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One-sentence summary: We recorded hippocampal CA1 place-cells from bats flying in a very 

large-scale environment (200 meters), and found a multi-scale representation of this space – 

whereby neurons exhibited multiple fields, and the fields of the same neuron differed by up to 

20-fold in size; a theoretical analysis showed that such multi-scale coding increases the capacity 

of the system to represent large spaces and reduces the decoding errors. 
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Hippocampal place-cells encode the animal’s location. Place-cells were traditionally studied 

in small environments, and nothing is known about large ethologically-relevant spatial 

scales.  We wirelessly recorded from hippocampal dorsal-CA1 neurons of wild-born bats 

flying in a long tunnel (200-meters).  The size of place-fields ranged from 0.6-m to 32-m.   

Individual place-cells exhibited multiple fields, and a multi-scale representation: place-fields 

of the same neuron differed up to 20-fold in size.  This multi-scale coding was observed from 

the first exposure-day to the environment, and also in lab-born bats that never experienced 

large environments.  Theoretical decoding-analysis showed that the multi-scale code allows 

representing very large environments with much higher precision than other codes. 

Together, by increasing the spatial-scale we discovered a neural code that is radically 

different from classical place-codes. 
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Navigation and spatial memory are crucial for the survival of animals in the wild. The hippocampal 

formation contains several types of spatial neurons whose activity represents the animal’s position 

and direction in space (1-10).  One of these spatial cell types are ‘place cells’ – hippocampal neurons 

that increase their spiking activity when the animal passes through a specific region of space – called 

the neuron’s ‘place field’ (1, 2, 11-15).  Individual place-cells typically have only one (or two) 

place-fields in a small environment (2, 11, 16), while multiple place-fields are found in dentate-

gyrus neurons upstream (16).  Nearly all the research on spatial representations in the mammalian 

brain has focused on rats and mice as animal models, and used small laboratory environments as 

experimental setups – usually small boxes or short linear tracks ~1–2 m in size.  Consequently, 

almost all current knowledge on spatial neurons in the hippocampal formation is based on data from 

animals moving in small laboratory environments.   Two studies of place cells examined larger 

spatial scales (17, 18). However, these studies used either a zig-zagging track composed of ~1 m 

segments, or a track that passed through several small rooms: thus, the largest single-compartment 

environment in which place-cells were recorded to date was < 10 m in size. 

By contrast, outdoor navigation of all mammals occurs in natural environments that span 

spatial scales much larger than 10 m: For example, wild rats were shown to navigate outdoors >1 

km per night (19, 20). Navigation over such distances requires spatial representation of very large 

environments, on the scale of hundreds of meters or kilometers (21).  Egyptian fruit bats fly every 

night distances of up to ~30 km to their favorite fruit trees, with flyways spanning ~2 km width 

and 0.5 km height (21, 22). A simple calculation shows that tiling this space with typical place-

fields as measured in the laboratory (~10–20 cm diameter, single field per-neuron) would require 

~1013 neurons. This is ~108 times more neurons than the number of cells in the entire dorsal 

hippocampal area CA1 (3) – suggesting that it is simply not feasible to represent such large 
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spatial scales with laboratory-sized place fields.  Thus, there is a fundamental gap between the 

neurobiology of navigation as studied in the lab, and kilometer-scale natural navigation outdoors. 

 

Neural recordings in bats flying in a 200 m environment 

We studied wild-born Egyptian fruit bats, a mammal which has rodent-like hippocampal spatial 

representations in small laboratory environments (23-26).   We developed a miniaturized wireless 

neural-logging system that stores all the data on-board (Fig. 1A).  This system enabled neural 

recordings to be conducted over great distances in freely-behaving animals – with uninterrupted 

experiments lasting up to ~3 hours (27).  Using this system, we conducted tetrode recordings from 

dorsal CA1, in flight (Fig. 1B-D and fig. S1).   We built a 200 meter long flight tunnel (Fig. 1E), 

composed of a long arm and a shorter arm, with landmarks dispersed along it (fig. S2). We employed 

a medium light level (5 lux), allowing these bats – which have excellent vision (21) – to see several 

distal landmarks from each location in the tunnel (fig. S2B).   We used a radio-frequency-based 

localization system, with a small mobile tag placed on the bat, which measured the bat’s distances to 

a ground-based antenna array (Fig. 1F). This system yielded a high spatial localization accuracy of ~9 

cm (Fig. 1G) – along with a high temporal resolution (27).   We harnessed the natural behavioral 

tendency of bats to fly long distances in straight trajectories (22), and trained them to fly in the tunnel 

between two landing-balls that were placed at the two ends of the tunnel, on which food was given. 

The bats flew continuously back-and-forth between the landing-balls (fig. S3A). Flight trajectories 

were rather stereotyped, with bats flying at the center-top portion of the tunnel, with only very small 

deviations perpendicular to the flight direction (Fig. 1H and fig. S3B-C). Thus, the bats exhibited 

nearly-perfect one-dimensional (1D) back-and-forth trajectories. Hence, in all subsequent analyses we 

projected the behavioral data onto the main axis of the tunnel, and included only long unidirectional 
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flights with >100 m length (27). We note that this 1D tunnel bears similarities to bats’ natural 

behaviors – as these bats navigate underground in 1D cave-tunnels, and also their flight trajectories 

outdoors are largely 1D (22).  Flight-speed was high and showed very little variation across different 

locations (Fig. 1I,J).  Bats flew dozens of flights per direction in each recording session (Fig. 1K), 

covering on average 14.1 km per session, and up to 22.5 km in a single session (Fig. 1L). 

 

Hippocampal place-cells exhibit a multi-field multi-scale spatial code 

We recorded 235 well-isolated putative pyramidal cells from dorsal CA1 of 5 bats; all 235 

neurons were active in-flight, and 83.4% of them (n=196) were place-cells, showing significant 

spatial tuning with distinct and stable place-fields (Fig. 2A, and figs. S4 and S5; see Table S1 for 

the numbers of place-cells in individual bats) (27). By contrast, in both rodents and bats, the 

reported percentage of place-cells in small environments is typically 30–40% of all the recorded 

cells, while the remaining cells are virtually silent during behavior (11, 23, 24, 28).  Place cells in 

the 200-m tunnel exhibited strong spatial tuning (Fig. 2B-D) – and the spatial tuning was stable 

across flights (Fig. 2E).  The place-cells fired differently in different flight directions (Fig. 2A, 

compare red and blue raster-plots; and see Fig. 2F for map correlations between directions) – 

similar to the directionality shown previously for place-cells in rats and bats in small 1D 

environments (29, 30).   However, we found several surprising characteristics of place-cell firing 

in our 200 m environment.   First, unlike the typical single place-field reported for CA1 neurons 

in small environments (11), we found that many cells exhibited multiple place-fields (Fig. 2A and 

fig. S5 – examples; Fig. 2G – population). The mean number of fields per direction was 4.9, and 

some neurons had more than 10 fields in each flight-direction (Fig. 2G).  This result extends 

similar findings in enlarged environments in rodents, which showed several fields per neuron (18, 
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31, 32).  The fields were strongly tuned and contained the large majority of the neuron’s spikes, 

i.e. the background firing was relatively low (fig. S6A-B).    Second, many cells had very large 

place-fields, often > 10 m in size, and up to 32 m (Fig. 2A cells 1 and 5 – examples; Fig. 2H – 

population; see also figs. S5 and S7A). On the other hand, some cells had very small place-fields 

< 1 m in size, and down to 0.6 m (Fig. 2A cells 3 and 7, see zoom-in; and Fig. 2H, leftmost bar).  

The distribution of field sizes was skewed (Fig. 2H) and was well-fitted by a log-normal 

distribution (fig. S8) (33).    Third, and most surprisingly, many place-cells showed highly 

variable fields sizes, with up to 20-fold ratio between the size of the largest/smallest field for the 

same neuron (Fig. 2A cells 1–7 – examples; and Fig. 2I,J – population; mean ratio: 4.4). This 

multi-field multi-scale code was found in all the 5 individual animals (fig. S9).  Although most 

cells showed heterogeneous field sizes, some neurons also exhibited a more uniform scale across 

their place-fields (Fig. 2A, cell 8), and a small minority of neurons had a single place-field (Fig. 

2A, cell 9; only 12.2% of the neurons had one field overall, with average field-size of 5.9±3.5 m; 

mean±s.d.).  Individual neurons exhibited similar multi-scale firing properties in both flight-

directions: a similar number of fields per direction, similar median field-size, and similar field 

size ratios (fig. S10); this suggests a characteristic firing-propensity per neuron (34) – while still 

exhibiting widely-varying field sizes.  Taken together, most neurons exhibited these two key 

properties: many fields per neuron (Fig. 2G), and a multi-scale mixture of small fields and large 

fields for the same neuron (Fig. 2J). 

We next examined several possible alternative explanations for the multi-scale code that 

we observed.  First, the multi-scale property could not be explained as arising from variations in 

flight-speed – e.g. larger fields at high flight-speeds – because the flight-speed was in fact highly-

consistent along the entire tunnel (Fig. 1I,J). Further, the field-size ratio (largest/smallest fields 
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per neuron) was not correlated with the speed ratio at the locations of the largest and smallest 

fields (Fig. 2K: Spearman =0.03, df=170, P=0.67).  Moreover, the speed ratio was narrowly 

distributed around 1, indicating that the speed was similar at large and small fields (Fig. 2K; t-test 

of speed ratio versus 1: t=0.83, df=171, P=0.41; s.d. of the speed ratio was 0.10; see also Fig. 1J).    

Second, the multi-scale property could also not be explained by systematic differences in field-

sizes in the long versus short arms of the tunnel, because we found no significant difference in 

field-sizes between the two arms (Kolmogorov-Smirnov test comparing field-sizes in the long 

versus short arm: P = 0.60 and 0.12 for the two flight-directions [DKS 586,180 = 0.06 and DKS 628,235 

= 0.09]); and, there was no significant difference in field-sizes between the long arm and the full 

tunnel (fig. S7A; Kolmogorov-Smirnov test: P=0.96 [DKS 1214,1629 = 0.02]). We also found multi-

scale coding when restricting the analysis only to the long arm (fig. S7B).   Third, the multi-scale 

property did not stem from an unusual recording-location within CA1. All the recordings were 

done in the dorsal part of the hippocampus and spanned rather central proximo-distal locations in 

CA1 (fig. S1A-B): these are the classical recording-locations used in rodents and bats in small 

laboratory setups.   Fourth, the multi-scale property of CA1 neurons could not be explained by 

spike-sorting quality (fig. S11).   Fifth and finally, the results were robust to the detailed criteria 

of field-detection (fig. S12). 

We then looked for possible contributions of landmarks to the multi-scale code.   First, we 

considered several landmark-based compartmentalization models of the environment, whereby the 

tunnel is assumed to be segmented into smaller portions at the landmark locations, allowing fields to 

merge at the segment-borders (27). These models could not explain the wide distribution of place-field 

sizes observed in the data (fig. S13).   Second, we examined the possibility that the multi-scale code 

could be explained by an over-representation (concentration) of place-fields near the landmarks, and in 
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particular small place-fields.  However, the cumulative distribution of field locations was linear as a 

function of position along the tunnel (Fig. 3A), with no apparent over-representation near landmarks 

(but with an over-representation of fields at the two ends of the tunnel, in the reward areas: see fig. 

S14).  We computed the distance of each field’s peak to its nearest landmark, and compared the 

distribution of these distances to the distribution of distances for shuffled place-field locations (27): we 

found no significant difference between the two (Fig. 3B; Kolmogorov-Smirnov test, P  0.18 for both 

directions) – indicating place-fields did not concentrate near landmarks, but were distributed rather 

uniformly along the tunnel.  This uniform distribution was supported also by an analysis of the gaps 

between fields, which showed an exponential distribution (Fig. 3C) – indicating lack of structure in the 

spatial arrangement of place-fields.   Additionally, the entire range of field-sizes was represented 

rather uniformly along the tunnel, with no prominent concentration of small (or large) fields near 

landmarks (Fig. 3D-E, and fig. S15) – likely because of the low saliency of these landmarks for the 

bats – except a few landmarks which possibly showed slight concentration of fields (Fig. 3D).   

