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Control of the Resumption of
Meiosis in Mammals

H. R. Lindner, S. Bar-Ami, and A. Tsafriri

Department of Hormone Research, The Weizmann Institute of Science, Rehovot, Israel

Several reviews dealing with different aspects of oocyte maturation in mammals
have been published recently (8,34,37,58). Therefore, this is not intended to be an
exhaustive review of mammalian oocyte maturation, but a brief account with a
special emphasis on the follicular factors involved in the regulation of the meiotic
process. Oogenesis in mammals is a protracted process (Fig. 1). The meiotic division
of the oocyte is initiated during fetal life and is arrested shortly after birth at the
stage of diplotene. At this stage, the nucleolus and the nuclear membrane reappear
and the so-called dictyate oocyte persists for a very long period. In humans, this
period may reach 40 years or more. Meiosis is resumed in adult life following the
preovulatory surge of gonadotrophins, a few hours prior to ovulation. We shall use
the terms “oocyte maturation” or “nuclear maturation” to denote the preovulatory
resumption of the meiotic process and its progress to the metaphase stage of the
meiotic division, i.e., to a fertilizable ooctye (Fig. 2). Development beyond this
stage, with the completion of the second meiotic division, will depend on the
penetration of a fertilizing spermatozoon.

Oocyte maturation, like other ovulatory processes such as the increase in the
ratio of progesterone—to—estrogen secretion and follicular rupture, is triggered in
vivo by the preovulatory surge of luteinizing hormone (LH) (6,54,61). On the other
hand, oocytes dislodged from their follicles resume the meiotic process in vitro
even in hormone-free media (39; reviewed in 15,41,58). The meiosis-inducing
action of gonadotrophins has been studied in vitro by explanting follicles prior to
the preovulatory surge of gonadotrophins (51). This system has been exploited to
define the role of gonadotrophin receptors, cyclic AMP, protein kinase, prosta-
glandins, steroid hormones, and glycolysis in the mediation of this response (31,60).
The contrasting behavior of oocytes dislodged from their follicles and of follicular
oocytes in vivo or in vitro led to the view that within the follicle oocyte maturation
may be prevented by an inhibitor elaborated by follicle cells. In order to test this
hypothesis, a third approach to the study of oocyte maturation in vitro was adopted,
namely coculture of various follicular components with oocytes (18,53).

SPONTANEOUS MATURATION OF ISOLATED OOCYTES

The pioneering observation of Pincus and Enzmann (39) that rabbit oocytes
explanted from their follicles undergo maturtion in vitro, even in hormone-free

83




84 CONTROL OF RESUMPTION OF MEIOSIS

FIRST MEIOTIC DIVISION SECOND MEIOTIC DIVISION

Il METAPHASE

RESUMPTION OF MEIOSIS

12 ANAPHASE

IN ADULT OMARY

FERTILIZATION IN OVIDUCT

FIG. 1. Diagram of oocyte meiosis. For simplicity, only three pairs of chromosomes are de-
picted. 1—4, Prophase stages of the first meiotic division, which occurs in most mammals during
fetal life. The meiotic process is arrested at the diplotene stage (“first meiotic arrest”) and the
oocyte enters the dictyate stage (5-6). When meiosis is resumed, the first maturation division
is completed (7—11). Ovulation occurs usually at the metaphase Il stage (11), and the second
meiotic division (12-14) takes place in the oviduct only following sperm penetration. (From
Tsafriri, ref. 58, with permission of Plenum Press.)

media, has been confirmed and was extended to many other mammalian species,
including humans (11,15,40).

The spontaneous maturation of oocytes dislodged from their follicles results in
morphologically normal secondary oocytes in most species. Nevertheless, the fer-
tilization rate obtained after spontaneous maturation in vitre was very low in all of
the species tested, including the human (45). The most common abnormality in
such oocytes was the failure of the sperm nucleus to swell in the ovum cytoplasm,
i.e., no normal male pronucleus was formed. Thibault and Gerard (48) suggested
that the lack of a putative “male pronucleus growth factor” (MPGF) in such dislodged
oocytes may be responsible for this failure of development of the male nucleus.
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FIG. 2. Reinitiation of meiotic maturation in rat oocytes viewed with Nomarski interference
contrast optics. A: Dictyate oocyte. GV, germinal vesicle; Nu, nucleolus. B: Germinal vesicle
breakdown. Inset (M-I): bivalents in metaphase I. C: Secondary oocyte. PB, first polar body
Inset (M-l): chromosomes (dyads) seen at metaphase Il. Chromosomes were prepared ac-
cording to Tarkowski (1966), Cytogenetics, Vol. 5, and were photographed under phase contrast.

