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The TP53 tumor suppressor gene is very frequently mutated in human cancer. Research on 

p53 mutations has focused predominantly on six major “hotspot” codons which comprise 

only ~30% of cancer-associated p53 mutations. To systematically study the impact of a wide 

diversity of p53 mutations, we created a synthetically designed mutation library and 

measured the functional impact of ~10,000 DNA-binding domain (DBD) p53 variants, 

including nearly all patient-reported mutations, in human cells. Our results elucidate the 

selective pressure to maintain specific residues at particular positions in p53 throughout 

evolution. Furthermore, they highlight the differential outcome of distinct classes of p53 

mutations in human patients, and suggest that loss of anti-proliferative functionality is a key 

selective force shaping the landscape of cancer-associated p53 mutations. Finally, we show 

that when combined with additional acquired p53 mutations, seemingly neutral SNPs within 

the DBD may modulate phenotypic outcome and presumably tumor progression.   

 

The TP53 tumor suppressor gene, encoding the p53 transcription factor, is the most frequently 

mutated gene in human cancer (Kandoth et al., 2013; Olivier and Taniere, 2011). In response to a 

variety of cellular stress conditions, p53 is activated to suppress transformation by inducing cell 

cycle arrest, DNA damage repair, senescence or apoptosis (Bieging et al., 2014; Levine and Oren, 

2009). In concordance with its pivotal role in suppressing tumorigenesis, mutations disrupting 

wild-type p53 (wtp53) function are extremely common in human cancers (Brosh and Rotter, 2009), 

with variable prevalence between tumor types (Blons and Laurent-Puig, 2003; Iacopetta, 2003; 

Peller and Rotter, 2003; Schuijer and Berns, 2003). Unlike other tumor suppressors, the majority 

Combined Manuscript File



	 	 2	

of cancer-associated mutations in p53 are missense mutations residing in its DNA-binding domain 

(DBD) (Bouaoun et al., 2016; Olivier et al., 2010), leading to loss of tumor suppressive activity 

and possible gain of novel oncogenic functions (reviewed in (Oren and Rotter, 2010)). In its wt 

form, p53 binds as a homo-tetramer to DNA response elements of its target genes, and orchestrates 

gene expression patterns to cope with cellular stress. In contrast, the effects of mutant p53 

(mutp53) on target gene expression are more complex (Weisz et al., 2007), and are thought to 

interfere with pivotal signaling pathways (Riley et al., 2008). Previous studies in yeast have shown 

that different mutp53 variants exhibit altered transactivation capacity towards wtp53 target genes 

in a mutant- and target-dependent manner (Kato et al., 2003; Resnick and Inga, 2003). This 

comprises a general reduction in transactivation capacity or an altered spectrum of regulated genes, 

including non-wtp53 target genes (Menendez et al., 2006; Resnick and Inga, 2003). Interestingly, 

the residual transcriptional activity of a particular mutant is not directly indicative of the extent of 

its tumor suppressive functionality or its ability to induce apoptosis (Kakudo et al., 2005). 

Moreover, some p53 mutants (“super-trans mutants”) exhibit increased transactivation potential 

towards particular targets, when compared to wtp53 (Resnick and Inga, 2003). Thus, in order to 

determine the tumor-suppressive capacity of specific p53 mutations, the phenotypic impact of each 

mutation should be experimentally quantified. Such knowledge is of particular importance for the 

personalized treatment of cancer. 

However, while the availability of patients’ genomic sequences constantly increases, our 

understanding of mutation-specific biological effects remains a limiting factor. Specifically, 

detailed studies assessing the effects of p53 mutations in human cells has been largely limited to 

the most prevalent “hotspot” mutations, accounting for ~30% of cancer-associated mutations, 

leaving the remaining ~70% mostly uncharacterized. Deep mutational scanning (Fowler and Fields, 

2014) offers a high-throughput approach for revealing the consequences of genetic variation both 

in regulatory and coding sequences (Brenan et al., 2016; Keren et al., 2016; Majithia et al., 2016; 

Tewhey et al., 2016; Ulirsch et al., 2016; Weingarten-Gabbay et al., 2016). Yet, although the 

construction of a large-scale mutp53 library has recently been reported (Kitzman et al., 2015), 

phenotypic characterization of such p53 mutants has not been performed.  

To address this important knowledge gap, we designed a synthetic library of 9,833 unique ~200 

nucleotide-long single-stranded DNA oligonucleotides encoding variations in the p53 DBD (Fig. 
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S1). To delineate the impact of mutations derived from cancer samples and of asymptomatic 

natural polymorphisms, the library design included: (i) nearly all DBD mutations occurring in 

28,869 tumor samples (Bouaoun et al., 2016), most of which were previously unstudied; (ii) all 

possible permutations at each hotspot codon (378 variants), allowing their in-depth 

characterization; and (iii) combinations of naturally occurring SNPs (within the DBD) with 

additional DBD mutations, aimed to unravel possible genetic interactions (1,139 variants). In 

addition, to systematically characterize the effect of mutations across the entire DBD, we created: 

all single-nucleotide substitutions, deletions and insertions (3,874 variants); all single amino acid 

substitutions requiring up to 2 nucleotide changes (3,480 variants) and dinucleotide transitions 

(e.g. CC>TT and GG>AA, 97 variants), as well as premature stop codons (304 variants) and in-

frame single and double (consecutive) amino acid deletions at each position (363 variants). 

To achieve accurate mutagenesis of the entire DBD (residues 102-292, 573bp long), we generated 

4 sub-libraries (labeled “A”, “B”, “C” and “D”), covering consecutive 141-144bp fragments of the 

DBD flanked by wtp53-homologues regions (Fig. 1a). These sub-libraries were separately 

amplified and cloned into lentiviral vectors, yielding a mutp53 coding sequence followed by an 

internal ribosome entry site (IRES)-driven enhanced green fluorescent protein (EGFP) reporter; 

this bicistronic cassette allows estimation of relative mutp53 expression levels based on EGFP 

intensity. Library-encoding viruses were used to transduce p53-null H1299 (non-small cell lung 

cancer) cells at low multiplicity of infection (MOI=0.1), so that each transduced cell would express 

only a single mutp53 variant (Fig. S2a-c). Infected cultures were sampled at 2, 6, 9 and 14 days 

post-infection (PI), and the relative abundance of each variant at each time point was assessed 

using next-generation sequencing (Methods). Setting a minimum threshold of 200 reads per variant 

at the first time point (Fig. S2d), we were able to capture the dynamics of 9,516 unique DNA 

sequence variants (97% of the designed variants), corresponding to 5,708 protein sequence 

variants. To piece together information on the entire DBD, data in each sub-library was normalized 

according to the dynamics of synonymous (“silent”) mutation variants, compared across all sub-

libraries (Fig. S2e and Methods).  

To determine the relative changes in clonal abundance, we compared the fraction of reads 

corresponding to each sequence variant at 9 days PI to its fraction 2 days PI (Fig. 1b). Importantly, 

the relative abundance of all 571 synonymous sequence variants in the library, encoding wtp53, 
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decreased within this time frame much faster than that of the 8,945 non-synonymous variants 

(mean depletion of ~6.55-fold versus ~1.45-fold for synonymous and non-synonymous, 

respectively; Mann–Whitney U p<10-187). This is concordant with the well-documented anti-

proliferative effect of bona fide wtp53, as measured by flow cytometry and qRT-PCR in 

comparison to the entire library or to a p53-null control (Fig. S3a-c). Furthermore, in contrast to 

all synonymous mutations, variants encoding the ten most prevalent p53 mutations across all tumor 

types (Bouaoun et al., 2016) were robustly retained in the population, demonstrating the ability of 

our system to recapitulate in vivo behavior and simultaneously map the phenotypic outcome of 

thousands of unique mutations (Figs. 1c, S3d, S4). Similarly, variants encoding missense 

mutations in the 6 “hotspot” codons (averaged across all mutations in each codon) lacked a wt-

like tumor suppressive effect and were well retained (ANOVA p<10-10), albeit not showing a 

proliferative advantage over p53-null control cells. The latter might be because H1299 cells, 

naturally not “addicted” to mutp53, may require excessive mutp53 expression to elicit oncogenic 

gain-of-function, while a single integrated copy of our lentiviral vector only yields relatively low 

p53 levels in non-stressed cells.  

