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Australia
∗∗Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

Summary New experimental results in two-dimensional turbulence shed light on the origin of the Nastrom-Gage spectrum of kinetic
energy and of the energy flux in the mesoscale atmospheric turbulence. It is shown that the large-scale flows strongly modify statistical
properties of turbulence leading to apparent deviations from the Kolmogorov-Kraichnan theory. The isotropic turbulence result is
revealed by the mean flow subtraction, a technique which should also be useful in the analysis of atmospheric data.

Introduction
Dual cascades of energy and enstrophy predicted by Kraichnan in 2D turbulence [1] lead to the spectral power of E(k) =
Cε2/3k−5/3 for the wave numbers larger than the wave number k f of the forcing scale, k < kf (the inverse energy cascade
range), and to E(k) = Cqη

2/3k−3 for the small scales, k < kf (forward enstrophy cascade range). Here ε and η are the
dissipation rates of energy and enstrophy correspondingly. These two ranges have been found in numerical simulations of
the 2D turbulence and have also been confirmed in experiments. Another important result in the theory of 2D turbulence is

the Kolmogorov four-fifth law for the third-order velocity structure function [2], S 3 =
〈
(δVL)3

〉
+

〈
δVL (δVT )2

〉
= 2εr.

Here δV denotes the difference of velocities at two points separated by distance r. Angular brackets denote ensemble
averaging over realizations, and the subscripts denote the longitudinal ( L) and transverse (T ) velocity components relative
to r. Positive S3 corresponds to the inverse energy cascade from small to large scales.
Motions of the atmosphere at scales exceeding its depth (10 km for troposphere) must be close to two-dimensional (2D),
and the energy cascade is expected to be inverse, i.e. driven by a small-scale source. Yet atmospheric measurements
seem to contradict the theory of 2D turbulence. First, the k−3 spectral range is observed at large scales (1000-3000 km),
while the k−5/3 range is observed in the mesoscale turbulence [3], i.e. in the reversed order with regard to 2D turbulence
expectations. Second, the third-order velocity moment, which is related to the energy flux in homogeneous turbulence, is
negative which suggests a direct energy cascade [4].
We propose a solution to this controversy by accounting for a presence of coherent large-scale flows in 2D turbulence.
Presented laboratory experiments show that in a bounded system the inverse energy cascade leads to the acummulation
of spectral energy at the system scale and the formation of mean flow or a condensate. The presence of the condensate
modifies the kinetic energy spectrum of turbulence as well as the third-order velocity moments making them very similar
to those observed in atmosphere. It is also shown that in the presence of the condensate the inverse energy cascade remains
an underlying mechanism of the spectral transfer.

Generation of spectral condensate
The experiments are performed in the stratified layers of fluid. Turbulence is generated in a cell electromagnetically by
driving an electric current through the top (conducting) fluid layer in the spatially varying vertical magnetic field [5]. A
forcing scale, lf ≈10 mm, is determined by the size of, and the spacing between, the magnets, and it is much smaller than
the size of the square boundaries, L=100-240 mm. The inverse cascade proceeds up to the integral scale λ E ≈ ε1/2α−3/2,
where α is the linear damping rate. If λE > L, the energy accumulates at the scale L generating spectral condensate. Fig. 1
shows the energy spectrum of the quasi-2D turbulence measured in the large boundary (L = 0.235 m) and intermediate
damping α = 0.16 s−1. A peak at kf ≈ 400m−1 corresponds to the forcing scale. At k > kf , the spectrum scales as
E(k) k−3, while at k < kf it scales close to . At k > 80m−1, in the spectral condensate range, the spectrum is steeper
and close to E(k) k−3. Due to the presence of the condensate this spectrum, similarly to the Nastrom-Gage spectrum [3],
has the k−3 and the k−5/3 ranges in the reversed order for the large and intermediate scales.
The wave number at which the two power laws (the condensate k−3 and the inverse energy cascade k−5/3) meet, denoted
as kt = π/lt in Fig. 1, can be estimated from the dimensional reasoning. It can be shown that the knee of the spectrum
at the scale lt is given by kt = πL−3/2 (Cα/2)−3/4

ε1/4. The functional dependence of kt on α and L has been tested
experimentally resulting in a good qualitative agreement.

Energy flux in condensed turbulence
The spectral condensation can be viewed as the generation of mean flow or the large-scale coherent structures. Such
structures can be revealed by a temporal averaging of the instantaneous velocity fields: V = 1/N

∑
V (x, y). in the

presence of the condensate, the velocity field contains both the mean component (which does not disappear as a result
of the ensemble averaging) and turbulent velocity fluctuations, V = V + Ṽ . The statistical moments of the velocity

increments are then modified as follows: δV = δV + δṼ , S2 =
〈
(δV )2

〉
=

〈(
δV

)2
+

(
δṼ

)2

+ 2δV δṼ

〉
, S3 =
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Figure 1. Kinetic energy spectrum of quasi-2D turbulence in the presence of spectral condensate. The turbulence range is defined at
k > kt, while the condensate range is k < kt. The guide lines show the power laws for different spectral ranges: the k−3 enstrophy
cascade, the k−5/3 energy cascade, and the k−3 condensate range.
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Figure 2. (a) Kinetic energy spectra before (circles) and after (triangles) mean subtraction. The third-order velocity moments (b) before
and (c) after mean subtraction.

〈
(δV )3

〉
=

〈(
δV

)3
+

(
δṼ

)3

+ 3
(
δṼ

)2

δV + 3
(
δV

)2
δṼ

〉
, etc. The structure functions computed from the total

velocity fields differ substantially from those expected from the Kolmogorov theory based on δV = δ Ṽ . To recover the
Kolmogorov result one needs to subtract mean (time-average) velocity field from the instantaneous velocity fields. Fig. 2
shows the effect of the mean subtraction on the kinetic energy spectra and the third-order moments of velocity. The mean
subtraction recovers Kolmogorov-Kraichnan spectrum (Fig. 2a). The third moment S 3 before subtracting mean (Fig. 2b)
is negative in the turbulence range of scales, very similar to the atmosperic result [4]. After mean subtraction, a positive S 3

which changes linearly with the separation scale r is recovered, as seen in Fig. 2c. Positive S 3 is indicative of the inverse
energy cascade. These results suggest that a similar analysis applied to the atmospheric wind data may help revitalizing
the hypothesis about the inverse energy cascade in the mesoscale turbulence in the earth atmosphere.
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