Further, there was no strong relation between the inter-landmark distance and the field-size (fig. S15B; 

however, this does not rule out that very large fields would be found in extremely impoverished large 

regions of space, where absolute spatial information is not available over long distances).   Together, 

these analyses suggest that the multi-scale statistics were not driven by landmarks. 

 

Comparison between large and small environments 

To examine whether multi-scale coding may be found also in small environments, we recorded from 

dorsal CA1 of additional 3 bats flying in a short 6-m segment of the tunnel, which we blocked-off 

(see Table S1, dataset 2) (Fig. 4A).  This allowed testing directly the effect of environment-size on 

the spatial coding of neurons in dorsal-CA1 of bats, using the same experimental design.  The 
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percentage of neurons that were active during flight in the short 6-m tunnel (36/67 cells, 53.7%) was 

much smaller than in the full 200-m tunnel (235/235 cells, 100%) (Table S1) (27). The majority of 

the active cells were significant place-cells (30/36, 83.3%); thus, almost half of the neurons recorded 

in the 6-m tunnel were significant place-cells (30/67 cells, 44.8%).  Next, we systematically 

compared the spatial tuning properties of cells in the large versus small environments (Fig. 4B-G).  In 

the 6-m small environment, dorsal CA1 place-cells showed only one or two place-fields (Fig. 4A and 

Fig. 4B-bottom) – in contrast to the high number of place-fields observed in the large 200-m 

environment (Fig. 4B-top and Fig. 4E). Across cells, the place-field sizes in the small environment 

were much smaller than in the large environment (Fig. 4C and Fig. 4F). At the single-cell level, 

neurons in the small environment had a significantly lower ratio between their largest and smallest 

fields as compared to the large environment (Fig. 4D and Fig. 4G).  Thus, neurons in the small 

environment showed virtually no multi-scale coding. 

 

Multi-scale coding of space is independent of both early and recent experience 

Does multi-scale coding of large environments emerge over time, as a function of experience?   

First, we asked whether prior experience in the long tunnel is needed for the multi-scale code. We 

conducted recordings of place-cells from the first exposure to the novel large environment. We 

recorded 125 place-cells from two bats flying in a 130-meter portion that was blocked out of the 

200-meter tunnel, with neural recordings commencing from the very first day in the tunnel (day 1) 

and continuing over several weeks (with new cells being recorded every day; see Table S1, dataset 

3).  Cells were spatially tuned already in the first sessions and exhibited many place-fields with 

different sizes (Fig. 5A). The multi-field multi-scale properties were seen from day 1, and were 

stable across several weeks of recordings, showing no significant trend in the number of fields (Fig. 
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5B), field sizes (Fig. 5C), or field-size ratio (Fig. 5D) (overall, place fields in the 130-m tunnel 

exhibited somewhat smaller numbers of fields, field-sizes and field-size ratios as compared to the 

200-m tunnel: see Figs 5B,C,D, bars on the right).  This suggests that the multi-scale coding does 

not require substantial recent experience with the long tunnel.  While the general multi-scale 

properties were stable over days (Fig. 5B-D), the cells occasionally exhibited within-day dynamics 

in the form of fields appearing and disappearing (Fig. 5E).  Interestingly, the rate of within-day 

changes was larger during the first two days of the bat in the tunnel (Fig. 5F; two-proportion z-test: 

P < 0.001), but also occurred many days after the first exposure (Fig. 5E, cells 7 and 8; and Fig. 5F) 

– consistent with previous findings in mice of ongoing changes in the tuning of place-cells (35, 36). 

Second, we asked whether laboratory-born bats that were never exposed to large 

environments would lack a multi-scale code. We recorded from additional 3 adult bats that were 

born in the lab and grew up in an enriched environment, but have never experienced during 

development any large-scale environments bigger than a few meters (see Table 1, dataset 4; and fig. 

S16) (27) – in contrast to the wild-caught bats that navigated long distances outdoors during 

development (37). The lab-born bats were trained to fly in the 200 m tunnel for several weeks and 

were thus familiar with the environment prior to the neural recordings, similar to the wild-born bats 

(Fig. 6A). The lab-born bats were in good flight-shape and flew similar distances in the tunnel as 

the wild-born bats (fig. S16B). Thus the main difference between the lab-born and wild-born bats 

was their experience during development, with all other experimental conditions being kept 

identical (Fig. 6A) (27).  We recorded 113 cells in dorsal CA1 of the lab-born bats, out of which 95 

were place-cells (84.1%) – very similar to the percentage of place-cells in wild-born bats (83.4%).  

The place-cells of lab-born bats showed a multi-field multi-scale code, with individual neurons 

exhibiting many fields with varying sizes per-neuron (Fig. 6B, examples; Fig. 6C-E, population) – 
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similar to place cells recorded from the wild-born bats.  We then compared the multi-scale 

properties between the two groups (Fig. 6C-H):  (i) The number of fields per direction was not 

significantly different (Fig. 6C,F).   (ii) Both groups exhibited wide distributions of place-field 

sizes, with wild-born bats having slightly larger fields (Fig. 6D,G; this difference was not due to 

differences in dorso-ventral recording positions along the longitudinal axis of CA1, which were in 

fact very similar in both groups [Fig. 6I], but could be due to the slightly different recording 

positions along the proximo-distal axis of CA1 [Fig. 6I]).   (iii) The field-size ratio was not 

significantly different between the groups (Fig. 6E,H), despite the difference in field sizes – 

indicating a similar multi-scale code between lab-born and wild-born bats. 

 

Theoretical decoding analysis showed that for large environments the multi-scale code yields 

substantial advantages 

We next turned to a theoretical analysis to understand the possible functional advantage of the multi-

scale representation of large environments.  We compared the performance of six spatial encoding 

schemes (Fig. 7A) (27):  (1) A single small place-field per neuron; (2) A single large place-field per 

neuron; (3) A single place-field with a gradual increase in field-size across the population – 

mimicking the dorso-ventral anatomical gradient of field sizes in the hippocampus (17); (4) Multiple 

small fields per neuron, identical in size for all the neurons (ref. (18)); (5) Multiple fields per neuron, 

all with the same size for each neuron, but with different scales across different neurons; (6) Multiple 

fields with multi-scale coding per neuron – as in our data.   The distribution of field sizes for schemes 

5 and 6 was matched to our data (field-sizes were drawn from a gamma-distribution fitted to the data: 

fig. S8 (27); the field-size ratio for scheme 6 also closely matched the data – see fig. S17G; and see 

fig. S17 for variants of schemes 5 and 6 in which we matched also the total coverage of fields to the 

data).   We utilized two types of decoders – a Bayesian Maximum-Likelihood decoder (Fig. 7) and a 
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Population-Vector decoder (fig. S18), and two integration time-windows – t = 500 ms (Fig. 7) and 

t = 200 ms (fig. S19) (27).  We compared the decoding error of simulated data for each of these six 

encoding schemes, for progressively larger environments.   For small environments, all six encoding 

schemes performed qualitatively equally well – but for very large environments (hundreds of meters), 

the experimentally-observed encoding scheme with multi-scale place-fields substantially 

outperformed the other schemes (Fig. 7B-E, fig. S18B-E).   Specifically, for encoding-schemes with 

either a single field (schemes 1, 2, 3) or multiple fields of small size (scheme 4), the number of 

neurons required to accurately decode the animal’s position was extremely large for large 

environments (Figure 7B, left: note the red, green, pink and yellow lines go out of bounds). By 

contrast, the two schemes with multiple fields of varying sizes (schemes 5, 6) required only ~50 

neurons for accurately decoding the bat’s position even in a very large environment of 1,000 m size 

(Fig. 7B, left; a 2-meter decoding accuracy).   Furthermore, the mean decoding error for schemes 1 

and 4 increased dramatically for large environments (Fig. 7C, red and green); but for schemes 5 and 

6, the mean decoding error barely increased as a function of the environment-size (Fig. 7C-inset, blue 

and purple) – maintaining a small decoding error of 5–10 m for a 1,000-m environment, even for a 

very small ensemble of 50 neurons (Fig. 7C, inset).  We thus conclude that encoding schemes 1–4 are 

less suitable for very large environments. 

Next, we asked whether scheme 6 – which closely matches our experimental results – 

offers any functional advantage over scheme 5.   We reasoned that scheme 5, where all the fields 

of the same neuron have the same field-size, is problematic – because when a neuron emits a 

spike, it could mean that the animal is located in any of the neuron’s fields; this creates large 

positional ambiguity.  By contrast, scheme 6, where each neuron has multi-scale fields, alleviates 

this problem, because the neuron’s spike-count during an integration-time t differs between 
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different fields – i.e. the neuron produces many spikes in large fields but only a few spikes in 

small fields – and this variability serves to disambiguate which field the animal passed through; 

this, in turn, improves the decoding accuracy.   Indeed, for large 1,000-m environments, the mean 

decoding error was substantially smaller for scheme 6 than for scheme 5 (Fig. 7C-inset, compare 

purple and blue lines).  Moreover, scheme 6 led to much smaller and fewer catastrophic decoding 

errors (Fig. 7D-E – compare purple and blue lines: note the ~10-fold difference in the size of 

catastrophic decoding errors, defined as the 99th percentile of the decoding errors [Fig. 7D-inset]; 

and note also the ~2 or 3-fold difference in the probability of catastrophic errors, defined as the 

probability of decoding error larger than 5% of the environment size [Fig. 7E]).    All these 

theoretical results were robust to the choice of decoder type (fig. S18), the choice of integration 

time-window of the decoder (fig. S19), and choice of the parameter that controls the scaling of 

encoding schemes with environment size (fig. S17H) (27).  Together, this theoretical analysis 

suggested that for small environments, all the encoding schemes perform equally well (Fig. 7B-E: 

note that all the six lines meet at environment-size of 20 m); by contrast, for very large 

environments, of hundreds of meters or more, scheme no. 6 – which matches the large-scale 

coding that we found in bat CA1 – outperforms all the other coding schemes. 

Finally, we suggest that the absence of a multi-scale code in small environments might 

stem from energy considerations. We used published experimental estimates of the energy (ATP 

molecules) required to generate one action potential (27, 38), in order to approximate the energy 

required to represent environments of different sizes – for the various coding schemes (Fig. 7F). 

In small environments, classical single-field codes (schemes 1–3) were more energetically-

efficient than our multi-scale code (scheme 6). Because all the codes exhibit a similar localization 

performance in small environments, the energetic consideration becomes more important, and 
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therefore the single-field codes are preferable for small environments.  By contrast, in large 

environments our multi-scale code becomes energetically closer to the single-field codes, and 

even surpasses some of them in terms of energy consumption (Fig. 7F, compare scheme 6 to the 

other schemes). More importantly, the localization accuracy of classical single-field codes 

deteriorates so dramatically in large environments (Fig. 7C-E), that the energetic consideration 

become largely irrelevant – and the superior localization accuracy of the multi-scale code 

becomes the central consideration. Thus, we propose that this energetic consideration – and in 

particular the tradeoff between energy expenditure and coding performance – may explain why in 

small environments there is no multi-scale code.    Taken together, the theoretical decoding 

analyses suggest that the multi-scale code is better suited than classical place-codes for 

representing very large spaces – such as real-world natural environments. 

 

Neural network modeling of multi-scale codes: Attractor networks and feedforward models 

Classical models of hippocampal place-cells are characterized by a single spatial scale per neuron in 

a given environment (39-47). We investigated two types of models that might support multi-scale 

representations (figs. S20–S23; see Supplementary Text for further details).  First, we employed a 

continuous attractor neural-network framework (40, 42-44, 47, 48) (fig. S20A-C). We generated a 

network with multiple interacting attractors at various scales, where each neuron could participate 

in any of the attractors at a random location (fig. S20A) (27). Network simulations showed coherent 

bumps of activity at each attractor, with different bump-widths (fig. S21A-B), and single neurons 

exhibited multi-field multi-scale coding (fig. S20B) – consistent with our experimental data.   

Second, we explored a set of feedforward models, where CA1 neurons received inputs from CA3 

and medial entorhinal cortex (MEC) with diverse synaptic strengths (fig. S20D-J) (27). The 
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modeling suggested that the experimental data were inconsistent with a strong periodic grid input – 

and were most consistent with a model in which the major input into CA1 comes from CA3, 

wherein individual CA3 neurons exhibit a single place-field (Supplementary Text; and fig. S20J).  