To allow quantitative comparison between variants and improve measurement robustness, we took 

advantage of the repeated measurements at 6, 9 and 14 days PI, and calculated a relative fitness 

score (RFS) for each variant, based on its median retention (or depletion) across these three 

measurements (log2 fold enrichment compared to first time point). Comparing the RFS calculated 

for different DNA sequence variants encoding the same amino acid substitution verified the 

robustness of our measurements (Fig. S5a, R=0.89, p<10-100). Unexpectedly, when averaging the 

effects of all DNA sequence variants encoding the same amino acid substitution, a bimodal 

distribution is observed (Figs. 1d), where the great majority of p53 alterations can be discretely 

categorized as either retaining wtp53 functionality (strongly depleted in the population), or 

abrogating it (stably retained). A similar separation is evident when variants are displayed 

according to their DNA sequence (Figs. S5b, S6a,b).  

We next examined how amino acid sequence variations affect the RFS, as an indicator of wtp53-

like anti-proliferative capacity. To this end we calculated, for each assayed amino acid substitution 

at each position along the DBD, the median RFS measured for all DNA sequence variants encoding 

the same particular substitution (Fig. 2a). Notably, regardless of position along the DBD, 

premature termination codons and frameshift mutations resulted in a similarly strong disruption of 
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p53 functionality (Fig. 2a bottom rows in heatmap, Fig. S6c,d). In contrast, the effects of 

substituting or deleting a single amino acid were strongly dependent on its position within the 

DBD. Thus, the L1 loop (residues F113-T123) and most of the L2 loop (residues K164-C176, 

C182-L194) are rather robust to alterations. Conversely, most mutations in the L3 loop (residues 

M237-P250) and the specific residues involved in coordination of zinc binding (R175, C176, 

H179, C238, and C242) compromise p53 functionality, in line with the documented importance 

of the zinc ion for the thermodynamic stability of the DBD (Bullock et al., 1997; Duan and Nilsson, 

2006). Furthermore, hierarchical clustering of the relative fitness scores across the DBD (Figs. 2b, 

S7a,b) grouped amino acids with similar biochemical properties close to one another. Thus, valine 

co-clustered with isoleucine and leucine, while aspartate co-clustered with glutamate, and 

phenylalanine co-clustered with tryptophan and tyrosine. Hence the effects of mutations on relative 

fitness capture the sequence-structure-function relationships in p53. Notably, as observed for 

specific variants (Fig. 1d), the majority of codons segregated into two major groups displaying 

opposing phenotypic responses to mutagenesis (Fig. S7b). 

We then calculated an evolutionary conservation score (ECS, Methods) for each residue along the 

DBD from a multiple sequence alignment of 1887 homologous sequences, which correspond to 

246 non-redundant sequences when clustering sequences that are more than 80% identical. 

Comparing ECS values with codon mean RFS measurements revealed a strong correlation (Fig. 

2a,c, Rs=0.79, p<2x10-41), highlighting the tight coupling between p53 protein sequence 

evolutionary conservation and vulnerability to functional alteration. We further utilized this 

conservation-functionality connection to blindly predict the effects of amino acid substitutions on 

protein functionality using a statistical model of sequence variation in the alignment, based on 

evolutionary bias towards or away from specific residues at each position (Fig. 2d, Methods). This 

unsupervised model, which accounts for site-specific amino acid constraints alone and does not 

explicitly model a specific phenotypic functionality, showed a significant correlation to our 

experimental measurements (Rs=-0.59, p<2x10-283), suggesting that RFS reflects a p53 

functionality which is under evolutionary selection. Despite this correlation, some variants that 

were predicted to retain at least partial wtp53 functionality exhibited complete loss of anti-

proliferative activity. This discrepancy may suggest the existence of additional context-dependent 

functionalities that are not evident in H1299 cells, in line with p53’s involvement in multiple non-

redundant processes (Kakudo et al., 2005; Pfister and Prives, 2017).  
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Closer examination of the mutational effects within specific codons revealed 3 distinct response 

patterns of codons to mutations: (i) positions highly susceptible to mutation (i.e. substitution to 

nearly any amino acid abolished anti-proliferative p53 functionality), including the hotspot codons 

G245, R248, R249 and R273 (Fig. 3a); (ii) positions resilient to mutations, tolerating practically 

all substitutions (with the frequent exception of proline) without losing p53 functionality (Fig. 3b); 

and (iii) codons in which a continuous phenotypic spectrum is observed, with mutation outcome 

largely depending on the specific substitution (Fig. 3c). Interestingly, the latter group includes the 

hotspot residues R175 and R282, extending earlier observations (Ory et al., 1994). Altogether, our 

findings demonstrate the merit of in-depth functional characterization of p53 mutations, even at 

hotspot positions.  

Overlaying the relative evolutionary representation (i.e. the percent of species in which that 

particular amino acid is present at a given position) over the measured phenotypic effect for each 

of the substitutions, reveals that the mean relative representation of variants retaining wtp53 

functionality is dramatically higher than in non-functional variants (Fig. 3a-d; Student’s T p<10-

38). Thus, the functional impact of mutations in human cells faithfully reproduces the constraints 

that shape the DBD sequence during evolution. Notably, the differences in robustness of codons 

to modification are concordant with known p53 structure-function dependencies: superimposing 

the mean RFS of each codon on the protein’s 3D structure shows that residues positioned in 

proximity to the DNA are generally more functionally vulnerable (Fig. 3e). Together, these strong 

associations between our functional measurements, conservation and structure, position canonical 

anti-proliferative p53 capacity as a pivotal property under strong evolutionary selection.   

Assessing the contribution of specific mutations to cancer features is key to patient-specific 

tailoring of treatment. We therefore asked whether the relative fitness effects measured in vitro 

correspond with the prevalence of particular p53 mutations in human tumors. Reassuringly, this 

analysis (Fig. 4a) revealed that p53 mutation prevalence across all tumor types (Bouaoun et al., 

2016) is positively correlated with RFS (Rs=0.4, p<4x10-57). Intriguingly, in apparent discordance 

with the overall picture, we also observed mutations that are rare in tumors despite having lost p53 

functionality (dashed triangle, Fig. 4a). Thus, the importance of such variants could not be deduced 

from mutation prevalence, emphasizing the necessity of direct functional measurement. Closer 

examination of these mutations revealed a marked enrichment in variants requiring more than a 

single nucleotide change, or a purine-pyrimidine transversion. When excluding such variants from 
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the analysis and retaining only protein sequence alterations achievable by a single A-G or C-T 

transition, the correlation between mutation prevalence and loss of functionality increases (Fig. 

4b, Rs=0.52, p<2x10-38). Fitting a logistic function to the data managed to explain a large fraction 

of the variability (R2=0.49) in relative fitness of transition mutants on the basis of clinical 

prevalence. The sigmoid relationship, and the apparent separation of the ~10 most prevalent 

mutations without a further increase in relative fitness, suggest that additional explanations 

underlie the high prevalence of those hotspot mutations. These may include oncogenic effects not 

captured by our assay, or a mechanistic tendency towards accrual of mutations at those sites.  