Recent studies suggest that the addition of hormones to the culture medium may
bring about physiological maturation of liberated oocytes. Soupart (45) described
male pronucleus formation in human oocytes matured in vitro after sequential
treatment with estradiol and 17a-hydroxyprogesterone. Some degree of male pro-
nucleus formation was obtained upon fertilization when a mixture of gonadotro-
phins, prolactin, estradiol, and testosterone was added to rabbit oocytes in culture
(50).

In conclusion, if fertilizability and the potential for normal embryonic devel-
opment are adopted as the criteria for the normalcy of oocyte maturation, one is
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forced to infer that the spontaneous maturation of oocytes dislodged from the follicle
is largely an experimental artifact or, at least, is not a fully adequate model for
studying the meiotic process. Hence, other model systems that more closely rep-
resent the physiology of oocyte meiosis in vivo and that yield normal, fertilizable
ooctyes are needed.

MATURATION OF FOLLICLE-ENCLOSED OOCYTES

Hormonal Induction In Viiro

When preovulatory rat follicles are explanted before the endogenous surge of
gonadotrophins and placed in organ culture without hormonal supplementation, the
oocytes remain indefinitely in the dictyate state. The test system allowed us to study
the meiosis-inducing action of gonadotrophins and other agents in vitro. Luteinizing
hormone (LH), human chorionic gonadotropin (HCG), and immunochemically pure
follicle-stimulating hormone (FSH) and prostaglandin E, (PGE,) proved capable of
triggering the maturation of such follicle-enclosed oocytes in culture (31,51). Similar
results were obtained when ovarian fragments (10,38) or preovulatory follicles (22)
of pregnant mare serum gonadotropin (PMSG)-treated mice or rats were cultured.
Gonadotrophin-induced maturation of follicle-enclosed oocytes has since also been
achieved in the rabbit (49) and hamster (21).

Mediation by Cyclic AMP

The feature common to all the agents that induced maturation of follicle-enclosed
oocytes in vitro was the ability to stimulate the production of cyclic AMP (and

hence to activate protein kinase) in the follicle (31). Indeed, introduction of dibutyrl

cyclic AMP (dbcAMP) into the follicular antrum (51) or short-term incubation of
follicles in a medium containing 8-bromo-cyclic AMP (24) triggered germinal
vesicle breakdown, in stark contrast to the inhibitory action of cyclic nucleotide on
isolated oocytes discussed above. It thus seems likely that cAMP does not act
directly on the oocyte itself but rather on other cellular components of the follicle,
perhaps terminating an inhibitory action exerted by these cells on the oocyte (see
below).

Fertilizability: Variation Between Animal Models

Follicle-enclosed rabbit oocytes matured in vitro by stimulation with LH under-
went normal fertilization in vitro and, upon transplantation into suitable recipients,
developed into normal viable young. By contrast, normal meiotic maturation has
not yet been achieved in explanted follicles of pigs (9), sheep (37), or women (10)
by treatment with gonadotrophins in vitro.

Does this difference in behavior between follicle-enclosed oocytes of rodents and
lagomorphs on the one hand, and those of the human, pig, and sheep on the other,
indicate that the onset of meiosis in these species is controlled by a basically different
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mechanism? An alternative possibility is that in experiments with the latter species,
which have a long estrous cycle, the explanted follicles were not mature enough
to respond, whereas in studies with rodents and lagomorphs, only late preovulatory
follicles, shortly before the LH surge, were explanted. Indeed, Hunter et al. (26)
demonstrated that administration of HCG to pigs on day 17 of the 21-day estrous
cycle elicits premature ovulation of dictyate oocytes, whereas HCG on day 19 or
20 results in ovulation of normal oocytes at metaphase II stage.

Role of Steroids: Interspecific Differences?

Inhibition of steroid hormone synthesis by addition of cyanoketone or of amino-
glutethimide to the culture medium did not impair the meiosis-inducing action of
gonadotrophins on rat oocytes explanted within their follicles (28,52). In the rabbit,
likewise, there appears to be no need for LH-induced steroidogenesis to achieve
physiological maturation and fertilizability in vitro (49). By contrast, in cultured
ovine follicle-enclosed oocytes, inhibition of steroidogenesis blocked LH-induced
meiosis at the metaphase I stage. Addition of estradiol to such cultures together
with the gonadotrophin significantly improved fertilizability of the oocyte and em-
bryonic development upon transfer to foster ewes (35,37). Fertilizability has not
yet been adequately tested in cultured rat oocytes matured within their follicles.
The apparent difference between cultured rabbit and sheep oocytes in the degree
of dependence on exogenous steroids for normal maturation in virro may be related
to differences in the dynamics of follicle growth and steroidogenesis, resulting in
differential exposure of the oocytes to steroids in vivo prior to explantation. Little
is known about the steroid requirements for maturation of the human oocyte, except
that steroids (estradiol and 17a-hydroxyprogesterone) appear to promote cyto-
plasmic maturation and normal male pronucleus formation (45). Thus, while it is
clear that the meiosis-inducing action of LH is not mediated by the enhancement
of follicular steroidogenesis (28), it appears that the fertilizability of oocytes of
several animal species is clearly dependent upon undisturbed follicular steroido-
genesis (35). .