We thus predict that in very large environments: (i) MEC neurons should not exhibit strong 

periodicity, and (ii) place-cells in CA3 (unlike those in CA1) should exhibit single place-fields. 

 

Discussion 

We found here a multi-scale neural code for large environments: single hippocampal neurons in 

the dorsal-CA1 area of bats exhibited many fields, and the different fields of the same neuron 

varied dramatically in size – with up to 20-fold ratio in the size of different place-fields for the 

same neuron. This unknown coding scheme was revealed via the use of an extremely large 

environment. This finding constitutes a fundamentally different phenomenon from the well-known 

gradient of place-field sizes along the longitudinal anatomical axis of the hippocampus (14, 17, 49) 

– wherein each neuron has one characteristic spatial scale, and this scale changes between neurons 

based on anatomical position. Here, by contrast, all the recordings were conducted in the same 

anatomical position – dorsal CA1 (fig. S1) – and we found that individual neurons did not have a 

characteristic scale, but rather the spatial scale of the same neuron varied dramatically across the 

environment.  Further, this neural code was observed from the first exposure-day to the 

environment, and was similar between lab-born and wild-born bats – suggesting that the multi-

scale code is a very robust phenomenon, which does not require substantial recent experience with 

the test-environment, nor early experience with large environments in general. 

Previous studies in rodents have reported multiple place-fields for individual CA1 neurons 

in (relatively) large environments (18, 31, 32) – although the number of fields per neuron was much 
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smaller than we found here – but no study to date has found the multi-scale property that we 

discovered here for individual neurons.  Our theoretical decoding analysis provides a simple 

functional explanation for this multi-scale code: For very large environments, multi-scale coding 

outperforms all the other codes that we considered, in terms of reducing the number of required 

neurons and minimizing the decoding errors.  We hypothesize that the reason why previous studies 

(18, 31, 32) did not find a multi-scale code was that they used much smaller environments, or 

concatenated small compartments – where such a code does not provide a functional advantage. 

Indeed, recordings from bats flying in a small environment did not show a multi-scale code (Fig. 4). 

The absence of a multi-scale code in the small environment can be interpreted in two ways:  

(i) Neurons in small environments exhibit the classical place-code, and switch to a multi-scale code 

in large environments.  (ii) Multi-scale coding is the underlying representation in all environmental 

scales – but the multi-scale nature of the code cannot be revealed in small environments, where the 

firing reflects a small ‘pinhole view’ of the larger multi-scale map, and therefore the largest fields 

are too big to be seen because they cover the entire space.  However, option (ii) seems unlikely, 

because we would then expect to see in the 6-m setup many neurons that fire over the entire 

environment, thus reducing substantially the percentage of place-cells out of the neurons active in-

flight – but in fact, these percentages were remarkably similar between the 6-m and 200-m 

environments (83.3% and 83.4%, respectively). 

Our multi-scale findings open the way for numerous future questions on the neurobiology of 

large-scale navigation.  For example: What are the mechanisms that underlie this multi-scale coding that 

we discovered?  Our network modeling suggested that one possibility is a feedforward convergence of 

inputs from CA3, where each CA3 neuron has a single field (fig. S20D-left, and fig. S20J) – and it also 

predicted that MEC neurons should not exhibit spatial periodicity in large environments (fig. S20G-I).   
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Further: What is the biological decoder that may read this code downstream?  How are such large spaces 

learned by the hippocampal system?  Are there ultra-long compressed firing sequences during rest and 

sleep, similar to sequences observed in laboratory environments (50-52) – but now extending over 

hundreds of meters, or more?  If so, what are the mechanisms that could create these sequences under 

this multi-scale code – where each neuron would participate multiple times in each sequence, each time 

with a different resolution?    More broadly, these findings call for performing neurophysiological 

research in very-large-scale environments on all types of hippocampal and entorhinal spatial neurons.   

We posit that such research is crucial for understanding the brain’s ‘navigation circuit’, for two reasons: 

First, because most animals and humans evolved to navigate in multi-compartment environments with 

different spatial scales, including very large scales – so it is important to conduct neurobiological 

research on large scales.  Second, studies in humans have emphasized that spatial scale is important for 

navigation: People navigate differently in large versus small environments, which calls for conducting 

navigation experiments in very large environments (53).  Our study provides direct single-neuron 

evidence that the use of a real-world spatial scale can reveal a fundamentally new kind of spatial coding 

in the hippocampus.   This work thus makes a step towards bridging the major gap between the 

neurobiological tradition of studying the brain’s navigation circuit in small-scale laboratory setups, and 

the ecological tradition of studying large-scale animal navigation outdoors. 
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Materials and Methods Summary 

We conducted tetrode-based recordings of single neurons in dorsal hippocampus area CA1 of 

Egyptian fruit bats (Rousettus aegyptiacus) – in both wild-born and lab-born bats – using a 

wireless electrophysiology system, while the bats were flying in a very large environment (200 m 

long tunnel), in either familiar or novel conditions. For comparison, we also recorded from bats 

flying in a 6 m segment of the tunnel. The experimental datasets are summarized in Table S1. We 

localized the bat’s position in the tunnel using a radio-frequency based system yielding ~9 cm 

precision. We computed firing-rate maps separately for each flight direction, and used spatial 

information and a shuffling procedure to identify significant place-cells. Individual place-fields 

were detected as prominent, stable and significantly-tuned peaks in the firing-rate maps.  To 

theoretically compare the observed spatial coding scheme to a set of five other coding schemes, 

we generated synthetic data for each coding scheme and then used maximum-likelihood and 

population-vector decoders to test their decoding performance.  To theoretically explore the 

possible neural-network mechanisms underlying the observed coding, we considered both an 

attractor network model, based on multiple interacting attractors that randomly share neurons 

between them, as well as 4 feedforward models, based on inputs from MEC and CA3.  Further 

details can be found in the online Materials and Methods. 
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Fig. 1.  Neuronal and behavioral recordings from bats flying over large spatial scales.  (A) 16-

channel wireless neural logger.  (B) Neural traces from one tetrode, recorded in bat dorsal 

hippocampal area CA1, showing spikes in-flight.  (C) Spike-sorting of one tetrode (data from full 

session: 108 min). Shown are spike-clusters from different neurons, with spike-amplitudes plotted for 

3 of the tetrode’s channels; well-isolated units are shown in different colors. Same session and tetrode 

as in B.  (D) Histology of one recording-site in dorsal CA1. Red arrowhead, electrolytic lesion; Black 

lines, proximal and distal borders of CA1.  (E) Aerial photograph showing top-view of the large-scale 

environment. The flight-tunnel was composed of long and short arms (27), which the bat traversed 

without slowing-down (see panel I). Vertical lines, location where neural data in B were recorded.  (F) 

Localization system, showing positions of ground-based antennas (red dots), the tunnel (dark-gray 

thick line), snapshot of measured distances from each antenna to the localization-tag on the bat’s head 

(large black circles; cropped for visualization purposes), and the bat’s estimated location (blue dot: 

computed as the intersection of the black circles).  (G) Precision of the localization system (27), 

showing localization error of =8.9 cm along the tunnel’s major axis.   (H) Example session, showing 

the Y-Z positions of the bat’s passages (blue dots) through a cross-section in the tunnel’s mid-point 

(black outline). Note the relatively small deviations of the blue dots in the Y and Z axes – indicating 

the bat flew essentially in 1D trajectories (see also fig. S3B-C).  (I) Example session showing speed-

profiles along the tunnel, pooled over both flight-directions. Gray areas show locations of low flight-

speeds, due to takeoff and landing, which were removed from further analysis of place-fields (27).  (J) 

Distribution of the coefficient of variation (CV) of the flight-speed per session (n=60 sessions; 5 bats). 

The CV was computed over the tunnel’s high-speed portion (excluding the gray areas from I); mean 

CV=0.042.  (K) Distribution of number of flights (laps) per direction per session; shown are only valid 

unidirectional long flights (27). Red and blue colors in K and J: the two flight directions (see arrows).  

(L) Distribution of total distance flown per-session, based on long flights only (n=60 sessions; 5 bats). 
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Fig. 2.  Dorsal CA1 hippocampal neurons represented very large space using many fields with multi-

scale coding. (A) Examples of firing-rate maps and raster-plots for 9 cells. For each neuron: Top, firing-rate 

maps calculated separately for each flight-direction (red and blue, see arrows above cell 1); Bottom, raster 

plots of spike-positions (x-axis) for different flights, or laps (y-axis); the detected place-fields are marked by 

red- and blue-colored thick horizontal lines above the raster plots (fields inside the low-flight-speed zones 

[gray] were excluded (27)). In each example the smallest and largest field sizes are indicated (min, max), 

together with the ratio between them; the numbers of fields in each direction are indicated in blue and red on 

the right. For cells 3 and 7 shown are also zoom on their smallest field (cell 3: field size 1.0 m, cell 7: field 

size 0.9 m).  (B–D) Distribution of spatial information (B), sparsity (C), and the total coverage of the 

environment by place-fields (D) – calculated for the firing-rate map in each flight-direction separately (i.e., 

‘No. of cells’ here refers to significant cells × directions; n=331). In panel D: bottom x-axis, total coverage 

in meters; top x-axis, total coverage in percent of tunnel-length.  (E) Distribution of firing-map correlations 

between odd and even flights (n=331 cells × directions), showing high correlation values (median r=0.87).  

(F) Distribution of firing-map correlations between the two flight directions (gray; n=135 cells, including 

only cells where both directions were significantly tuned) was similar to cell-shuffled distribution (black) 

(Kolmogorov-Smirnov test: P=0.12 [DKS 135,13566 = 0.10]).  (G) Distribution of number of place-fields per 

neuron per flight-direction (n=331 cells × directions). Rightmost bar, cases with  fields per direction. 

Mean number of fields per direction was 4.9.  (H) Distribution of place-field size (n=1,629 fields). Note the 

field size ranged from sub-meter (leftmost bar of histogram) up to 32-m size.  (I and J) Single cells 

exhibited multi-scale field sizes (plotted are n=172 ).  (I) Distributions of smallest and 

largest field-sizes per neuron (shown cells with  fields).  (J) Distribution of the ratio between largest and 

smallest field-sizes for each neuron. Note both axes here are in log-scale.  (K) Lack of correlation between 

largest-to-smallest field size ratio and the speed-ratio at the locations of those fields (plotted are n=172 cells 

. For all histograms in this figure, except panel F: red vertical line indicates mean of 

distribution, red dot with red horizontal line indicate median and interquartile range. 
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Fig. 3.  Place fields were distributed uniformly along the tunnel. (A) Cumulative fraction of peak 

firing-rate locations for all the place-fields along the tunnel, pooled across all the 5 bats and 196 place-

cells; plotted for each flight-direction separately (East direction, blue: n=863 fields; West direction, 

red: n=766 fields). Gray vertical lines, locations of landmarks (note we did not treat the landing-balls 

as ‘landmarks’).  (B) Distributions of the distances of each field’s peak to its nearest landmark (blue 

and red, flight directions), were similar to shuffle distributions (black) (Kolmogorov Smirnov test: 

P=0.82 [DKS 782,7820000 = 0.02] and P=0.18 [DKS 661,6610000 = 0.04] for the two flight-directions).  (C) 

Distribution of gaps between fields (gray bars), overlaid with exponential fit (black line), plotted on a 

logarithmic y-scale. The good fit to the exponential distribution indicates lack of spatial structure in 

the field locations.  (D) Field size versus the location of field-peak, pooled across all bats and neurons. 

Gray vertical lines, locations of landmarks; open circles, fields larger than 20 m. Note the entire range 

of field-sizes was represented along the entire tunnel.  (E) Distribution of field-size for the two 

directions (blue and red), plotted separately for fields located close to landmarks (thin line, fields < 5 

m from nearest landmark) or far from landmarks (thick line, fields  5 m from nearest landmark). No 

significant differences in field-size were found between fields located close or far from a landmark 

(Kolmogorov Smirnov test: P=0.80 [DKS 577,205 = 0.05] and P=0.25 [DKS 469,192 = 0.09] for the two 

flight-directions).  In panels B and E we excluded fields whose peak occurred before the first landmark 

or after the last landmark in the tunnel, where the assignment of ‘nearest-landmark’ is one-sided and 

hence biased (the same was done for the shuffles in B). 