To further elucidate the forces shaping the spectrum of cancer-associated p53 mutations, we 

trained a “Random Forest” learning algorithm to predict mutation prevalence in human tumors. 

We applied 200-fold cross-validation (CV) using 90% of our data to predict mutation abundance 

according to mutation type and outcome, position, the probability of occurrence of similar 

substitutions (genome-wide, along evolution), residue evolutionary conservation and the 

measurements obtained in our phenotypic assay. This model predicted relative mutation 

abundance with an R=0.72 (p<10-100) and R=0.75 (p<3x10-27) on CV and 10% unseen test cases, 

respectively (Figs. 4c, S8a). Importantly, the most contributing feature in this prediction task was 

our measured RFS score (Fig. S8c), demonstrating the importance of direct systematic assessment 

of pan-mutation effects, and underscoring the connection between loss of anti-proliferative 

capacity and prevalence in cancer.  

Next, we attempted the complementary task of predicting variants’ RFS using the above mutation 

features, substituting all experimental measurements with mutation prevalence (Figs. 4d, S8b,d). 

Once again, our trained model enabled accurate prediction of mutational outcome (R=0.87, p<10-

100 and R=0.88, p<2x10-47 in CV and on unseen test cases, respectively), providing a reliable 

estimation of the phenotypic effects of p53 variants of unknown significance (VUS). Such 

knowledge is very valuable, for example in assessing the possible implications of a particular TP53 

germline mutation identified by pre- or postnatal genetic testing.  

TP53 germline mutations underpin the majority of cases of Li-Fraumeni syndrome (LFS), an 

inherited cancer predisposition resulting in early-onset tumors including sarcomas, breast cancers 

and adrenocortical tumors (Li et al., 1988; Malkin et al., 1990). Importantly, tumors are observed 

at an earlier age in LFS family members harboring p53 DBD mutations that compromise anti-
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proliferative functionality (RFS>-1), when compared to those bearing TP53 germline mutations 

that retain anti-proliferative capacity (RFS≤-1), highlighting the prognostic value of the RFS score 

(Fig. 4e, Mann–Whitney U p<10-9 across all cancers). Of note, the age at tumor diagnosis (ATD) 

is similar in LFS family members with truncating TP53 mutations (frameshift or nonsense) and in 

members with functionally-disruptive missense mutations, as predicted by our functional in vitro 

measurements (Fig. S9). Yet, individuals with the 6 most prevalent hotspot mutations exhibit an 

even somewhat lower ATD (Kruskal-Wallis p<0.01), suggesting that they elicit additional gain-

of-function effects not captured by our experimental system.  

Finally, we took advantage of our assay to evaluate the significance of SNPs within the p53 DBD. 

Although highly conserved, the DBD nevertheless harbors several polymorphic variations. For 

example, V217M (rs35163653, resulting from a G>A transition), a non-synonymous validated 

SNP(Whibley et al., 2009), has been functionally studied in yeast, where it induced elevated 

expression of CDKN1A, BAX and NOXA (Kato et al., 2003) and in human cells, where its 

transcriptional signature was indistinguishable from that of wtp53 (Wang et al., 2014). Another 

rare polymorphism within the DBD is R213R (rs1800372), caused by a synonymous A>G 

transition in exon 6. So far, these SNPs have not been associated with cancer risk (Ganci et al., 

2011; Pilger et al., 2007; Sharma et al., 2014). Nevertheless, in the presence of secondary acquired 

mutations, these SNPs may affect cancer predisposition or aggressiveness. In search for 

combinatorial effects, we combined these SNPs with all single-base mutations residing in sub-

library C. Interestingly, while on both backgrounds nonsense and frameshift mutations yielded a 

similar complete loss of p53 functionality, the effects of missense mutations were found to largely 

depend on genetic background (Figs. 5a,b, S10): while the R213R background slightly enhanced 

p53 functionality, the V217M background rendered the acquisition of “mild” missense mutations 

more disruptive to p53 function (higher RFS on SNP background relative to wt background). These 

results exemplify the importance of background (asymptomatic) coding sequence polymorphisms 

in shaping the outcome of cancer gene mutations, underscoring the merit of personalized genetic 

analyses. 

Our findings provide a first comprehensive catalogue for the functional consequences of thousands 

of p53 DBD mutations in human cells, and potentially hold important clinical implications. Our 

cell-based measurements are highly indicative of the in vivo functional outcome of p53 mutations. 

Thus, tumor-associated p53 mutations retaining wtp53-like anti-proliferative functionality are 
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rather unlikely to be driver mutations. In addition, our observations highlight the importance of 

direct measurement of mutation impact to determine the outcome of VUS, and justify large-scale 

systematic scans aimed to broaden our understanding of mutation-driven phenotypic landscapes. 

Conceivably, p53 mutations that retain wtp53-like functionality in this assay may nevertheless still 

endow cancer-supportive phenotypes in a context-dependent manner. Yet, the high concordance 

of our functional measurements with human mutation prevalence, structural motifs and 

evolutionary conservation, argues that biochemical features underpinning the anti-proliferative 

effects of p53 in this model are also seminal for its tumor suppressor activity, as well as for its 

primordial biological functions. Future studies should further expand our understanding of 

context-dependent mutational effects.  
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Methods:  

Cell culture. Human embryonic kidney cells 293T (HEK 293T) were cultured in Dulbecco’s 

modified Eagle’s medium (Biological Industries, Beit-Haemek, Israel (BI)) supplemented with 

10% heat-inactivated fetal bovine serum (HI-FBS, BI) and 1% penicillin and streptomycin (P.S., 

BI). H1299 human lung carcinoma cells were cultured in RPMI1640 medium (BI), supplemented 

with 10% HI-FBS and 1% P.S. All cells were kept at 37°C in a humidified atmosphere containing 

5% CO2 and were frozen in freezing medium (90% HI-FBS + 10% dimethyl sulfoxide (DMSO, 

Sigma). Trypsin-EDTA solution C (BI) was used to detach cells from culture dishes. 

Plasmids. The pPRIG plasmid (pPRIG-Hd-HA-Red (Martin et al., 2006)) was kindly provided by 

the Pognonec lab (Université de Nice Sophia Antipolis, Nice, France). pEF1_EMCV_ 

(pSIN.EF1.cPPT.mRFP.IRESEMCV.eGFP.WPRE (Kazadi et al., 2008)) was a gift from A. 

Telenti (The Institute of Microbiology of the University Hospital Center, Lausanne, Switzerland). 

pMDL, pVSV-G, and pRSV-Rev helper plasmids for lentivirus packaging were kindly provided 

by S. Lev (Weizmann Institute of Science, Israel). 

Quantitative real-time PCR (qPCR). DNA was purified using DNeasy blood and tissue kit 

(Qiagen) and qPCR was performed on a StepOne real-time PCR machine (Applied Biosystems) 

using SYBR Green PCR supermix (Invitrogen). Standard curve values for each amplicon were 

measured and the relative quantity in each sample was normalized to an intergenic region upstream 

of the KCNA4 gene. The following primers used to assess the relative abundance of p53-positive 

cells: Fw-	CTGTGCAGCTGTGGGTTGATTC and Rv- CCAAATACTCCACACGCAAATTTC, 

and for the intergenic normalization region: Fw- TTTTTCCCCATCTGTTGGCT and Rv- 

TCTCCAGCTCTGCAACAACCT.  