FOLLICULAR CONTROL OF OOCYTE MATURATION

Inhibitory Effect of Granulosa Cells

The divergent behavior of dislodged oocytes, which mature spontaneously, and
those cultured within the follicle, which remain in the dictyate stage unless stim-
ulated by gonadotrophin, suggest that the granulosa cells may be responsible for
maintaining meiotic arrest. Indeed, Foote and Thibault (18) demonstrated an in-
hibitory effect of porcine granulosa cells upon the resumption of maturation by
porcine oocytes: oocytes cultured within the domes of dissected follicular wall did
not mature, and theca alone was not inhibitory. Tsafriri and Channing (53) extended
these findings to show that this effect of granulosa cells is dose dependent and that
cells from small follicles were more potent in this respect than those from medium
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or large ones. Disconcertingly, the inhibitory effect of porcine granulosa cells was
not reversible by LH, FSH, PGE,, or dbcAMP. It now seems probable that the
failure of porcine oocytes cocultured with granulosa cells to respond to hormonal
stimuli by resumption of meiosis is due to inadequate maturation of the follicles
from which the cells were collected (see above).

When rat oocytes were added to 24-hr-old rat granulosa cell cultures, spontaneous
oocyte maturation was suppressed, the degree of inhibition depending on the number
of granulosa cells in the culture. This inhibitory effect was reversed when LH was
added to the cultures together with the oocytes (58,59).

Oocyte Maturation Inhibitor

Porcine granulosa cell extract (55) as well as medium in which rat granulosa
cells (58) had been cultured previously (“conditioned medium”) exerted an inhibitory
effect upon the resumption of meiosis by cultured oocytes. Follicular fluid (FFI)
from rabbit, pig, cow, sheep, and hamster ovaries were shown to contain similar
activity (13,21,23,27,53,57). This effect is not species-specific: porcine FFI inhibits
the maturation of oocytes of the mouse (Channing and Tsafriri, unpublished ob-
servations) and rat (57); bovine FFl inhibits hamster oocytes (21); and human FFI
inhibits the maturation of porcine oocytes (23).

The oocyte maturation inhibitor (OMI) from porcine follicular fluid appears to
be a peptide with a molecular weight of less than 2,000 daltons (46,56). OMI
activity was demonstrated in both frozen and freshly collected porcine FFl. The
inhibitory action of OMI was reversed by transferring the oocytes to fresh medium
devoid of OMI 20 to 24 hr after the initiation of culture. The OMI concentration
of porcine FFI declined with follicular growth (46,56). By sequential Amicon PM-
10 membrane filtration, Sephadex G-25 (46,58) and CM-Sephadex column chro-
matography, approximately 5,000-fold purification of OMI was achieved (Table
1). Immunization of rabbits or rats with the low molecular weight fraction of porcine
follicular fluid (the Amicon PM-10 membrane filtrate) conjugated to bovine serum
albumin (BSA) produced an antiserum able to neutralize OMI action on rat oocytes.
When the antibodies were purified by affinity chromatography, OMI action was
neutralized only by the specific antibody fraction and not by the absorbed serum
(59,60).

TABLE 1. Purification of oocyte maturation inhibitor from porcine
follicular fluid

Volume Peptide Units/ Total Fold

Fraction ‘ (ml) (mg/ml) mg units purification
FFI 900 2,000 0.001 1,800 —
Amicon PM-10 filtrate 245 105 048 1,225 480
Sephadex G-25 peak A 20 43.4 1.38 1,200 1,380
CM-Sephadex active peak 15 29 517 2,250 5,170
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Significance of Communication Between Oocyte and Cumulus Cells

The density of LH-receptors is much higher on the surface of the mural granulosa
cells of the mature graafian follicle than on cumulus oophorus cells. On the oocyte
itself and the adjacent coronal cells, it is difficult to demonstrate LH-receptors by
radioautographic techniques (4), yet the follicle-enclosed oocyte responds promptly
to gonadotrophic stimulation. This suggested the existence of a system of inter-
cellular communication that might propagate the hormone stimulus within the fol-
licle. A structural basis for such communication was provided by the description
of extensive gap-junctions between adjacent cells within the theca and granulosa
layers (1,3) and the demonstration that similar specialized junctions exist between
cytoplasmic extensions of the corona radiata cells that traverse the zona pellucida
and the oolemma (2,5). Such junctions can facilitate the transfer of ions and small
molecules, possibly including chemical messengers, up to about 2,000 daltons in
size, between neighboring cells and bring about their electrical coupling, i.e.,
coordination of their membrane potential (7,20,43). Thus, Gilula, Epstein, and
Beers (19) demonstrated bidirectional electrical coupling between cumulus cells
and the oocyte as well as transfer of iontophoretically injected fluorescein dye from
the oocyte to cumulus cells. Tonic coupling was maximal prior to HCG stimulation
and it decreased as ovulation approached. Similarly, Moor et al. (36) used [*H]-
labelled choline, uridine, and inositol for measuring the intercellular coupling be-
tween cumulus cells and oocyte of sheep. They demonstrated that gonadotrophins
in vivo or in vitro reduced, but did not totally eliminate, within 12 to 15 hr the
coupling between these two cell types. The fact that both [*H]-labelled uridine
incorporation (16,62) and growth (17) of mouse oocytes have been shown to be
dependent upon the presence of intact cumulus cells further attests to the intimate
interaction between these cell types.

