding
to the reconstruction results of cSPARCOM and ordinary SOFISM SR, using l1 norm as the
measure for sparsity. Both reconstructions retrieve two rulers with approximately 160 nm
separation between their ends. Certainly, the molecules within each end are too close to each
other to resolve in any of the methods discussed here. Nonetheless, the reconstructions seem to
perform just as well, not showing any conspicuous differences. More challenging scenes are
shown in the middle and right panels of Fig. 5. The optical images in Figs. 5(e) and 5(f) were
processed from a scan of two-site 100 nm rulers, while those in .Figs. 5(i) and 5(j) correspond
to three-site 200 nm rulers, with 100 nm spacing between emitting points. We comment that,
because the fluorescent labeling is stochastic, both ends of a ruler might differ in brightness,
imposing additional difficulty to resolve them. Yet, visually comparing Figs. 5(g)-(h) and 5(k)-(l),
we observe that in these demanding settings, cSPARCOM manages to outperform SOFISM

https://doi.org/10.6084/m9.figshare.14318399


Research Article Vol. 29, No. 9 / 26 April 2021 / Optics Express 12782

SR. Even though some features remain obscure, cSPARCOM is able to recover more rulers
with emitting-site separation in the range of 85 − 100 nm, in excellent agreement with samples
properties (see [53] for length distribution in DNA origami nano-rulers).

Fig. 5. Nano-rulers measurements and l1 based reconstructions. Left panel, (a)-(d), results
from a scan of two-site 160 nm rulers. (a) ISM image; (b) SOFISM image; (c) cSPARCOM;
(d) SR of SOFISM image in (b). Middle panel, (e)-(h), results from a scan of two-site
100 nm rulers. (e) ISM image; (f) SOFISM image; (g) cSPARCOM; (h) SR of SOFISM
image in (f). Right panel, (i)-(l), results from a scan of three-site 200 nm rulers, with 100 nm
spacings. (i) ISM image; (j) SOFISM image; (k) cSPARCOM; (l) SR of SOFISM image in
(j). Marked frames highlight nano-rulers which cSPARCOM resolves better than SOFISM
SR. Scans featured a 40 nm step size and a 30 ms pixel dwell time. Scale bar, 250 nm.

6.2. Microtubules in fixed cells

Finally, to show the applicability of cSPARCOM in bio-imaging, we demonstrate its use in
measurements of a sample of fixed HeLa cells, whose microtubules were labelled with Atto
647N (see Supplement 1). We note that the labeling density had to be tuned, such as to avoid
saturation of the SPAD detectors. The sample was mounted with ‘ProLong Glass Antifade
Mountant’ (Invitrogen). Figure 6 shows the ISM image [6(a)], SOFISM image [6(b)], together
with cSPARCOM and SOFISM SR l1 and wavelet reconstructions [6(c-f)], corresponding to a
typical scene in the object. Here, the reconstructions cannot be compared based on a ground
truth. Yet, we can obtain some insight by concentrating on situations where features are at least
nearly resolved in all reconstructions. These settings serve as common ground for comparison
since all algorithms imply more than a single emitter. Although the object itself is somewhat
grainy, due to the necessary low concentration labeling, it seems that the l1 based reconstructions
tend to recover overly grainy-appearance images. Nevertheless, the wavelet reconstructions
appear smoother and better capture the width of the filaments. While in some locations SOFI SR
seems to perform better, in most cases however, cSPARCOM is able to better resolve details, as
exemplified in the insets in Figs. 6(e)-(f).

https://doi.org/10.6084/m9.figshare.14318399
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Fig. 6. Measurement and reconstruction of microtubules in a fixed cell sample. (a)-(f),
Images analyzed from a confocal scan (50 nm step size and 30 ms pixel dwell time) of
a fixed HeLa cell, labeled with Atto 647N. (a) ISM image. (b) SOFISM image. (c)
cSPARCOM l1 reconstruction. (d) l1 SR of the SOFISM image in (b). (e) cSPARCOM
wavelet reconstruction. (f) Wavelet SR of the SOFISM image in (b). Solid-line inset is a
magnification of the area in the dotted-frame. Scale bar, 0.5 µm.

7. Discussion and conclusions

We demonstrated cSPARCOM algorithmic reconstruction of SOFISM scans utilizing the
fastest switching dynamics of organic dyes, mostly ‘invisible’ to widefield EMCCDs [52].
By circumventing standard pixel-reassignment, we were able to extract fine-feature spatial
information that would have been otherwise lost, due to PSF averaging. Thus, cSPARCOM
stretches the resolution boundaries of correlation-enhanced ISM microscopes, markedly at no
expense other than the reconstruction being computationally more demanding. The concept of
alleviating the need for pixel-reassignment in multi-detector imaging is not limited to sparsity in
the emitter-position domain, nor to sparsity-based reconstructions in general, but can be used in
other types of optimization problems and correlation analysis methods [39,44,54–59].

cSPARCOM is practical even with straightforward imaging conditions. Nevertheless, special
attention must be given to the choice of fluorophore, as the interplay between brightness,
photostability and photobleaching is essential for maintaining a relatively short pixel dwell time
along with sufficient signal level. In particular, care should be taken to minimize photobleaching,
which may introduce a false positive correlation contrast, overwhelming the genuine correlations
associated with fluorescence intermittencies. In addition, since we rely on the fastest triplet
blinking in fluorophores, photostability of the fluorophore is favored upon prolonged blinking
periods. Although in this work no specialized measures, other than a commercial antifade reagent,
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were employed, we believe that some optimization of the on-off switching, through adjustment of
imaging buffer and excitation, could improve the SNR. In addition, in order to avoid saturation
of the SPADs, the labeling density of the samples had to be adjusted to a lower level than what
is typically used in imaging systems that employ less sensitive detectors. Finally, since triplet
dark state blinking ranges typically between a few microseconds up to a millisecond [52], the
highest temporal resolution available with SPADs is not imperative. Therefore, other types of
fast detectors can be utilized, for instance a PMT array, relaxing labeling concentration, computer
memory and processing time requirements.

We strongly believe that pixel dwell time could be diminished using advanced algorithmic
analysis (see for example [35]). However, because cSPARCOM exploits the information from
outer rim detectors, low SNR might limit their contribution, even though the overall image SNR
is still reasonable. Nevertheless, in this degenerate case, cSPARCOM is expected to perform at
least as well as image SR, and thus could still serve as the default reconstruction path.

According to our simulations, bypassing pixel-reassignment did not show any pronounced
improvement when applied to the basic form of intensity-based ISM consisting of a ∼1 AU
detector array. However, when implemented on second-order correlations, cSPARCOM exhibited
conspicuous differences compared to image SR. We speculate that extension of this idea to higher
orders can emphasize the effect, as the fluorescent light would be distributed between a greater
number of distorted PSFs. Finally, we comment that rather than estimating multiple PSFs from a
calibration measurement, deducing the PSFs directly from a measured scene, using tools from the
area of machine learning, could potentially increase the method’s performance and robustness,
especially in cases where the sample is weakly scattering [36].
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