Western blot. Immunoblot analysis was performed as previously described (Hoffman et al., 

2014). Antibodies used were: p53 (mixture of DO1 + PAb1801); vinculin (Sigma).  

Synthetic library production and amplification. Initial library synthesis and amplification were 

based on a protocol previously used for yeast promoter libraries (Sharon et al., 2012). Pools of 

fully-designed ~200-residue long single-stranded DNA oligonucleotides were obtained from 

Agilent Technologies (Santa Clara, CA). To achieve accurate mutagenesis of the entire DBD 

(573bp long, total of 9,833 sequence variants), the complete library is composed of 4 sub-libraries, 

each covering a different 141-144bp fragment of the DBD (“DBD-A” covers residues 102-149, 
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“DBD-B”: 150-197, “DBD-C”: 198-245, and “DBD-D”: 246-292). Each modified segment 

contains common wtp53-homologous sequences (at least 20 nucleotides long) at both ends, to 

enable initial PCR amplification and restriction-free (RF) cloning into the vector (described 

below). To avoid non-specific concatamerization due to overlapping sequences, these 4 sub-

libraries were obtained in two separate pools, each covering sequence variations in non-

overlapping sub-fragments: parts A & C together (203	nucleotides-long), and parts B & D together 

(197	nucleotides-long).  

Libraries were synthesized using Agilent’s on-array synthesis technology (Cleary et al., 2004; 

LeProust et al., 2010), and provided as DNA oligo pools in two separate tubes (10pmol). Each 

pool was dissolved in 200µl Tris-ethylenediaminetetraacetic acid (Tris-EDTA), creating solutions 

of 3.35 and 3.25 ng/µl of A&C and of B&D, respectively. An aliquot of each library was diluted 

(1:100 and 1:50 dilutions for A&C and B&D, respectively), and used as template for PCR 

amplification of each of the 4 sub-libraries. To reduce PCR bias, 24 identical reactions were 

performed in parallel for each sub-library. Each 50µl reaction tube contained 5µl of library 

template, 10µl of 5×Herculase II reaction buffer, 5µl of 2.5mM deoxynucleotide triphosphate 

(dNTPs) each, 10µl of 10µM forward (Fw) primer, 10µl of 10µM reverse (Rv) primer and 2µl 

HerculaseII fusion DNA polymerase (Agilent Technologies, #600679). PCR parameters used 

were: 95°C for 1 min, 14 cycles of 95°C for 20s, and 68°C for 80s, each, and finally one cycle of 

68°C for 4min. Primers used:  

DBD-A Fw- TGTCATCTTCTGTCCCTTCCCAGAAA, Rv-ATGGCGCGGACGCGGGT; 

DBD-B Fw-CTGTGCAGCTGTGGGTTGATTC, Rv-CCAAATACTCCACACGCAAATTTC; 

DBD-C Fw-CCCTCCTCAGCATCTTATCCGAGT, Rv-AGGATGGGCCTCCGGTT; DBD-D 

Fw-TGTGTAACAGTTCCTGCATGGG, Rv-GCAGCTCGTGGTGAGGCT. Products from all 

24 identical reactions were pooled together and separated from non-specific fragments by 

electrophoresis on a 2.5% agarose gel stained with GelStar (Cambrex Bio Science Rockland), 

extracted from the gel, and purified using a gel extraction kit (Nucleospin). 

Construction of backbone plasmids. As a cloning intermediate for efficient insertion of the 

libraries into plasmids, we used a pPRIG-wtp53-EMCV-EGFP backbone (~6.5kb) created by 

substituting the dsRed sequence of pPRIG-Hd-HA-Red(Martin et al., 2006) with wtp53 coding 

sequence. Thus, we PCR-amplified a wtp53 coding sequence from pC53-SN3 (Baker et al., 1990) 
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using the primers Fw-	 GATGTCATGGATCCATGGAGGAGCCGCAGTC and Rv-

GTACTGATGCGGCCGCTCAGTCTGAGTCAGGCCCTTC adding 5' BamHI and 3' NotI 

restriction sites. PCR was performed using Kapa HiFi Polymerase (KAPA Biosystems). Products 

were purified using a PCR purification kit (Qiagen), digested with BamHI and NotI (New England 

Biolabs, NEB) for 75min at 37°C. 4µg of pPRIG-dsRed-EMCV-EGFP were digested with BamHI 

and NotI (NEB) for 1h at 37C to remove the dsRed sequence. Digested amplicon and plasmid were 

separated from nonspecific fragments by electrophoresis on a 1% agarose gel using a gel extraction 

kit (Nucleospin), and ligated using T4 ligase (NEB) for 2h at 24°C. Ligated plasmids were 

transformed into Escherichia coli (HIT-DH5α, RBC Bioscience) by heat shock, positive colonies 

were grown in Luria broth (LB) media, and the plasmids were purified using a plasmid mini-kit 

(RBC BioScience). 

For cloning of the p53 libraries into lentiviral vectors, we first cloned a pEF1a-wtp53-EMCV-

EGFP master plasmid by substituting the mRFP sequence of pEF1_EMCV_(Kazadi et al., 2008) 

with a wtp53 sequence using restriction-free (RF) cloning (Unger et al., 2010). Thus, the wtp53 

coding sequence was amplified by PCR from pC53-SN3 (Baker et al., 1990) using Kapa HiFi 

Polymerase (KAPA Biosystems) with primers adding restriction sites (5’ AscI, 3’ RsrII) and 

flanking sequences that are homologous to the pEF1a plasmid on both sides of the mRFP sequence 

(Fw-

CTAGCCTCGAGGTTTAAACGGTACCGGCGCGCCCACTGCCATGGAGGAGCCGCAGT

CAGATC, Rv-

GGGGGGGCGGAATCCTCAGGCTAGTCGGTCCGGACAATCGCCATGTCAACGCGTGA

ATGTCAGTCTGAGTCAGGCCCTTCTG). The product was purified using PCR purification kit 

(Qiagen), and used as a mega-primer for cloning into pEF1a plasmid. The RF reaction was carried 

out using 1µl Phusion DNA polymerase and 10µl Phusion buffer (NEB), 1µl dNTPs (10mM), 

2.5µl DMSO, 40ng template plasmid and 200ng of the mega-primer. 30 PCR cycles were 

performed (95°C for 30s, 60°C for 60s, 72°C for 8 min.) followed by a final elongation step of 10 

min. at 72°C. To digest remaining non-amplified plasmids, 1µl DpnI (NEB) was added to the 

reaction and following a 2hr incubation at 37°C, products were used for bacterial transformation 

as described above. Single colonies were picked and sequenced (Sanger sequencing at the 

Weizmann institute’s Life Sciences Core Facilities) for validation of the entire wtp53 sequence.		
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Library cloning into master plasmids. Purified amplified library fragments were used as large 

PCR primers for amplification of the entire vector in a RF cloning reaction (Geiser et al., 2001; 

Unger et al., 2010) so that each sub-library replaces the equivalent part of the wtp53 DBD sequence 

within the target (pPRIG) plasmid (Step 1). pPRIG-cloned libraries (each sub-library as a separate 

pool) were then transferred to the pEF1a lentiviral vector by conventional restriction-ligation 

cloning of the p53 variants (Step 2).  

In Step 1, 50µl RF reactions were carried out using 1µl Phusion DNA polymerase and 10µl 

Phusion buffer (NEB), 1µl dNTPs (10mM), 2.5µl DMSO, 20ng template plasmid and 10µl of gel-

purified library amplicons. 30 PCR cycles were performed (95°C for 30s, 60°C for 60s, 72°C for 

5min.) followed by a final elongation step of 7min. at 72°C. To digest remaining non-amplified 

plasmids (wtp53), 12µl from each product were incubated with 1.2ul Dpn1 (NEB) for 2hr at 37°C. 