The close association between cumulus cells and the oocyte and the apparent
disruption of this relationship following ovulation led to the hypothess (29,31) that
the release of the oocyte from the inhibitory action of the cumulus cells and sub-
sequent resumption of meiosis may result from the dismantling or functional dis-
engagement of oocyte/corona cell junctions, possibly induced by the ovulatory
hormone. This would bring about a functional sequestration of the oocyte within
the preovulatory follicle, analogous to the physical separation achieved by surgery
in the isolated oocyte culture model, and would explain why in the later model
gonadotrophins are redundant.

It may be noted that a similar detachment of follicle cells from the oocyte
accompanies maturation of starfish (40) and amphibian (41,42,44) oocytes. Never-
theless, the morphological dissociation of cumulus—oocyte junctions appears to
follow, rather than precede, germinal vesicle breakdown in rat (14) and rabbit
oocytes (47). Furthermore, the reduction in intercellular transport of choline from
sheep cumulus cells to the oocyte occurred only affer meiotic maturation had
progressed to prometaphase or even first metaphase (36). It is possible, however,
that physiological occlusion of cumulus—oocyte junctions precedes their morpho-
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logical separation. Therefore, more detailed kinetic studies of the changes in phys-
iological coupling between cumulus and oocyte cells in relation to the resumption
of meiosis are needed before one can decide whether there is a causal relationship
between these two processes.

An essential role of cumulus cells in the control of resumption of meiosis has
recently been demonstrated by a different approach. Whereas the low molecular
weight fraction of porcine FFl inhibited the maturation of oocytes cultured within
their intact cumuli, it did not interfere with the maturation of fully denuded oocytes
of the pig (25), rat (Fig. 3), or mouse (Bar-Ami and Tsafriri, unpublished obser-
vations). Moreover, addition of the low molecular weight fraction of porcine fol-
licular fluid even tended to facilitate the maturation of denuded rat oocytes. It thus
appears that OMI exerts its inhibitory action upon the resumption of meiosis not
directly on the oocyte but through the mediation of the cumulus cells. Whether the
maturation-inducing action of LH is exerted solely by cumulus-oocyte uncoupling
or whether the hormone also suppresses the formation of OMI remains to be es-
tablished.

CONCLUSIONS

We have considered three different in vitro models currently in use for the study
of ovum maturation, namely, the culture of isolated oocytes, organ culture of
follicles explanted intact, and coculture of oocytes with other cellular components
of the follicle. These have been applied to material from a number of animal species.
The three model systems serve to reveal different aspects of the meiotic process.
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Isolated oocytes were successfully used to demonstrate the role of pyruvate in
maturation of mouse oocytes, to establish optimal media for oocyte culture (12),
and to study changes in protein synthesis (63) and oxygen consumption during
maturation (32,33). Explanted follicle-enclosed oocytes permit study of the hor-
monal factors involved in the induction and regulation of the meiotic process. The
mixed culture approach was adopted to analyze the role of follicle cells in the
control of oocyte maturation. Thus, the combined exploitation of a variety of model
systems seems most likely to advance our understanding of the meiotic process.

The hypothesis of follicular control of the resumption of the meiotic process was
first put forward in the 1930s by Pincus and Enzmann (39). We have reviewed
recent findings that support the view that meiosis is prevented in the preovulatory
follicle by a local factor, OMI, produced by granulosa cells. Nevertheless, some
of these experiments were performed only by several groups, whereas a few other
laboratories encountered difficulties in demonstrating OMI-like activity in some
follicular constituents. It is possible that these difficulties are in part due to the
apparently temporal nature of both oocyte sensitivity to OMI and OMI production,
the instability of OMI, the rapid reinitiation of meiosis, and the need for continued
maintenance of cumulus-oocyte coupling for keeping meiosis in abeyance. Further
characterization of OMI and its purification to homogeneity will allow the assess-
ment of the physiological role of OMI in the control of the meiotic process.
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