Fig. 4.  No multi-scale coding was found in a small-scale environment. Experiments were done in 

a small 6-meter segment of the long 200-meter tunnel, which we blocked with two curtains (Table 

S1: dataset 2).  (A) Examples of firing-rate maps and raster-plots for dorsal-CA1 place cells recorded 

in this small-scale environment. Same graphical conventions as in Fig. 2A. Note that most cells had a 

single field per direction, or two fields with a similar scale.  (B–D) Distributions of number of fields 
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(B), fields sizes (C) and field size ratio (D), for the two different dorsal-CA1 datasets: large-scale 200 

m environment (top row) and small-scale 6 m environment (bottom row). Red vertical lines, mean of 

distribution; red horizontal lines and red dot, interquartile range and median. Inset in panel C-bottom 

shows zoom-in. Black bars in panel D show neurons with 1 field.  (E–G) Comparison between the 

two datasets (large versus small environment), for the three quantities: number of fields (E), field 

sizes (F), and field size ratio (G; here we included ). Error bars, mean ± 

s.e.m. There was a highly-significant difference in all these 3 quantities between large-scale and 

small-scale environments, indicating that the multi-field multi-scale coding is expressed most 

prominently in large-scale environments (panel E: t-test with unequal variances, P=6.7 10–44, 

t=15.94; Wilcoxon rank-sum test, P=1.5 10–15, z=7.89; panel F: t-test with unequal variances, 

P=4.5 10–58, t=29.56; Wilcoxon rank-sum test, P=3.9 10–26, z=10.51; panel G: t-test with unequal 

variances, P=1.8 10–14, t=8.91; Wilcoxon rank-sum test, P=4.6 10–5, z=3.91; ***** indicates P < 

10–5 for the t-tests in panels E,F,G). 

Fig. 5.  Multi-scale coding exists already from the first days of exposure to the tunnel.  Experiments 

from day 1 were conducted in a 130-m portion of the 200-m tunnel (Table S1: dataset 3).  (A) Examples 

of firing-rate maps and raster-plots for 4 cells recorded in large-scale environment during the first days of 

exposure. Same graphical conventions as in Fig. 2A. The days since first exposure are indicated for each 

cell (day 1 is the very first day of exposure; day-count represents experimental days).  (B–D) Population 

scatter plots of the number of fields per direction (B), field sizes (C) and field size ratio (D) as a function 

of days since first exposure. Note the lack of trend across days (Spearman , P > 0.13 for all three 

scatters), suggesting the multi-scale coding exists already from day 1. For display purposes only, dots 

were jittered along the x-axis (uniform jitter of ±0.5 days); in panel B dots were jittered also along the y-

axis (uniform jitter of ±0.3 fields); all correlations were computed without the jitter. Error bars in main 

plots, mean ± s.d (using 5-day bins with no overlap).  Insets (gray bars) show mean ± s.e.m. for the three 
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tunnel lengths used in this study: 6 m, 130 m and 200 m.  (E) Four examples of within-day dynamics in 

spatial tuning. Raster plots show spike positions in each flight (blue/red dots: flight directions), with the 

behavioral coverage shown with light gray lines. Arrowheads denote field appearance (filled arrowheads) 

or disappearance (empty arrowheads). Note these dynamics occurred in both small and large fields, and 

happened both on the first days of exposure (cells 5 and 6) and after 1 month (cells 7 and 8).   (F) 

Probability of appearance and disappearance of fields (per-flight probability of change in any of the 

fields), grouped by the day from first exposure: days 1-2, days 3-4, days 5-6 and days. Error bars, 

mean ± standard error of the proportion (27). In the first two days after exposure, the cells exhibited a 

higher probability of appearance/disappearance of fields than on later days (two-proportion z-test: P < 

0.001 for all 6 tests comparing days 1-2 versus the other days). The probabilities for appearance and 

disappearance were similar over the entire course of exposure (compare black versus white bars; two-

proportion z-test: P=0.64, pooled over all days) – consistent with the overall stability over weeks in the 

number of fields per neuron (B). ***** P < 10–5, **** P < 10–4, *** P < 10–3. 

Fig. 6.  Multi-scale coding does not require early exposure to large-scale environments during 

development. Comparison of multi-scale properties between lab-born bats that were raised in a 5-meter 

sized room (27) and have never experienced large-scale environments during development (green; 

Table S1: dataset 4), versus wild-born bats that were caught as adults outdoors (gray).  Both groups of 

bats were tested under identical conditions in the 200-meter tunnel.  (A) Schematic of experimental 

design. The only difference between lab-born and wild-born bats occurred during early life; subsequent 

stages were identical – both groups spent several months in the same colony-room prior to surgery, and 

then the training and recording procedures were identical for both groups.  (B) Examples of firing-rate 

maps and raster-plots for six cells recorded from lab-born bats flying in the large-scale environment 

(200-m tunnel). Same graphical conventions as in Fig. 2A.  (C–E) Distributions of number of fields per 

direction (C), field sizes (D) and field-size ratio (E), for lab-born bats (green) and wild-born bats (gray), 
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recorded in the same large-scale environment (panel C: n lab=161 cells × directions, n wild=331; panel D: 

n lab=649 fields, n wild=1,629; panel E: n lab=82 cells, n wild=172 ). 

Main plots, y-axis in log scale; Insets, same histograms with y-axis in linear scale.  (F–H) Population 

comparisons between lab-born and wild-born bats: number of fields per direction (F), field sizes (G) 

and field-size ratio (H). Boxplots denote the median (horizontal line), 25%–75% (box) and 10-90% 

(whiskers); P-values of Wilcoxon rank-sum tests are indicated (F: df=490, z=–1.33; G: df=2,276, z=–

8.92; H: df=252, z=–0.47).  Despite significant difference in the field-sizes distribution (panel G: P=5 × 

10–19), the field-size ratio distribution did not differ significantly (panel H: P=0.64) – indicating that the 

multi-scale code exists also in neurons recorded from lab-born bats.  (I) Anatomical positions of 

tetrodes along the CA1 longitudinal (dorso-ventral) axis and proximo-distal axis (0% longitudinal: 

dorsal [septal] pole of CA1; 0% proximo-distal: proximal border with CA2). Tetrodes from both groups 

had similar longitudinal coordinates in dorsal CA1, but lab-born bats’ tetrodes concentrated more 

proximally along the proximo-distal axis of CA1. 

Fig. 7. Theoretical analysis showed that multi-scale coding decreases the decoding error for large 

environments. Decoding accuracy analysis for simulations of six different models (encoding schemes), 

using Maximum Likelihood decoder and integration time-window of 500 ms (27).  (A) We examined 

six different encoding schemes for spatial representations – shown here are 10 simulated example 

neurons for each scheme: (1) single field with small size; (2) single field with large size; (3) single field 

with gradually increasing field-size across neurons – mimicking the dorso-ventral anatomical gradient 

of field sizes; (4) multiple small fields (the distribution of field-propensity was taken from ref. (18)); 

(5) multiple fields with fixed size per neuron, but with variable sizes across the population; (6) multiple 

fields with multi-scale per neuron (as in the bat data).  In schemes 5 and 6 we matched the distribution 

of field-sizes to our data (fig. S8). The mean coverage in schemes 2, 5, 6 was identical (27).  (B) Left, 

minimal number of neurons required for reaching mean decoding error < 2 m, plotted as a function of 
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different environment sizes (from 20 m to 1,000 m).  Right, slopes of the curves on the left, 

representing how many additional neurons are required on average when increasing the environment 

size by 1 m. Colors represent the six encoding schemes.  (C–E) Decoding errors when using N=50 

neurons.  (C) Mean decoding error versus environment size, showing that schemes 1, 3, 4 exhibit huge 

decoding errors for large environments.  Inset, zoom on errors smaller than 20 m (see y-axis), showing 

that per-neuron multi-scale encoding (scheme 6: purple) outperforms fixed scale per-neuron (scheme 5: 

blue) in terms of mean decoding error.  (D and E) Catastrophic errors.  (D) Rare large errors (99th 

percentile of decoding error), plotted versus environment size. Inset: same plot in log-scale for the y-

axis.  (E) Probability of decoding error larger than 5% of the environment size, plotted as a function of 

environment size.  (F) Theoretical estimate of energy expenditure under the various coding schemes: 

Shown is the number of ATP molecules per second required to represent the environment with mean 

decoding error < 2 meters, plotted against the environment size (27). 
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Materials and Methods 

  
Subjects and behavioral setups 

Eleven adult male Egyptian fruit bats, Rousettus aegyptiacus, were included in this study 

(weights 160–200 gr). Information on the 11 individual bats is summarized in Table S1.  Prior to 

the start of experiments, all bats were housed for several months in a large vivarium: a 5.3 × 5.0 

× 2.9 meter colony room with many enrichment items and dozens of other bats living 

communally (see photos of this room in fig. S16A).  All the bats were then pre-trained for a few 

days in a large flight-room (5.8 × 4.6 × 2.7 meters) to fly between two landing-balls that were 

similar to the balls used subsequently in the tunnel experiments; the goal of this pre-training was 

to get them used to flying between the balls and landing on them for food reward.  All 

experimental procedures were approved by the Institutional Animal Care and Use Committee of 

the Weizmann Institute of Science. 

Bats no. 1–5 (“dataset 1” in Table S1) were caught as adults in the wild (in Israel). 

Following pre-training in the flight-room, the bats were trained to fly continuous directed flights 

in a long tunnel (Fig. 1E), and to shuttle between two landing balls that were located at the two 

ends of the tunnel (see fig. S3A for example trajectories).  Food (fruit) was available to the bats 

at the landing balls, and the bats could also land and rest there.  The tunnel was uniformly 

illuminated (illuminance level: 5 lux).   Tunnel dimensions were as follows: Length = 194 m (the 

linearized distance between the two balls was 185.3 m); Width = 2.30 m; Height at maximal 

point = 2.35 m (see Fig. 1E for top-view and Fig. 1H for the cross-section of the tunnel).  The 

tunnel was composed of a long 140 m arm and a shorter 54 m arm, with a 43  smooth turn 

connecting them (Fig. 1E).  The inverted V-shape of the tunnel’s ceiling was designed to channel 

the bats to fly at the center of the tunnel (Fig. 1H and fig. S3B-C).  Along the tunnel we placed 
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13 landmarks (fig. S2), whose positions were fixed across all days and all bats.  All these bats 

were well trained and familiar with the tunnel prior to the microdrive-implantation surgery (see 

Table S1 for training history).  Following training, bats were implanted with a microdrive for 

electrophysiological recordings in dorsal hippocampal area CA1 (see below).  Each experimental 

day started with a sleep session and ended with a sleep session (each sleep session lasting 10–15 

min). For the sleep sessions, the bat was placed alone inside a small covered cage which was 

positioned in a quiet location inside the tunnel, on the floor. Data from bats no. 1–5 are shown in 

Figs 1, 2 and 3. 

Bats no. 6–8 (“dataset 2”) were also caught as adults in the wild, and CA1 neurons were 

recorded while bats were flying back-and-forth between two balls located at the ends of a 6 

meter portion of the tunnel; this short 6 m portion was blocked using curtains. Data from bats no. 

6–8 in the 6-m short tunnel are shown in Fig. 4. 

Bats no. 6–7 (“dataset 3”) were recorded in a 130 m blocked portion of the tunnel (part of 

the long arm), in the exact same manner as bats 1–5 (dataset 1). The only two differences were: 

First, these bats were pre-trained and recorded in a 6-meter blocked segment of the tunnel (bats no. 

6–7 were two of the three bats described above for dataset 2).  Second, we then recorded their CA1 

neural activity from the very first exposure-day (‘day 1’) in the long tunnel – on day 1 we opened 

the blocking-curtain and allowed them to fly back-and-forth along the entire 130-meter length. On 

subsequent days we continued testing them in the 130 m tunnel in every session, with recordings 

lasting overall for >1 month. These data starting from day 1 are shown in Fig. 5. 