Then, an additional 1.2ul Dpn1 were added and samples were incubated for another 2hr at 37°C.  

RF products were purified using PCR purification kit (Qiagen) and transformed into E. cloni 10G 

electro-competent cells (Lucigen). Each bacteria tube was divided into seven aliquots (25µl each) 

for electroporation with 2µl of plasmids using 0.1cm gap cuvettes (Biorad) according to the 

manufacturer’s protocol. All transformation tubes from each sub-library were pooled together and 

seeded on LB agar (200 mg/ml ampicillin) 15cm plates. 16 hours after transformation, to ensure 

adequate preservation of library complexity, we collected a total of 73000, 76500, 113500 and 

122300 colonies, representing a sampling of 44-, 44-, 38- and 35-fold over designed library sizes 

of sub-libraries A, B, C and D, respectively. To assess the percentage of remaining wtp53 (vector-

only) colonies, RF no-insert control reactions were performed in parallel, replacing library 

amplicons with 10ul water. Following Dpn1 digestion and transformation, the percentage of 

remaining wtp53 colonies was assessed.  For validation of RF products, we performed colony PCR 

on 24 random colonies from each sub-library. Each reaction was performed in 20µl and contained 

a colony picked from the plate, 8µl of double distilled water (DDW), 10µl of REDExtract-N-Amp 

PCR ready mix (Sigma) and 1µl of each primer (Fw-	GAGCCGCAGTCAGATCCTAG; Rv-	

GCAGCTCGTGGTGAGGCT). Collected colonies were scraped from plates into LB medium, 

and pooled plasmids were purified using a NucleoBond Xtra maxi kit (Macherey Nagel).  

For Step 2, we PCR amplified each p53 sub-library from the intermediate pPRIG plasmids (Step 

1 products) using primers that add restriction sites (5’ AscI, 3’ RsrII) for ligation into the pEF1a 
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vector (Fw-ACGGTACCGGCGCGCCCACTGCCATGGAGGAGCCGCAGTCAGATC; Rv-

AGGCTAGTCGGTCCGGACAATCCAGATGTCAACGCGTGAATGTCAGTCTGAGTCAG

GCCCTTCTG). To reduce variant representation bias, for each sub-library we performed 14 

identical PCR reactions using 25µl 2xKapa HiFi ready-mix (KAPA Biosystems), 50ng of pPRIG-

library template, 0.2uM from each primer and DDW to a final volume of 50µl. The parameters for 

PCR were 95°C for 10 min, 9 cycles of 98°C for 30 sec, 68°C for 30 sec and 72°C for 1.5 min and 

a final elongation of 72°C for 5 min. The fourteen reactions were pooled together, purified using 

3 QIAquick PCR purification columns (Qiagen), and products were pooled again after the elution 

step. Purified amplicons were then digested with CpoI (RsrII, Catalog No. ER0741) and SgsI 

(AscI, Catalog No. ER1891) (Thermo Fisher Scientific, Fermentas) restriction enzymes. Digestion 

reaction mixtures contained: 12 µl Fast Digest buffer (Fermentas), 3µg of the purified library, 

7.5µl CpoI, 2.4µl SgsI and DDW up to a total volume of 120µl. The mixture was incubated for 

2hr at 37 °C, followed by 20 min inactivation at 65°C. Target vector (pEF1a-wtp53-EMCV-EGFP) 

digestion was performed using the same enzymes, in a reaction-mixture containing: 18µl Fast 

Digest buffer, 15µg of the plasmid library, 9µl of each enzymes and DDW up to a total volume of 

180µl. The mixture was divided into three tubes and incubated for 2.5 hours at 37°C, followed by 

20 min inactivation at 65°C. Then, alkaline phosphatase (FastAP, Thermo Fisher Scientific) was 

added to each tube (3µl of Fast AP buffer, 3µl of FastAP enzyme and DDW up to a total volume 

of 30µl). The mixture was incubated for an additional 30 min at 37°C, followed by 20 min 

inactivation at 65°C. 

Restriction-digested libraries and plasmid were separated by electrophoresis on a 1.5% agarose gel 

stained with ethidium bromide. Fragments of the correct size were excised from the gel and 

samples were purified first using Qiagen Gel extraction kit (cat #28704) and then with a Gel and 

PCR clean-up purification kit (NucleoSpin, cat #740609). Next, library-vector ligations were 

performed using 1µl of Lucigen ligase, 10xLucigen buffer, molar ratio of 1:1 (vector: library) and 

DDW to a final volume of 10µl. Ligation products were transformed into E.cloni (Lucigen) with 

2µl of ligation mix, as described in Step 1, collecting a total of 2.75x105, 1.53x105, 3.57x105 and 

3.94x105 colonies from libraries A, B, C and D, respectively. Colony PCRs were performed for 

validation as described above, and plasmids were extracted using NecleoBond Xtra Maxi kit (cat 

#740414.10).  
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Lentivirus production and infections. For lentiviral packaging, 2.1x106 HEK293T cells were 

seeded on 10cm plates pre-coated with	poly-L-lysine 0.001% (Sigma), incubated for 20 min, and 

washed three times with phosphate-buffered saline (PBS). 16hr later, cells were co-transfected 

with three helper plasmids (5.2µg pMDL, 3.2µg pVSVG and 2µg pRSV-Rev) and 8µg of library-

encoding plasmid. Transfections were performed using jetPEI DNA transfection reagents 

(Polyplus Transfection) according to the manufacturer`s instructions and medium was replaced 

after 6-8hr. Virus containing medium was collected at 48 and 72hr post-transfection, filtered with 

0.45-µm filters (Mercury), aliquoted and stored at -80C.  

To determine viral titer, 6x105 H1299 cells were plated in 10cm dishes 16 hours prior to infection. 

A single aliquot from each viral library was thawed at 370C, and serially diluted in RPMI1640. 

Diluted virus-containing medium was added to the plates in a final volume of 5ml, supplemented 

with 8µg/ml polybrene (Sigma, AL-118). 8hr later, cells were washed three times with PBS, and 

fresh RPMI1640 medium was added. 48hr post-infection, cells were harvested in trypsin, washed 

with PBS and the percent of EGFP-positive cells was determined for each virus dilution using a 

Guava EasyCyte flow cytometer (Merck Millipore). We computed the virus dilution required for 

multiplicity of infection (MOI) of 0.1 and repeated the infection protocol accordingly in large 

scale. To maintain variant representation and to control for lentiviral random genomic integration, 

the number of cells infected with each library was planned according to the number of designed 

variants in that library (1665, 1743, 2974 and 3451 in libraries A, B, C and D, respectively). Thus, 

we plated 6 x 10cm plates with 6x105 H1299 cells 16hr prior to infection with each of libraries A 

and B, and 12 such plates for infection with libraries C and D. A total of ~3.6x105 and ~7.2x105 

cells were infected with each of libraries A & B, and C & D, respectively, so that on average each 

designed sequence was independently integrated into >200 individual cells. The percentage of 

infected cells was verified 48hr post-infection by flow cytometry as described above.  

Sample preparation for sequencing. To maintain the complexity of the input libraries, PCR 

reactions were carried out on a genomic DNA (gDNA) amount calculated to contain an average 

of at least 200 copies of each variant included in the assayed library. Thus, at each time point along 

the time course experiments, gDNA was purified from a minimum of 1x107, 1.3x107, 2.5x107, and 

2.5x107 cells (yielding 160, 220, 300 and 295µg of gDNA) infected with libraries A, B, C and D, 

respectively. gDNA was purified using DNeasy blood and tissue kit (Qiagen). For each 
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measurement, a two-step nested PCR was performed: First, the entire DBD region was amplified 

(performed identically for all 4 sub-libraries). Then, in each experiment the relevant sub-library 

DBD fragment was amplified using primers specific to the modified region in that sub-library. In 

the first step (performed in multiple tubes to include the required amount of gDNA), each reaction 

contained a total volume of 100µl with 10µg gDNA, 50µl of Kapa Hifi ready mix X2 (KAPA 

Biosystems) and 5µl of each (10mM) primer. The parameters for PCR were 950C for 5min, 18 

cycles of 94°C for 30s, 65°C for 30s, and 72°C for 30s, followed by one cycle of 72°C for 5 min. 

The primers used for this reaction were CTGAAGACCCAGGTCCAGATGAAG (Fw) and 

GGAGAGGAGCTGGTGTTGTTGG (Rv). In the second PCR step each reaction contained a total 

volume of 50µl with 2.5µl of the first PCR product (uncleaned), 25µl of Kapa Hifi ready mix X2 

(KAPA Biosystems) and 2.5µl of each (10mM) primer. The parameters for PCR were as in the 

first step, performing 24 cycles. Primers used for this reaction included 5 random nucleotides at 

their 5’-end to increase sequence complexity and facilitate cluster calling during sequencing, and 

were specific for each of the 4 sub-libraries: sub-library A: Fw-	

NNNNNTGTCATCTTCTGTCCCTTCCCAGAAA, Rv-	NNNNNATGGCGCGGACGCGGGT; 

sub-library B: Fw-NNNNNCTGTGCAGCTGTGGGTTGATTC, Rv-

NNNNNCCAAATACTCCACACGCAAATTTC; sub-library C: Fw-

NNNNNCCCTCCTCAGCATCTTATCCGAGT, Rv-NNNNNAGGATGGGCCTCCGGTT; sub-

library D: Fw-NNNNNTGTGTAACAGTTCCTGCATGGG, Rv-

NNNNNGCAGCTCGTGGTGAGGCT. Amplicons were separated from nonspecific fragments 

by electrophoresis on a 1% agarose gel stained with EtBr, extracted from the gel and purified using 

a gel purification kit (Nucleospin). Products were further cleaned using a MinElute PCR 

Purification kit (Qiagen) and eluted in 12ul DDW. Concentration was measured using a 

monochromator (Tecan i-control), and sample size and purity were assessed by Tape-station using 

a high-sensitivity D1K screen tape (Agilent Technologies). 50ng DNA were used for library 

preparation for next-generation sequencing, specific Illumina adaptors were added, and DNA was 

enriched by 14 amplification cycles by a protocol adopted from Blecher-Gonen et al.(Blecher-

Gonen et al., 2013). Samples were reanalyzed by Tape-station prior to sequencing. 

Deep sequencing, normalization and computational analysis. Amplified DBD fragments were 

sequenced on an Illumina NextSeq-500 sequencer using NextSeq 500/550 Mid Output kits (300 

cycles), producing paired-end reads in the length of 150nt. For time course measurements, we 
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obtained a minimum of ~3.5x106 reads for each time point for libraries A-C and ~8.5x106 reads 

for library D (mean of ~6.5x106 reads per sample in libraries A and B, and ~9.5x106 in C and D).  

Paired-end reads were merged using Usearch (http://www.drive5.com/usearch/) setting a minimal 

overlap of 80 and merge length of 180-220. Merged reads in each sample were mapped to the 

library design, requiring a perfect sequence match, and the number of reads corresponding to each 

sequence variant were counted. We required a minimal coverage of >200 reads for each sequence 

variant at the first experimental time point. This stringent threshold, together with the large number 

of cells infected with each library variant as described above, enabled to average out the effects of 

random lentivirus integration and reduce measurement noise. ~97% of the designed sequence 

variants (9,516 of 9,833) passed this threshold and were further used in the analysis. 

As each of the 4 sub-libraries was measured separately, data in each sub-library was normalized 

according to the dynamics of synonymous mutation variants, compared across all sub-libraries. 

Thus, for each sequence variant, we calculated the log (base 2) fold-change (FC) at each time point 

and normalized the log-FC of all variants in each sub-library so that the mean log-FC across 

synonymous variants (encoding a wtp53 amino acid sequence) in that sub-library will equal the 

mean log-FC of all synonymous variants (across all libraries). 

The relative fitness (RFS) score for each variant was calculated as: 

	𝑅𝐹𝑆 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑅,-, 𝑅,/, 𝑅,0  

Where 𝑅,1 is the relative enrichment/depletion of the variant at time point	𝑡3: 

𝑅,1 = log7
𝑟,1
𝑟,9

 

	𝑟,3 represents the fraction of reads corresponding to a variant at the given time point (𝑡:, 𝑡7 and	𝑡;, 

represent sampling at 6, 9 and 14 days post-infection, respectively. 

The evolutionary conservation score (ECS) measures how conserved each position is in a multiple 

sequence alignment of the protein family(Sander and Schneider, 1991). It is defined as the 

normalized entropy of the distribution of amino acid frequencies fi in position i, i.e. 

   
ECS(i) =1+

f
i
(a)

a
∑ ln(f

i
(a))

lnq
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and sums over all amino acid characters a in the alignment including the gap, and q=21. ECS(i) 

ranges from 0 (completely variable) to 1 (fully conserved). Amino acid frequencies were obtained 

from a sequence alignment of 1887 homologous sequences obtained by a jackhmmer search 

against the UniRef100 sequence database (5 iterations, E-value threshold: 1E-01). To reduce 

sequence redundancy when calculating the frequencies, the counts for each sequence were 

weighted by 1/m, where m is the number of sequences in the alignment that are at least 80% 

identical (redundancy-reduced number of sequences: 246) (Hopf et al., 2017). 

Relative evolutionary representation of amino acid residues was calculated using the ConSurf	

(Ashkenazy et al., 2016) tool using default parameters (homologous sequences taken from 

UniRef90 database, and filtered for sequence homology ranging between 35-95%). Relative 

representation is defined as the percent out of the 150 examined species in which that particular 

amino acid is present at a given position.  

To predict the effects of individual amino acid substitutions from evolutionary sequences, a 

statistical model of the family sequence alignment was inferred (Hopf et al., 2017). Since there is 

only limited evolutionary sequence diversity in the family alignment (redundancy-reduced number 

of sequences: 246), we chose to infer a simple site-independent model rather than an epistatic 

model that considers amino acid dependencies between pairs of positions, as described previously 

(Hopf et al., 2017). This choice is supported by the observation that only 29 significant long-range 

evolutionary couplings between pairs of positions could be detected at a 90% probability cutoff 

when inferring an epistatic model (Toth-Petroczy et al., 2016). 

Briefly, the independent model describes the probability of any amino acid sequence σ in the 

family by 

𝑃 𝜎 = 	
1
𝑍 𝑒𝑥𝑝 ℎ3 𝜎3

3

 

with single-site amino acid constraints hi(σi) capturing the preference for amino acid σi in position 

i. These parameters are inferred from the sequence alignment using l2-penalized maximum 

likelihood inference. The effect of a substitution ΔE can then quantified by the log-odds ratio of 

the probabilities of the mutant and wild-type sequences under the model: 
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ΔE(σ mut ,σ wt ) = log

P(σ mut )
P(σ wt )

 

A score of 0 putatively corresponds to neutral substitutions, scores < 0 to deleterious substitutions, 

and scores > 0 to beneficial substitutions. 

The structural model of p53 was created with PyMol using the 1TSR p53 structure downloaded 

from the Protein Data Bank (http://www.rcsb.org/pdb/).   