Bats no. 9–11 (“dataset 4”) were born in the lab and raised in the enriched large colony 

room (5.3 × 5.0 × 2.9 m) with many other bats and multiple enrichment items (fig. S16A). Upon 

reaching adulthood (age >18 months; note the longevity of this bat species is >20 years; weight 
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>170 gr for all these 3 bats), these lab-born bats were pre-trained in the flight room, and 

subsequently were trained in the 200-m tunnel, in the exact same way as bats no. 1–5 – and were 

then recorded also in the exact same way as bats no. 1–5 (same landmark positions, same 

experimental procedures, same localization system, etc.).  The precise matching of training and 

recording conditions between the lab-born bats no. 9–11 and the wild-born bats no. 1–5 was 

done in order to allow comparing large-scale spatial representations in CA1 of lab-born bats 

versus wild-born bats. These comparisons are shown in Fig. 6. 

 

Animal localization system 

The 3D position of the bat in the tunnel was tracked at a rate of 18.3 Hz or 14.2 Hz, using an 

ultra-wideband (UWB) radio-frequency-based localization system (BeSpoon Inc). This system 

used 14 antennas whose 3D positions were calibrated at a 1 cm accuracy by surveyors. The 14 

antennas were located around the tunnel (Fig. 1F, red dots), and during recording sessions they 

were used to measure the distance to a mobile active radio tag that was mounted on the bat’s 

head: The bat’s position was estimated as the intersection of the spheres around each antenna, 

which represent the measured distances from the antennas to the mobile tag (Fig. 1F). A real-

time server collected all the distance measurements from the antennas, and further processed the 

raw distance measurements to yield 3D localization in the reference-frame of the antenna-array. 

Next we converted the data to the coordinate-frame of the tunnel.  We first used the antenna 

array to calibrate the position of the entire midline of the tunnel (the tunnel’s ‘backbone’): This was 

done by slowly moving a mobile tag along the center of the tunnel (the midline) – which yielded the 

tunnel position in the coordinate-frame of the antenna-array, i.e. the same coordinate system used 

later for tracking the bats.   Landmark positions were measured and calibrated similarly.  We 

subsequently projected the measured bat positions onto this calibrated tunnel midline (‘backbone’). 
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To estimate the precision of the localization system in a moving-tag scenario, we did the 

following calibration (Fig. 1G).  We rapidly slid a mobile tag multiple times along a taut thin wire 

(~10 m long) that was placed perpendicular to the tunnel, and measured the tag’s position. Then, we 

calculated the transverse deviations of the tag position from the interpolated line that connected the 

two ends of the wire – whose positions were measured separately with high precision.  These 

transverse deviations (transverse to the wire, which means parallel to the long axis of the tunnel) 

represent the measurement-errors of the localization system along the long axis of the tunnel – 

which is the direction of the bat’s 1D flight. These errors were found to have a standard deviation of 

8.9 cm (Fig. 1G) – two orders of magnitude better than the typical ~5–10 meter accuracy of GPS. 

 

Surgery and neural recording techniques 

After training or pre-training, each bat was implanted with a four-tetrode microdrive (weight 2.1 

gr), loaded with four tetrodes, where each tetrode was constructed from four strands of insulated 

wire (17.8 m diameter platinum-iridium wire or 12.7 m diameter nichrome wire) – as described 

previously (1-4).  Some of the bats were implanted with a 16-tetrode microdrive (weight 3.4 gr). 

Tetrodes were gold-plated to reduce wire impedance to the range between 0.25–

kHz). The microdrive was implanted above the right dorsal hippocampus (3.0–3.6 mm lateral to 

the midline and 5.7–5.8 mm anterior to the transverse sinus that runs between the posterior part of 

the cortex and the cerebellum).  Surgical procedures were similar to those described previously 

(1-4): We used an injectable anesthesia cocktail composed of Medetomidine 0.25 mg/kg, 

Midazolam 2.5 mg/kg and Fentanyl 0.025 mg/kg (5) – and subsequently added supplemental 

injections as needed, based on monitoring the bat’s breathing and heart-rate. The microdrive was 

attached to the skull with bone screws, using a layer of adhesive (Super-Bond C&B) and then 
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dental acrylic; the craniotomy was then covered with an inert silicone elastomer (Kwik-Sil or 

Kwik-Cast). A ground wire was attached from the microdrive to a bone-screw that touched the 

dura in the frontal plate.   Following surgery, the tetrodes were slowly lowered towards the CA1 

pyramidal cell layer over a time period of 2–3 weeks; positioning of tetrodes in the layer was 

provisionally assessed by the presence of high-frequency field oscillations (‘ripples’) and 

associated neuronal firing, and was later verified histologically (fig. S1B).   During recordings, a 

16-channel or 64-channel wireless neural-recording device (‘neural-logger’) was attached to an 

Omnetics connector on the microdrive. Signals from all channels of all the tetrodes were 

amplified (×200) and bandpass filtered (1 – 7,000 Hz), and were then sampled continuously at 

29.3 kHz or 31.25 kHz per channel, and stored on-board the neural-logger.  During subsequent 

offline processing, the neural recording was further high-pass filtered with 600 Hz cutoff for 

spikes – creating a spike bandwidth of 600 – 7,000 Hz – and then 1 ms spike waveforms were 

extracted using a voltage threshold. 

 

Spike sorting 

Spike-sorting procedures were similar to those described previously (1-4, 6). Briefly, spike 

waveforms were sorted manually using Plexon Offline Sorter, on the basis of their relative 

amplitudes on different channels of each tetrode. Data from all sessions – the behavioral session 

and the two sleep sessions – were spike-sorted together. Well-isolated clusters of spikes were 

manually selected, and a refractory period (< 2 ms) in the inter-spike-interval histogram was 

verified. Spike-sorting was done in consecutive time-windows, to allow for drift-correction of 

the spike clusters. We included only neurons that were stably isolated throughout the recording.  

In total we recorded 757 well-isolated CA1 neurons from the 11 bats, of which we further 
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analyzed only putative pyramidal cells with firing rate  5 Hz, which met behavioral-coverage 

criteria as described below (n = 624 cells): see Table S1 for details on the four individual 

datasets.  The main analyses in the paper (Figures 1, 2, 3) focused on dataset 1 – wild-born bats 

flying in the 200-meter tunnel: In this dataset, a total of 304 well-isolated cells were recorded 

from dorsal hippocampal area CA1 of five bats.  We further considered here only putative 

pyramidal neurons (n = 248, based on mean firing-rate of  5 Hz along the entire recording 

[including both behavioral and sleep sessions]), and discarded putative interneurons (n = 56, 

mean firing-rate > 5 Hz).  Of those 248 neurons, n = 235 cells met behavioral-coverage criteria 

(see below), and were considered for further analysis. 

 

Extracting flights and computing firing-rate maps 

The bats’ flight behavior was mostly restricted to a 1D narrow horizontal corridor at the middle 

of the tunnel (Fig. 1H, and fig. S3B-C). Therefore, all the analyses and statistical tests in this 

study were performed strictly on the basis of 1D firing-rate maps (projections on the long axis of 

the tunnel), as follows. 

Location data from the localization-system were first processed to remove outliers (we 

removed data-points that were far away [>2 m] from the tunnel’s midline, or data with velocity 

higher than 20 m/s). We then linearized the data by projecting the valid positional data onto the 

long 1D axis of the tunnel (the tunnel’s “backbone”, which was measured using the radio-frequency 

localization tag, as explained above). We then filled short gaps where localization data were 

missing – which constituted a total of 3.1% of the data; this was done as follows:  (i) Gaps of up to 

1/3 second were linearly interpolated.   (ii) Gaps between 1/3 second and 1.5 seconds were 

interpolated only if the effective velocities before, during and after the gap were similar (where 
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velocity during the gap was calculated as the distance between the data-points surrounding the gap, 

divided by the gap-duration).   (iii) Larger gaps were not interpolated but rather extrapolated for 1/3 

second from each side of the gap.   These criteria and parameters for interpolating and extrapolating 

the missing data (which constituted only 3.1% of the total data) were chosen as follows: we 

conducted extensive simulations of gaps that were artificially added to real data that did not contain 

any actual gaps – and the criteria of interpolation and extrapolation were taken such that they 

yielded a maximal error of no more than 25 cm on average with respect to the original data points 

that were taken out in these simulations.   Finally, 1D positional data were up-sampled to 100 Hz. 

Firing-rate maps were constructed for flight periods only – separately for the two flight 

directions. Individual flights were identified by local peaks in the flight speed that had maximal-

speed > 4 m/s without changes in flight direction. To improve the accuracy in estimating flight 

speed, the bat’s position was smoothed using a smoothing spline (csaps.m in Matlab), based on 

which the instantaneous speed was extracted. The beginning and end of each flight was taken as 

the time-point where the bat’s speed crossed a threshold of 1 m/s.  We included in further 

analysis only unidirectional flight-trajectories longer than 100 meters, and the spikes that 

occurred during these flight-trajectories. 

To compute 1D firing-rate maps, we used fixed-sized spatial bins (20 cm) and collapsed 

the time-spent (occupancy) data and the spike counts onto the horizontal 1D dimension along the 

tunnel (linearized x-axis). We smoothed both the spike-count and time-spent 1D maps with a 

 2.5 bins = 0.5 m), and then divided, bin by bin, the smoothed 1D spike-

count by the smoothed 1D time spent. Only sessions with more than 10 long flights per direction 

were included for further analysis (see Fig. 1K for the distribution of the number of such long 

flights [> 100 m] per direction).  The exact same criteria, binning and smoothing were used also 
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for constructing maps in dataset 4 – lab-born bats flying in the 200 m tunnel, and in dataset 3 – 

wild-born bats flying from day 1 in a 130 m tunnel.  For dataset 2 – the 6 m short tunnel – we 

included also slower flights (maximum speed > 2 m/s without changes in flight direction), and 

used a 10- 2 bins for constructing firing-rate maps over 6 m. 

 

Quantifying spatial coding, definition of place-cells, and defining place-fields 

To quantify spatial coding of the firing-rate map in each direction, we used the spatial information index 

(7), measured in bits/spike: spatial information per spike (7, 8) is equal to  ( / ) ( / ), where 

 is the firing-rate of the cell in the ith spatial bin,  is the probability of the bat being in the ith bin, and 

=  is the overall mean firing-rate.   We calculated the spatial information index also for spike-

train shuffles.  To shuffle the spike-train, we rigidly and circularly shifted in time the spikes of each 

flight, using a uniform random shift; the value of the shift differed randomly between individual flights, 

so each shuffle consisted of a unique set of temporal shifts that differed randomly across flights. We 

performed 1,000 such random shuffles.  A cell was regarded as a significant place-cell in a particular 

flight-direction if the following criteria were met for that direction:  (i) The cell emitted at least 50 

spikes in-flight; (ii) Spatial information was > 0.25 bits/spike; (iii) Spatial information was also > 99% 

of the shuffles; (iv) The cell had at least one significant place-field (see next paragraph for place-field 

detection and significance). 

To detect place-fields, we took the following steps.  (1) First, we extracted local peaks in 

the firing-rate map, with a peak-rate of > 1 Hz.   (2) To remove small local peaks ‘riding’ on a 

large field, we searched for shallow ‘dips’, i.e. cases where the dip between two adjacent peaks 

was >50% of the firing-rate of the larger peak – and then disregarded the lower peak.   (3) We 

then defined the boundaries of the field as follows. We identified the zone covering 20% of the 

peak firing rate of that place-field. Then, in order to overcome the smearing caused by the 
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smoothing of the firing-rate map, we defined the field size as the 5–95% percentile of the 

positions of the spikes that occurred inside the 20% zone (see fig. S4). The use of raw spikes for 

defining field sizes was done to enable the detection of very small fields, if they exist.   (4) Field 

stability criterion: We required at least 5 different laps with spikes to have occurred inside the 

place-field, or 20% of the laps with spikes – whichever is larger.   (5) Field significance criterion: 

In order to capture clear distinct fields, we treated a place-field as significant only if it had 

significant spatial information in its local area, near the place-field. To quantify this, we looked at 

the area surrounding the field (specifically, the field itself plus 50% of the field’s size in each 

direction). Focusing on this local area around the place-field, we calculated the spatial 

information in this local area for the real spikes and also for 1,000 shuffles (same rigid shuffling 

as above), and considered the field to be significant only if it had spatial information > 95% of the 

shuffles in the same local area.    (6) Finally, we considered place-fields only at locations where 

the flight-speed was high, away from takeoff and landing. For this we defined fixed takeoff- and 

landing-zones (fixed across all bats and sessions), where the flight speed was lower than 80% of 

the grand median flight speed over the entire tunnel – and removed any fields that were fully 

contained within these takeoff and landing zones (see Fig. 1I, gray areas). The flight speed in the 

valid area (excluding the takeoff and landing zones) was very constant (Fig. 1I,J). 

For each neuron we computed five indices: (i) Spatial information, in bits/spike – as defined 

above (Fig. 2B).  (ii) Sparsity (8) (Fig. 2C), defined as / = ( ) /  , which is 

bounded between 0 and 1, with low values indicating high spatial selectivity.  (iii) Total coverage of 

all the fields, defined as the sum of all field sizes per direction, normalized by the length of the 

flight-track excluding the takeoff and landing zones (Fig. 2D).  (iv) Map correlation – an index of 

map stability – computed as the Pearson correlation between maps computed for odd versus even 
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flights (Fig. 2E).  These four indices were computed separately for each flight-direction.    

(v) Pearson correlation between the maps for the two flight-directions (directionality: Fig. 2F). 

 

Within-day dynamics of place fields 

Place-field detection in time-windows: For the analysis shown in Fig. 5F, fig. S20J and fig. S23, 

we considered place-cells defined as above. For these neurons, we detected place-fields on a 

flight-by-flight basis, in order to measure within-session dynamics in place-fields.  This was 

done as follows: First, we computed firing-rate maps for each flight using a 5-flight sliding 

windows, with 1-flight steps. Maps for each flight were computed similarly to the computation 

done for the entire session, except that here, since the maps were based on a smaller number of 

flights (n = 5), we used a ).   

Second, we detected fields for each per-flight firing rate map, similar to the detection performed 

on the entire session, but with the following changes due to the sparser data: minimum number 

of spikes = 3; minimum flights with spikes = 2; overlapping fields were defined using a 20% 

criterion (instead of 50%) to avoid over-splitting of fields due to the sparseness of the data; and 

we did not use the local spike shuffling here.   Third, we merged fields across different flights if 

their center-of-mass positions were spatially closer than their mean field size; in addition, to 

account for global drift across the entire session, we merged fields if the mean location of one 

field across all windows fell within the 25–75% percentiles of the edges of the other field, across 

flights.   Fourth, we removed fields detected only in isolated windows, if that field was not 

detected in the 5 windows before and in the 5 windows after the current window. Further, fields 

that were active in less than 20% of the session’s flights or in less than 5 windows were entirely 

removed, similar to our field-stability condition in the main analysis. 
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Detection of changes in place-fields: Three types of changes were detected: 

1) Appearance/disappearance of fields: if a field did not emit any spikes in the first two flights 

or in the last two flight, we considered this field as appeared or disappeared, respectively. If a 

field fired zero spikes for 5 consecutive flights, and then resumed firing, we considered it as 

disappeared and then appeared again. 

2) Change in field size: we looked for step-like changes in the field size during the session, as 

follows: (i) the change in field size (mean size before versus mean size after the change) was 

>5 meters or >50% of the field size – and in case of the 50% criterion, we also required a 

minimal change of >1 meter in field-size; and (ii) there were at least 5 flights before and 5 

flights after the change-point that were stable, i.e. no change was detected there. Then, if the 

field size increased, the new segment of the field was considered as appeared; and vice versa, 

if the field size was reduced, the missing segment was considered as disappeared. 

3) Change in field location: we looked for step-like changes in field location during the session, as 

follows: (i) the change in field location (mean location before versus mean location after the 

change) was >5 meters or >50% of the field size – and for the 50% criterion, we also required a 

minimal change in field location of >1 meter; (ii) there were at least 5 flights before and 5 flights 

after the change-point that were stable, i.e. no change was detected there; and (iii) the overlap 

between fields (before and after the change) was less than 50%.   The field was then considered 

as disappeared from its old location (before the change) and appeared in the new location. 

Examples of field detection dynamics are shown in fig. S23A. 

 
Statistics 

Correlations were based on Spearman’s correlation coefficient, , unless stated otherwise (this 

nonparametric rank correlation was used because in many cases the data were not normally 
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distributed).   We used the Kolmogorov-Smirnov test to compare distribution shapes.   To assess 

the significance of the spatial tuning of place-cells, we compared the real data to spike-shuffled 

data (99th percentile), as described above.   To compute the shuffled distribution for map 

correlations between the two flight-directions (Fig. 2F, black line), we computed all the map 

correlations between direction 1 in cell i and direction 2 in cell j, where i  j (cell shuffling).   To 

compute the shuffled distribution of the distances between place-fields and landmarks (Fig. 3B, 

black lines), we randomly shifted the location of each field independently 10,000 times circularly 

along the tunnel.  To compare proportions in Fig. 5F, we plotted error bars as the standard error of 

the proportion and used the two-proportion z-test. 

 

Histology 

Histology was done as described previously (1, 9). In brief, at the end of recordings, the bats were 

 15-s duration) were made to 

assist in the precise reconstruction of tetrode positions. The bat was then given an overdose of 

sodium pentobarbital and, with tetrodes left in situ, was perfused transcardially using 4% 

paraformaldehyde or 4.5% histofix. The brain was removed and thin coronal sections were cut at 

30- -stained with cresyl violet and were photographed to 

determine the locations of tetrode tracks in dorsal CA1 (e.g. fig. S1B, right).  Positions of tetrode-

tracks were then projected onto coronal plates of our stereotaxic brain atlas of the Egyptian fruit bat 

(10), and were also projected onto a 3D rendering of CA1, which we prepared based on our 

stereotaxic brain atlas (see 3D rendering in fig. S1A). Finally, we used these projections to estimate 

the tetrode-track position along the longitudinal axis and proximo-distal axis of CA1 (fig. S1B-left 

and S1C, and Fig. 6I; the borders of CA1 in the atlas were determined based on a combination of 

histological, immunohistochemical, and tract-tracing data from several dozens of bats). 
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Compartmentalization model 

Here we tested whether the statistics of field-sizes in the large-scale spatial maps in the bat can be 

explained by a scenario where the hippocampus is segmenting the tunnel into small independent 

segments (according to the landmark locations), wherein fields could be concatenated at the edges 

of the compartments (i.e., around the landmarks), thus creating larger fields.  We considered each 

segment between landmarks in the tunnel as a separate, small-scale compartment. To model this, 

we generated compartmentalized maps using field statistics that we observed in the data, as 

follows: First, for each segment of the environment between two landmarks, we randomly drew 

the number of simulated small fields from a Poisson distribution. The rate of the Poisson 

distribution was chosen such that the average coverage of the compartmentalized maps was 0.15, 

to match the empirical average of the bat data in the 200 m tunnel (fig. S13, top row), or we set 

the rate of fields to match the empirical average number of fields in the data (fig. S13, bottom 

row).    Second, each simulated field had its size drawn from a gamma distribution that was fitted 

to one of the following: (i) Fitted to the distribution of field-sizes measured in the small 

environment of 6 m (Fig. 4): this resulted in the following gamma-distribution parameters: shape 

parameter, 3.56; scale parameter, 0.37 m. This option was plotted in fig. S13, left column.    

(ii) Fitted to the data in the small 6-meter environment, as in (i), but scaled up to match the 

median inter-landmark interval. We used here the same scaling factor = 0.3 as in Figure 7 (see 

the next section in the Methods for more details). This option was plotted in fig. S13, middle 

column.   (iii) Fitted to the distribution of the smallest place-fields per neuron in the large 200-

meter environment. This option was plotted in fig. S13, right column.    Third, within each 

segment, we drew randomly the locations of each field (uniform distribution), and their sizes 

(from the gamma distribution described above). Importantly, we allowed fields from one segment 
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to extend to the neighboring segment and merge together, to produce larger fields. Fields within 

the same segment were not allowed to overlap.  We then compared these null model distributions 

of field sizes (fig. S13, cyan) with the experimental data distributions (fig. S13, gray bars). 

 

Simulations of various spatial encoding schemes, and analysis of decoding errors 

We created populations of neurons with simulated place-fields, using 6 encoding schemes: These 

different schemes were aimed to compare coding by single-fields versus multiple-fields versus 

multiple-fields with a multi-scale code (see below).  The comparison between the 6 encoding 

schemes was done by utilizing two decoders – a Bayesian maximum-likelihood decoder and a 

population-vector decoder (see below) – which we used here in order to study how the field 

numbers and distribution of field-sizes affect the accuracy with which an environment of size L is 

represented.  Decoding was done with an integration time window of 500 ms (Fig. 7 and figs S17 

and S18); qualitatively similar results were obtained when using different time-windows (fig. S19). 

Encoding.  In our simulations, the environments had a 0.2 m resolution (0.2 m bin size: as in our 

empirical firing-rate maps).  We varied the environment-size L between 20–1000 m.   To 

simplify the analysis, we neglected neuron-to-neuron variability in firing rates: In all cases we 

assumed that neurons fire with Poisson statistics independently from each other, with in-field 

firing rate of 10 spikes/second (when using integration time-window of 500 ms, see below).  We 

considered 6 schemes for encoding position in the environment (see Fig. 7A): 

Scheme 1: A single small field.  Each neuron had one field of size 1 meter, located randomly in 

the environment (uniform distribution). 

Scheme 2: A single large field.  Each neuron had one field located randomly in the environment 

(uniform distribution); field size was 0.15 × × (200/ )  meters, where L is measured in meters, 
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and the prefix 0.15 represents the average coverage of place-fields in our data for the 200 meter 

tunnel (see below).  The coverage in scheme 2 (as well as in schemes 3, 4, 5, 6) was thus scaled 

with environment size as  1/   – with   being a ‘scaling factor’ – as further explained below. 

Scheme 3: A single field per neuron, with gradually increasing field size across the neuronal 

population – mimicking the dorso-ventral anatomical gradient of field sizes in the hippocampus 

(11).   Each neuron had one field located randomly in the environment (uniform distribution). 

The field sizes linearly ranged from 1 meter up to  0.15 × × (200/ )  meters, i.e. a linear 

progression from scheme 1 to scheme 2. 

Scheme 4: Gamma-Poisson distribution of small fields, as described in ref. (12) – which is the 

only previous study that described quantitatively the distribution of the number of CA1 place-

fields in a 1D environment.  We randomly drew multiple fields for each neuron using the 

following steps (identical to the model in ref. (12)):  (i) We randomly chose a field-propensity 

value from a gamma distribution with shape parameter 0.57 and rate parameter 7.75 × ( /50)  m 

– the exact numbers reported in ref. (12).  This ensured that at L = 50 m (the approximate 

environment size in that study) the encoding was identical to the model of ref. (12)  – but for 

other values of L, the coverage scaled as 1/ , allowing a comparison to schemes 5, 6 below, 

which have the same scaling.   (ii) We then randomly drew multiple field positions from a 

Poisson distribution with a rate equal to the field-propensity value of each neuron.  All fields had 

a 1 m size.  A neuron was accepted into the population only if it had at least one field. 

Scheme 5: Multi-scale field size distribution at the population level – with multiple fields per 

neuron that all have a fixed field-size.  We assigned a field size li for each neuron i, such that the 

field sizes of all neurons followed a gamma distribution with shape parameter  = 3.16  and scale 

parameter  = 1.8 × ( /200)   meters.  These parameters were taken from the gamma-
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distribution fit to the data (fig. S8); we opted to use the gamma distribution for the field-sizes, 

rather than the log-normal distribution, because a gamma distribution can be scaled naturally by 

changing the scale parameter , unlike the log-normal distribution.  The number of fields for each 

neuron was then taken as the rounded value of  0.15 × × (200/ )  /   (the division by li 

ensured that for a given environment size L, the average coverage was the same for all neurons, 

regardless of each neuron’s field-size).    Field locations were randomly distributed along the 

environment, with no overlaps. 

Scheme 6: Multiple fields per neuron, with a multi-scale distribution of field sizes at the single-

neuron level – with all possible field-sizes per neuron.  For each neuron, we picked field sizes 

randomly from a gamma distribution with shape parameter  = 3.16  and scale parameter  

= 1.8 × ( /200) meters, as in scheme 5 – and the number of fields was chosen such that the 

coverage, i.e. the cumulative size of all the fields together, reached  0.15 × × (200/ )  .   

Field locations were randomly distributed along the environment, with no overlaps. 