Mutation prevalence and RFS prediction models. All predictions were performed with Random 

Forest regression models, using the scikit-learn (Pedregosa et al., 2011) RandomForestRegressor 

class. In each of the prediction tasks, we randomly partitioned the data into a 90% training set and 

a 10% test set which was left aside and not used for model fitting and optimization. To tune model 

parameters and assess its performance on training data we used a 200-fold cross validation scheme. 

Model parameters were adjusted to maximize the Pearson correlation between predicted and 

measured values. These parameters were then used for fitting the model using the entire training 

data set and final prediction on unseen test data.  

Model features include: mutation prevalence (Bouaoun et al., 2016), measured RFS; variant 

enrichment at 6, 9 and 14 days (log-FC of read fractions over the 2d time point) and relative 

abundance at 2 days; mean enrichment at 6, 9 and 14 days; position within the DBD; residue 

evolutionary conservation and residue percent variability; “independent model” prediction of 

protein functionality; ‘epistatic model’ prediction of protein functionality calculated using 

EVmutation (Hopf et al., 2017); minimal number of transitions and transversions required to 

achieve the given amino acid alteration; type of mutations (substitution, deletion, insertion or 

tandem base transitions) and their outcome (missense, nonsense, silent); and PAM250 and 

BLOSUM62 substitution matrix values. Feature importance was assessed by mean decrease in 

impurity, as implemented in scikit-learn (Pedregosa et al., 2011).  

Statistical analyses. To assess the difference between two groups of values that are distributed 

approximately normal, we used Student’s t test. When this was not the case we performed 

nonparametric tests: Mann–Whitney U test for independent samples (e.g. in Fig. 1b), or Wilcoxon 

signed-rank test for matched samples (e.g. Figs. 4e and f). All performed statistical tests were two-

sided. To assess the difference between time-course dynamics (e.g. in Fig. 1c) we performed a 

within-subjects two-way analysis of variance (ANOVA). For comparison between ages of tumor 
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onset in patients harboring different mutation types we performed a one-way Kruskal-Wallis H 

test (Fig. S9). All error bars represent ±SEM (standard error of the mean), unless noted otherwise. 

Heatmap hierarchical clustering was performed using a Euclidean distance matrix. Statistical 

analyses were performed using the scipy python package.  
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Figures: 

 

Figure 1: A high-throughput experimental system for measuring the effects of p53 variations. 

(a) Experimental design: a library of 9,833 designed p53 sequence variants was synthesized on 

Agilent microarrays in 4 separate pools spanning consecutive parts of the DBD (labeled A, B, C 
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and D) and cloned into a lentiviral vector expressing p53 followed by an IRES-driven EGFP 

reporter. p53-null H1299 cells were infected with packaged viruses at MOI=0.1, to ensure 

integration of a single variant per cell. Infected cells were sampled along a 14 day time course, and 

the relative abundance of each variant at each time point was assessed by next-generation 

sequencing, allowing extraction of a growth curve and a relative fitness score (RFS; calculated as 

described in Methods) for each individual variant. (b) Relative fraction of reads for each variant 

(N=9516) at 9 days (y-axis) versus 2 days (x-axis) post-infection of H1299 cells with the p53 

library. Variants along the y=x diagonal retain stable relative abundance in the population. Parallel 

red diagonal lines represent a 2-fold increase/decrease in abundance between day 2 and day 9. 

Green dots represent synonymous sequence variants (encoding wtp53 amino acid sequence). Inset: 

distribution of fraction of reads (log, base 2) for synonymous (green) and non-synonymous (blue) 

mutations at 2d and 9d. (c) Time course growth curves comparing the dynamics of all synonymous 

mutations to that of all non-synonymous mutations, mean of the 10 most abundant p53 amino-acid 

substitutions in the IARC database, and means of all non-synonymous mutations in each of the 6 

commonly mutated hotspot codons. Plotted lines represent means +/- STE at each time point post-

infection. “n” denotes the number of different DNA sequence variants averaged to calculate each 

mean value. (d) Distribution of RFS values across all protein sequence variants. Dashed line shows 

median RFS of all synonymous variants. N=6837.  
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Figure 2: The pattern of functional effects of p53 mutations correlates with protein structural 

domains and evolutionary conservation. 

(a) RFS of p53 variants carrying mutations in the DBD. For each codon (x-axis; numbers relate to 

amino acid positions), the RFS of all single amino acid substitutions (one letter codes on the left), 
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deletions (“0”), premature stop codons (“*”) and frameshifts (“F.S”) are presented. The RFS of 

each individual substitution is depicted according to the color bar at the bottom, with red indicating 

high fitness (survival in the population) and blue indicating low fitness (preferential depletion from 

the population).  The wild-type residue in each position is marked in yellow; missing data points 

are in grey. Orange bars on top show the prevalence (% of total mutated cases) of somatic 

mutations in each indicated residue across all tumor types(Bouaoun et al., 2016); asterisks mark 

major hotspots. Grey bars depict the evolutionary conservation score of each position across 1887 

homologous sequences (see Methods); black bars represent mean RFS (+/- STD) for each codon 

(mean across each heatmap column). Bottom: linear scheme of major structural motifs in the DBD. 

Yellow rectangles denote residues engaging the zinc ion. (b) Same data as in (a), hierarchically 

clustered in both dimensions, grouping together amino acid positions with similar robustness to 

modification. Note that most positions (columns) are either tolerant to mutations (predominantly 

blue) or highly sensitive (predominantly red). This is concordant with the conservation scores of 

the codons (grey bars). (c) Mean RFS, calculated for each amino acid position across all missense 

mutations at that position, plotted against the evolutionary conservation score of that position (0 = 

completely variable, 1 = fully conserved). N=191. (d) Measured RFS of each amino acid 

substitution, plotted against predicted effect of its substitution on p53 functionality, as derived 

from a statistical model of evolutionary sequences (log-odds ratio of mutant and wild-type 

sequence probabilities, wt=0; see Methods). Yellow diamond represents wtp53. N=2990.  
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Figure 3: Residues within the DBD exhibit different patterns of robustness to modification. 

(a-c) For each indicated p53 codon, we show the median RFS measured for all assayed amino acid 

substitutions at that position (blue = decrease in relative abundance, presumably retaining wtp53 

activity; red = relative enrichment, presumably due to loss of wtp53 function). Grey bars on top 

indicate relative representation (% of sequenced species in which the indicated amino acid is 

present at that particular position, according to ConSurf(Ashkenazy et al., 2016) multiple sequence 

alignment). The amino acid occupying that position in wtp53 is indicated at the bottom. (d) p53 

variants were divided by their RFS into two groups: retaining wtp53-like functionality (blue) or 
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dysfunctional (red). Threshold for separation was set to -1 (equivalent to 2-fold depletion). Bars = 

% relative representation (mean +/- STE) for each group, calculated as in (a-c). Student’s T-test 

p<10-38, N=1152 in red group, N=2005 in blue group. (e) Mean RFS for each amino acid position 

superimposed over the p53 structure (a monomer bound to DNA). Blue and red colors represent 

tolerant (low mean RFS) and susceptible (high mean RFS) positions, respectively.    
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Figure 4: Mutation prevalence in human tumors is highly correlated with loss of wtp53 anti-

proliferative effect. 

(a) The RFS of each p53 variant is plotted against its relative abundance across all human tumors 

(IARC p53 database). Grey circles = missense mutations; red triangles = nonsense mutations; 

orange triangles = frameshift mutations. The ten most frequent hotspot mutations are indicated. 

Dashed triangle indicates mutations observed at low abundance despite having lost p53 

functionality. Dashed horizontal line indicates median RFS of all synonymous variants. N=1465. 
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(b) Same as in (a), but including only amino acid substitutions achievable by a single transition 

mutation. Colors signify the evolutionary conservation score of each residue; see color bar on the 

right. Dashed line represents a sigmoidal fit of the form y = c / (1+e-k*(x-x0)) + y0, created using least 

squares residual minimization. R2 = 0.49. N=526. (c) A Random forest model was trained using 

90% of the data with 200-fold cross validation (CV) for predicting relative mutation prevalence in 

human tumors. For each protein variant used in CV, p53 mutation prevalence (Bouaoun et al., 

2016) (“Measured”) was plotted against model predictions. (d) Same as (c), for a model trained to 

predict RFS (measured RFS is plotted against model-predicted RFS for each protein variant). (e) 

Age at diagnosis of LFS family members presenting with tumors of different tissue origin 

(Bouaoun et al., 2016). Tumors are divided according to the functional impact of the corresponding 

germline TP53 mutations: blue – retaining wtp53-like anti-proliferative functionality (RFS≤-1), 

red – disrupting functionality (RFS>-1). p-values: Mann-Whitney U.  
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Figure 5: The phenotypic outcome of missense mutations is affected by the V217M SNP. 

(a) For each variant, we plotted its standardized relative fitness (Z-scores) when the mutation is on 

a SNP R213R background as compared to wtp53 background. N=388. Variant type colors are 

shown at the bottom. (b) Same as (a), but for SNP V217M. N=385.  
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Supplementary figures: 

 

Supplementary figure 1: Synthetic design of the p53 DBD mutation library (total of 9,833 unique 

sequence variants). Variants are stratified by: (i) Synonymous vs. non-synonymous mutation 

variants; (ii) variant genetic background (i.e. mutations on a wtp53 or SNP background; (iii) 

mutation types on a SNP-background; (iv) nature of sequence alteration; (v) mutation outcome at 

the protein level. Abbreviations: HS=hotspot codon; sub=substitution; del=deletion; 

InDel=insertion or deletion.  
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Supplementary figure 2: (a) H1299 cells were infected with serial dilutions of the p53-library 

lentivirus stock. 48 hours post-infection, the percentage of cells expressing EGFP was determined 

by flow cytometry. The dashed red line represents the interpolated fraction of viral stock required 

to achieve a MOI of 0.1. (b) Percentage of EGFP-positive H1299 cells as measured by flow 

cytometry 48 hours post-infection (PI) with lentiviruses encoding the p53 DBD library (data from 

sub-library D is shown as a representative example). (c) 72 hours post-infection of H1299 cells 

with the p53 DBD library (or no-virus control medium, NT), cells were subjected to Western blot 

analysis with anti-p53 antibodies (mixture of D01+PAb1801). Vinculin was used for loading 

control (data from sub-library D is shown as a representative example). (d) Threshold for the 

minimal number of reads at first time-point was determined by examining the RFS calculated 

across all synonymous mutations in each sub-library. As the minimal number of reads increases, 

better accuracy is achieved and variants that pass the threshold converge towards the actual value. 

Graphs depict the distribution of RFS measured across all silent mutations in the 4 sub-libraries 

for increasing thresholds of minimal read fractions used. Note that as sub-libraries C and D are of 

higher complexity (contain a larger number of designed variants), a larger minimal threshold is 

required to converge to an accurate estimation. (e) Time course dynamics (means +/- STE) of all 

synonymous mutation variants in each of the 4 sub-libraries, and the overall mean (dashed black 

line) across the entire DBD library. Measured read fractions from each of the 4 libraries at each 

time point were normalized to merge with the overall mean (Methods).  
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Supplementary figure 3: (a) H1299 cells were infected with the lentiviral p53 library or with 

wtp53-IRES-EGFP (wtp53 in the same lentiviral construct as the library), and analyzed for p53 

DNA levels (measured by qPCR with p53-specific primers and normalized to an intergenic region 

upstream of the KCNA4 gene), 48 hours and 6 days PI. Note that while wtp53 DNA is rapidly 

diluted out, the DNA of the mutant p53 library is only slightly reduced. (b, c) Cells were infected 

as in (a) or with a mRed-IRES-EGFP lentivirus (p53-null control vector), and sampled at the 

indicated time points PI. At each time point, the percentage of EGFP positive cells was measured 

by flow cytometry and compared to the 48 hour time point; fold-change values are presented. (d) 

Time course growth curves comparing the dynamics of all different protein variants at codon 175. 
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Each plotted line represents the mean (+/- STE) of all DNA sequence variants encoding the same 

particular amino acid.	The R175H hotspot mutation is indicated in black.  
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Supplementary figure 4: Time course growth curves showing the dynamics of DNA sequence 

variants encoding the ten most prevalent protein variations in p53. Each panel shows a specific 

protein variant. Lines represent unique sequence variants encoding the particular amino acid 

alteration.  
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Supplementary figure 5: (a) Scatter plot showing the correlation between RFS values of different 

DNA sequence variants encoding the same amino acid substitution (including synonymous 

variants). For each codon, all pairwise combinations of sequence variants encoding the same 

protein sequence are plotted (RFS of one variant against the other). Colors indicate point density 
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from high (red) to low (blue). (b) Distribution of measured relative fitness scores across all DNA 

sequence variants in the library (black line) or across sequence variants encoding only single 

mutations (dashed red line). 
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Supplementary figure 6: Time course growth curves showing the dynamics of individual 

sequence variants resulting in synonymous mutations (a), missense mutations (b), nonsense 

mutations (c) or frameshifts (d).  
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Supplementary figure 7: Hierarchical clustering of RFS values measured for p53 DBD variants. 

Dendrograms depict clustering by amino acid variation (a), and by codon number (b), 

corresponding to rows and columns in Fig. 2b, respectively.  
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Supplementary figure 8: (a, b) Prediction model performances on held-out test data. Random 

forest predictors were trained using 90% of the data (training set). Then, learned parameters were 

used for prediction on held-out test data (10%). Scatter plots show measured values of p53 

mutation prevalence (a) or RFS (b) for each p53 protein variant in the test set plotted against model 

predictions for that variant. (c, d) Bars represent the relative importance of features (+/- STE) used 

for predicting p53 mutation prevalence (c) and RFS (d). Arrows indicate features based on our 

competition assay measurements (red), evolutionary conservation (green) and p53 mutation 

prevalence in human cancers (black).  



	 	 42	

 

Supplementary figure 9: Box plots show the age at diagnosis of tumors in LFS family members 

across all tumor types (11). Tumors are stratified by mutation type and effect: blue – missense 

mutations retaining wtp53-like anti-proliferative functionality (RFS≤-1); red – nonsense, 

frameshift and missense mutations that disrupt wtp53-functioanlity (RFS>-1), excluding the 6 

most prevalent hotspot mutations; orange – hotspot mutations (R175H, R273H, R248Q, R248W, 

R273C and R282W). ***p<10-16; **p<0.01 (Kruskal-Wallis H). 
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Supplementary figure 10: (a) For each p53 variant, we plotted its standardized relative fitness 

(Z-scores) when the mutation is on a SNP R213R background as compared to wtp53 background. 

Only variants encoding a non-truncated p53 protein are shown (excluding nonsense and frameshift 

mutations). (b) Same as (a), but for SNP V217M. Mutations that retain p53 functionality on a 

wtp53 background (at least 1 STD below the mean effect) yet are non-functional on the SNP 

background (positive Z-score), are colored red. Box-plots compare the overall effect of mutations 

on the indicated backgrounds.  
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