Schemes 5v and 6v: These are variations of schemes 5 and 6, which have variable coverage 

across neurons that captures the full coverage-distribution of the data. We first fitted the 

coverage distribution of the neurons recorded in the 200 m tunnel (dataset 1) with an exponential 

distribution (fig. S17F). Then we created maps as in the original schemes 5 and 6, except that we 

iteratively added fields until a random target coverage (drawn from the fitted exponential 

distribution) was reached.  Similar to the original schemes 5 and 6, also here the coverage was 

scaled with the environment size as 1/ . 

For all schemes, fields were positioned uniformly and randomly in the environment.  To 

avoid distorting the uniform distribution of fields near the boundaries of the environment, we 

allowed fields to be located anywhere and be truncated at the boundaries.  In order to account for 
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the sub-linear increase in field-sizes as a function of the environment size (which has been reported 

in previous rodent experiments (13)), and the decrease in coverage as a function of environment 

size, we did the following: In schemes no. 2–6 the relative total coverage (the average fraction of 

the environment covered by the fields of each neuron) was decreased as ~1/  –  with = 0.3, 

where the value 0.3 was fitted from the experimental data (see below for further details). Likewise, 

in schemes 2,3,5,6 the mean field-size was increased as ~  (as a function of the environment size 

L) – also with = 0.3.  Note that, in schemes 2, 3, 5, 6, the pre-factor 0.15 represents the average 

coverage at the environment size of our experiments (200 m).  In schemes 4, 5 and 6, which had 

multiple fields per neuron, the fields of the same neuron were not allowed to overlap. 

To fit the scaling factor   based on the experimental data, we used the average coverage 

 and average field size  from the data recorded at two different environment-sizes L: the large-

scale environment (dataset 1: the 200 m tunnel) and the small-scale environment (dataset 2: the 6 

m tunnel).  That is, we used:  = (  + ) ,  where = ( )   and   = ( ) .  This 

calculation gave scaling factors of  = 0.36 and   = 0.24 , yielding a mean scaling factor of  

= 0.3 , which was subsequently used in all our analyses.  In fig. S17H we further explored a 

wide range of values for the scaling factor . 

We denote each neuron’s spatial selectivity map by fa,i(x), where i is the neuron index (i = 1,...,N), 

and a is the scheme index (a = 1,...,6).   fa,i(x) is equal to 1 if the neuron has a field in position x and 0 if it 

does not – that is, the field shapes in our model were taken to be rectangular (see examples in Fig. 7A). 

Generating spike counts.  We assumed that the animal starts each iteration of the simulation (each 

‘simulation-trial’) at a random position x = x0, and flies at velocity v = 8 m/s (the typical flight-speed 

we measured empirically) t.   The expected spike count of the neuron during that 
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trial is given by:  = , ( ) , where m0  is the expected spike count if the animal 

spent the entire interval within a field.   We used  m0 = 5  in all our simulations (taken together with 

the integration time window of 500 ms, this gives a 10 Hz in-field firing rate).  The actual spike count 

in each trial was drawn from a Poisson distribution with rate mi , and is denoted below as ni. 

Decoding.  We considered two decoders: 

Population Vector (PV) decoder:  The classical PV decoder (14, 15) was adapted to the case where 

the stimulus space (i.e., the environment) is not circular, and where neurons can represent more than 

one location. In each trial, for each scheme a  we computed the following sum over the N neurons: 

( ) = , ( ) 

The decoded location was then taken as the one that maximizes APV(x). 

Maximum Likelihood (ML) decoder:  Here we computed the log-likelihood of each neuron’s 

spike count, and summed over the N neurons (15): 

( |{ }) = [ , ( )] , ( ) 

Where the term on the left hand side denotes the log-likelihood of the bat being in position x given 

the observation of a vector of { } spikes in each of the neurons i.  The first term on the right hand 

side corresponds to a sum of spatial tuning of all neurons, weighted by their activity (similar to 

). The second term on the right hand side corresponds to a correction for unequal coverage of 

the neuronal representation in different locations.  This expression is an approximation of the 

likelihood function, where the decoder knows each neuron's firing-rate map (i.e., , ( )), but it 

does not rely on continuously computing a convolution of the firing-rate map with the animal's 

motion.  Again, the decoded location was then taken as the one that maximizes ( |{ }).  Note 
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that, unlike the PV decoder, the ML decoder accounts for the fact that if the spike-count is low, the 

animal is more likely to be in a place that is less well covered by the spatial representation – so in 

this sense, the ML decoder is better than the PV decoder – which is why we used the ML decoder 

for the main analyses (Fig. 7), and the PV decoder in the supplementary (fig. S18). 

Fig. 7 and figs S17–S19 show results from 106  simulation-trials generated by drawing 

random field locations 4,000 times, then drawing random spike counts from the Poisson 

distribution 10 times, and then performing decoding at 25 equally spaced locations spanning the 

entire environment (4,000 × 10 × 25 = 106). 

To estimate the energy expenditure (number of ATP molecules per second) that is 

required to represent the environment with a mean error of less than 2 meters (Fig. 7F), we used 

the following formula: 

    = ×  ×  × [ ]  

Where coverage is the proportion of area covered by fields in each scheme; in-field firing rate is 5 

spikes/s (the average in-field firing rate in our data: see fig. S6B); the number of required neurons 

is taken from the linear fit to the data in Fig. 7B; and [ ] = 600 × 10  is the number of ATP 

molecules required to generate one spike: this number was taken from ref. (16). 

 

Attractor-network model 

We developed a network model of multiple interacting continuous attractor networks, at different 

scales, which randomly shared neurons between them.  This model comprised N = 4,000 

neurons, with P = 8 continuous attractor neural networks (CANNs) embedded, each covering 

overlapping portions of the environment of L = 400 spatial bins. Each bin represents 0.5 m of the 
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tunnel, resulting in a total tunnel-length of 200 meters, as in the experimental data.  One attractor 

covered the entire environment, two intermediate attractors covered half of the environment 

each, and finally five smaller attractors covered consecutive fifths of the environment (see fig. 

S20A).  Each CANN was modeled as a one-dimensional chain of neurons with Mexican-hat 

connectivity and open boundary conditions (17, 18). 

We assigned each neuron to several CANNs, at random positions, as follows: for each 

CANN, a random sample of f = 0.3 of all the neurons were recruited (i.e., a random choice of 

1,200 out of 4,000 neurons for each attractor). Each neuron could participate in multiple 

CANN’s; the locations of the same neuron were independent between the different CANNs. The 

connection strength between each pair of neurons is the sum of contributions from each CANN 

to which both of the neurons belong. In particular, if neurons i and j both belong to a set of 

CANNs { }, the connection strength between these neurons is given by:   J = J  

Where  J = J  , and x  stands for the positional label of neuron i  

(i = 1,…,N; 0 < < ) in the corresponding p’th CANN, chosen randomly as explained above; 

 is the interaction radius of the corresponding CANN.  The dynamics of the network were 

controlled by the following equations for the synaptic current of each neuron, :     

= + + + ( ),  where ( ) is a neuronal gain function that has a 

threshold-linear form ( ( ) =  for > 0 , and 0 for < 0 );  is a uniform background input; 

and ( ) is position-dependent input to a neuron i at time t, which is determined by the 

position of the simulated animal at that moment, and was calculated as a sum of contributions 

from each CANN to which a given neuron belongs:   ( ) =
( )

 , where ( ) 

is the current simulated position, moving from left to right at a constant speed of 10 m/s. 
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A phase diagram of a single CANN was computed in ref. (19). In particular, for the CANN to 

be in the regime of a spontaneous generation of a bump of activity, the strength of recurrent excitation 

has to be big enough ( > 0.5).  When multiple CANNs with overlapping neuronal assignments are 

embedded in the network, there is a range of parameters for which all of them are in the regime of 

spontaneous bump generation.  In the simulations presented here (see fig. S20A-C and fig. S21), we 

used the following parameter values:  = 0.7; = 0.15; = 0.01 ; = 0.1; = 0.05;  the 

interaction length  for each CANN p was chosen to be 0.05 (5%) of the size of the area covered by 

this CANN (i.e. 10 m for the largest 200-meter CANN, 5 m for the two intermediate 100-meter 

CANNs, and 2 m for the five smallest 40-meter CANNs). 

We note that this model is fundamentally different from previous models that used 

multiple attractors for different environments, where only one attractor was active at any moment 

(18, 20), and also fundamentally different from models using non-randomly shared neurons (21). 

 

Feedforward models 

Input. We generated four types of hypothetical input neurons that project to a CA1 neuron: 

Model 1 – single-field CA3: Here each input neuron had one field, with field-size drawn from a 

gamma distribution fit to the data: shape parameter = 3.16, scale parameter = 1.8 meters (as in 

fig. S8).  The field was positioned uniformly at a random location in the environment. 

Model 2 – multi-field CA3: Here each input neuron had multiple fields such that the total coverage 

of the environment was 0.15. These spatial maps were generated as the maps in scheme 6 in Fig. 7. 

Models 3 and 4 – periodic MEC: Our model consisted of 5 modules with grid spacings that 

spanned a small range relative to the size of the environment – following theoretical models of 

optimal grid-cell encoding of large environments (22).  The periods we used were:   
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5 × [1,    s.  First, we generated two-dimensional periodic hexagonal profiles 

for each module. Then, the one-dimensional (1D) spatial maps of MEC inputs were taken as a slice 

through the two-dimensional (2D) maps described above (similar to ref. (23)). The angle of the 

slice was identical for all modules, in agreement with ref. (24).  The slice angle was varied from 0  

to 29  in 1  jumps. The slice phase (i.e., the position of the start of the slice) varied uniformly at 

random for each input neuron.  For the analyses in fig. S20 (Model 3) we used a 0  slice angle – 

corresponding to precisely-periodic 1D grid cells.  For the analyses in fig. S22 (Model 4) we used 

all slice angles – corresponding to angled 1D slices through a perfect 2D grid (23). 

All spatial maps were binary, i.e., had a firing-rate of 1 for bins inside a field and 0 

outside a field. We used spatial bins of 0.2 m, and the length of the environment was 200 m – as 

in the data. For each input-model (single-field CA3; multi-field CA3; periodic MEC at 30 

different slice angles) we created a bank of 2,000 input neurons, as explained above. For the 

MEC model, each of the 5 modules had 400 neurons. 

Output. To generate the spatial map of an output neuron in CA1 we did the following.  First, we 

chose 100 input neurons randomly, and assigned a random synaptic weight to each, drawn from a 

log-normal 1 . For the MEC model we ensured there were 

20 inputs from each module.   Second, we computed the weighted sum of inputs in each position, 

and smoothed it by computing a 4-m window moving average (equivalent to 500 ms given a flight-

speed of 8 m/s). This smoothing was done to eliminate high-frequency fluctuations in the input to 

CA1, stemming from the binary nature of the inputs in the model. Smoothing the input is further 

justified in this model because without it, the CA1 output neurons of the model would have many 

more very-small fields (<1 m) than observed in the data.   Third, we picked a target coverage for the 

output neuron from an exponential distribution with mean 0.15, to match the coverage distribution 
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of the experimental data (see fig. S17F). Then, we computed a threshold such that the fraction of 

the smoothed weighted sum of inputs which is above the threshold is equal to the randomly drawn 

value of the coverage. The output spatial map of the CA1 neuron was then set to 1 or 0 where the 

smoothed weighted sum was above or below the threshold, respectively. 

Combining CA3 and MEC inputs. We studied (in fig. S20G-H and fig. S22E-G) a model where a 

fraction of the 100 inputs are from Model 1 ‘single-field CA3’ neurons, and the remaining are 

from Model 3 ‘periodic MEC’ neurons – keeping a total of 100 input neurons per output neuron 

in CA1. We varied the fraction from 0 (only single-field CA3 inputs) to 1 (only periodic MEC 

inputs). The output maps were then computed from the inputs as described above. 

Perturbation. To model the dynamic changes of spatial maps on a flight-by-flight basis, we 

introduced a perturbation to CA1 spatial maps for the three main types of inputs described above 

(input models 1, 2, 3), by randomly modifying a small fraction of the input synapses, as follows. 

In addition to the original CA1 map as described above, we computed a perturbed map by 

randomly re-drawing a small fraction of the 100 synaptic weights (4% of the synaptic weights 

were re-drawn in the simulations shown in fig. S23B; synaptic strengths were re-drawn from the 

same log-normal distribution of synaptic strengths as before).  The output was computed using 

the same threshold as before the perturbation.  By comparing the original and perturbed maps, 

we defined two types of map-segments:   (i) appeared: map segments in which the output neuron 

was not active in the original map and was active in the perturbed map; and (ii) disappeared: map 

segments in which the output neuron was active in the original map and was not active in the 

perturbed map.  Two (or more) segments of the same type that overlapped with the same field in 

the original map were defined as a single appeared/disappeared segment. 
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Data and code availability 

All the behavioral and neural data in this study were analyzed using custom code written in 

Matlab; the modeling work was also carried out in Matlab.  The data and code that support the 

conclusions of this study are available from the authors upon a reasonable request, and are also 

accessible online at Zenodo (see link in the Acknowledgments). 
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Supplementary Text 

  
Neural network modeling of multi-scale codes: Attractor networks and feedforward models 

Classical models of hippocampal place-cells are characterized by a single spatial scale per 

neuron in a given environment (17, 18, 20, 25-30). We looked for mechanistic neural-network 

models that could generate the multi-field multi-scale code that we observed.  We considered 

two types of models.  First, we examined this in the framework of a continuous attractor neural 

network. Modeling of spatially-tuned cells (and also other types of tuning, e.g. in sensory 

systems) is often done using a 1D continuous attractor network, in which cells with similar 

response properties have strong excitatory connections, together with a global feedback 

inhibition (i.e. Mexican-hat connectivity) (17-20, 27, 30, 31). This model design enables 

generating strong and reliable network activity from a weak and noisy spatially-modulated input, 

in the form of a single activity-bump with a fixed width. The tuning of single-cells in such 

networks exhibits a single-field per neuron, with a fixed field-size (determined by the width of 

the lateral excitation that sets the width of the network bump of activity) – which is very 

different from the multi-scale tuning properties in our bat data. We therefore asked whether we 

could generate a multi-field multi-scale code in single neurons, by using multiple interacting 

attractors – specifically, multiple attractors at different scales that randomly share a fraction of 

the neurons between them – and in particular we asked whether this network could maintain a 

stable bump of activity in each of the attractors.  We generated 8 attractors spanning 3 different 

scales, with the largest attractor spanning the entire 200-meter tunnel and the smallest attractors 

each covering one fifth of the tunnel (fig. S20A). Each neuron could randomly participate in any 

of the attractors, and interact with the other neurons in those attractors according to the scale of 

each attractor (see Materials and Methods) (fig. S20A, red neuron participates in attractors no. 
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A4,5,6,8, and is interacting with neighboring neurons at distances proportional to the attractor 

scale). Simulations of this model displayed coherent bumps of activity that followed the 

simulated animal position and exhibited different bump-width for the different attractor scales 

(fig. S21A-B). Single neurons had multiple fields, with positions and sizes corresponding to the 

set of attractors they belong to  thus exhibiting multi-field multi-scale coding (fig. S20B – 

examples; fig. S20C – population). The fields showed a continuum of sizes (fig. S20C, top-right 

distribution), despite the fact that the underlying individual attractor networks had discrete scales 

(fig. S20A).  By contrast, simulations of a model of 8 independent attractors (with no shared 

neurons) showed single fields for each neuron (fig. S21C-left), with a highly-discretized 

distribution of field sizes (fig. S1C-right: only 3 field sizes across the population).    

Our multiple-attractor modeling results have several implications:  (i) We identified a 

novel regime whereby all the interacting attractors generate coherent coexisting activity bumps, 

all being active simultaneously, resulting in a multi-field multi-scale code – as in the bat data. 

This suggests that our experimental data are compatible with the framework of continuous 

attractor networks.    (ii) This model can also explain mechanistically the difference between 

single-field coding in the small environment, versus the multi-field multi-scale code found in the 

large environment: The hippocampus might allocate only one attractor for small environments – 

thus creating a single-field code, while in larger environments the hippocampus may allocate 

many more attractors – thus creating multiple fields for each neuron, with each field having a 

different scale (as in fig. S20A-C).   (iii) Our network model yields a continuum of place-field 

sizes (fig. S20C, top-right), which is due to the interactions between the overlapping attractors, 

that effectively introduce noise (fig. S21A-B). This continuum is very different from the case of 

independent attractors, which invariably generate a highly-discretized set of field-sizes (fig. 
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S21C, right) – not a continuum.   (iv) We believe that the key features of our model – random 

sharing of neurons between multiple attractors, and superposition of multiple activity bumps – 

could be generic also to other brain regions for which continuous attractors were proposed to 

underlie their function (32-34). 

Second, we explored the possibility that multi-scale coding in CA1 results from 

feedforward connections coming into CA1 from CA3 and medial entorhinal cortex (MEC) (see 

Materials and Methods).  We considered four types of feedforward inputs (fig. S20D and fig. 

S22A-B): (i) CA3 neurons with single-field per neuron and different field sizes across neurons 

(fig. S20D, left); (ii) CA3 neurons with multiple fields of different sizes per neuron (i.e. multi-

field multi-scale coding being present already in CA3; fig. S20D, middle); (iii) MEC neurons 

with periodic grid-fields (fig. S20D, right); and (iv) MEC neurons whose firing in 1D is captured 

by a straight line passing through a perfect 2D grid at a certain angle and phase (fig. S22A) – a 

1D slice through 2D – as proposed by a previous study (23).  We then generated 1,000 output 

CA1 neurons, each connected randomly to 100 input CA3 or MEC neurons, with different 

synaptic strengths; we have set a firing-threshold such that the overall coverage of fields across 

the population matched the experimental data (see Materials and Methods). All four models 

qualitatively captured the basic multi-scale properties of CA1 (fig. S20E and fig. S22C – 

examples, fig. S20F and fig. S22D – population; the models yielded somewhat higher field-size 

ratios than in the data).   Next, to test the viability of the two MEC-input models, we reasoned 

that if the MEC input neurons are periodic, then the output neurons in CA1 should show a 

signature of periodicity that is inherited from the input (35). We created a family of models with 

weighted inputs from CA3 and MEC, which showed that the stronger is the input from MEC, the 

larger are the spectral peaks of the output maps in CA1; this was true both for MEC inputs which 
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consisted of perfectly periodic 1D grid cells (fig. S20G-H) and for MEC inputs taken as 1D 

slices through a 2D grid (fig. S22E-G).  By contrast, no spectral peaks were found when we 

examined the spectra of the spatial firing-rate maps for the experimentally-recorded place-cells 

(200 m tunnel) – neither when pooling across all place-cells (fig. S20I), nor in individual animals 

(fig. S22H) – indicating a lack of spatial periodicity in the multi-field firing of bat CA1 cells. 

This is consistent with our finding of an exponential distribution of gaps between fields (Fig. 

3C), which also argues against any spatial structure.   We therefore predict that non-periodic 

activity will be found in MEC neurons in large-scale environments; or alternatively, the inputs 

from CA3 are much more dominant than MEC inputs in setting CA1 activity – consistent with 

recent findings showing that CA3 is the predominant driver of CA1 place-cell activity (36).     

Next, because our spectral analyses argued against the MEC-based feedforward models, 

we proceeded to examine the CA3-based feedforward models. Specifically, we considered the 

appearance/disappearance of place-fields, which we observed in the data (Fig. 5E-F), and 

modeled this field-dynamics via plasticity of CA3-CA1 synapses (see Materials and Methods; 

we also modeled via plasticity in MEC-CA1 synapses). We reasoned that different CA3 

feedforward models may yield different patterns of change in CA1 upon a simulated perturbation 

of CA3-CA1 synapses: Intuitively, in models with multiple fields in each input-neuron (e.g., 

multi-field multi-scale CA3 model, but also MEC-based models), synaptic perturbations should 

show concurrent changes in multiple fields of the output CA1 neuron – while models with 

single-field inputs (single-field CA3 model) should exhibit independent dynamics in different 

fields, and therefore show lower probability of concurrent changes in several fields (fig. S23B). 

The experimental data were most consistent with the single-field CA3 model (fig. S20J and fig. 

S23B-C).   Taken together, we conclude that the feedforward model that is most consistent with 
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the data is single-fields in CA3.   Notably, this prediction sets up a puzzle, because our own 

decoding analysis (Fig. 7) showed that single-field codes are not efficient for representing large 

environments – which should apply also to CA3; this may possibly point to different coding 

objectives in CA3 versus CA1 (37-39).  It is therefore important to conduct future recordings in 

CA3 and MEC in very large environments, in order to resolve this puzzle regarding CA3 – and 

also to test our prediction that the coding of MEC neurons in very large environments is unlikely 

to be periodic. 
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fig. S18. Decoding accuracy of model simulations using a Population Vector (PV) decoder was qualitatively 
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fig. 20.  Two families of neural network models for multi-scale coding: continuous attractor model with multiple 
attractors, and feedforward models with inputs from CA3 and MEC.    
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fig. S23.  Detection of within-day dynamics, and the consistency of this dynamics with the feedforward single-field 
model of CA3.  
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Table S1.  Experimental datasets 

Experimental dataset Figures 
where these 
data are 
plotted 

Bat 
no. 

Bat 
ID 

Wild 
/ Lab 
born 
bat 

Arena 
size 

No. of 
training 
sessions* 

No. of 
recording 

sessions with: 
CA1 cells / 

Behaviorally-
Active cells / 
Place cells 

No. of cells: 
CA1 putative 

pyramidal cells† / 
Behaviorally-
Active cells‡ /  

Place cells 

1) Wild-born bats,
large-scale

Fig. 1-6 
fig. S1 
fig. S3-S17 
fig. S20F,I 
fig. S22H 

1 0034 Wild 200 m 10 7/7/7 31/31/30 
2 0079 Wild 200 m 10** 17/17/10 25/25/12 
3 0148 Wild 200 m 12** 28/28/25 97/97/79 
4 2289 Wild 200 m 15 3/3/3 15/15/14 
5 9861 Wild 200 m 11 17/17/15 67/67/61 

Total 72/72/60 235/235/196 
2) Wild-born bats,
small-scale

Fig. 4 
Fig. 5 

6 2382 Wild 6 m >20*** 5/5/4 28/13/11 
7 2311 Wild 6 m >20*** 3/2/2 15/10/7 
8 2329 Wild 6 m >20*** 5/5/4 24/13/12 

Total 13/12/10 67/36/30 
3) Wild-born bats,
large-scale,
recordings from day 1

Fig. 5 
fig. S20J 
fig. S23 

6 2382 Wild 130 m 0 31/30/29 173/115/104 
7 2311 Wild 130 m 0 12/11/11 36/26/21 

Total 43/41/40 209/141/125 
4) Lab-born bats,
large-scale

Fig. 6 
fig. S16 

9 9845 Lab 200 m 47 17/13/10 20/15/11 
10 0102 Lab 200 m 17 8/8/8 15/15/15 
11 0194 Lab 200 m 20 19/19/19 78/70/69 

Total 44/40/37 113/100/95 

* Number of training sessions or recording sessions in the tunnel before the first place-cell was recorded.

** For bats no. 2 and 3 there may have been a few additional training sessions that were not documented. 

*** There was no systematic documentation for the training sessions in the 6 m arena. 

† CA1 putative pyramidal cells listed here were all the pyramidal cells that were recorded during the recording 

session: either cells that were behaviorally-active in flight, or cells that were active during the two sleep sessions, or 

both (during sleep sessions, when the bat was not behaviorally-active, there were many sharp-wave-ripples [SWRs] 

and many spikes). Thus the numbers describing CA1 putative pyramidal cells include also cells that participated in 

SWRs but were not active during behavior. 

‡ We regarded a cell as behaviorally-active if at least in one of the flight directions the spike count during flight met 

the minimal-spikes threshold criterion (see Materials and Methods).  Note that the lower fraction of behaviorally-

active cells in earlier days of recording (dataset 3: 67% [141/209] versus dataset 1: 100% [235/235]) could arise from: 

(i) smaller environment size (130 m versus 200 m); (ii) fewer flight epochs in the first days of exposure to the

environment (dataset 3); and (iii) genuinely less spikes during the first explorations.

Finally, we note that the numbers of cells reported here are the numbers of cells, not numbers of cells × directions: 

For example, in dataset 1, there were a total of 235 cells, and many of them had significant place tuning in both 

flight directions. 
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