jarangvargBinla

WEIZMANN INSTITUTE OF SCIENCE

Roles of variables from the perspective of computer science
educators

Document Version:
Publisher's PDF, also known as Version of record

Citation for published version:

Ben-Ari, M & Sajaniemi, J 2003, Roles of variables from the perspective of computer science educators. in
ITICSE'04, June 28-30, 2004, Leeds, United Kingdom. University of Joensuu, Department of Computer
Science. <http://www.cs.joensuu.fi/~saja/var_roles/abstracts/iticse04_benari_saja.pdf>

Total number of authors:
2

Published In:
ITICSE’'04, June 28-30, 2004, Leeds, United Kingdom

License:
Unspecified

General rights

@ 2020 This manuscript version is made available under the above license via The Weizmann Institute of
Science Open Access Collection is retained by the author(s) and / or other copyright owners and it is a condition
of accessing these publications that users recognize and abide by the legal requirements associated with these
rights.

How does open access to this work benefit you?
Let us know @ library@weizmann.ac.il

Take down policy

The Weizmann Institute of Science has made every reasonable effort to ensure that Weizmann Institute of
Science content complies with copyright restrictions. If you believe that the public display of this file breaches
copyright please contact library@weizmann.ac.il providing details, and we will remove access to the work
immediately and investigate your claim.

(article begins on next page)

http://www.cs.joensuu.fi/~saja/var_roles/abstracts/iticse04_benari_saja.pdf

Roles of Variables as Seen by CS Educators

Mordechai Ben-Ari
Weizmann Institute of Science
Department of Science Teaching
Rehovot 76100
Israel

moti.ben-ari@weizmann.ac.il

ABSTRACT

Roles can be assigned to occurrences of variables in pro-
grams according to a small number of patterns of use that
are both language- and algorithm-independent. Preliminary
studies on explicitly teaching roles of variables to novice stu-
dents have shown that roles are an excellent pedagogical tool
for clarifying the structure and meaning of programs. This
paper describes the results of an investigation designed to
test the understandability and acceptability of the role con-
cept and of the individual roles as seen by computer science
educators. The investigation consisted of a short tutorial on
roles, a brief training session on assigning roles to variables,
a test evaluating the subjects’ ability to assign roles, and
a set of open questions concerning their opinions of roles.
Roles were identified with 85 % accuracy, and in typical
uses of variables with 93 % accuracy.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
D.m [Software]: Miscellaneous—Software psychology

General Terms

Human factors

1. INTRODUCTION

The primary method of teaching programming is to present
examples so that the students can generalize from the exam-
ples to general principles of problem solving, and it is often
worthwhile to formalize this process of generalization, and to
explicitly teach program design techniques. The concept of
roles of variables can be considered as another pedagogical
technique within this tradition. In programming, variables
are not used in an ad hoc way; instead, there are a few
patterns that can describe almost all the uses of variables.
Variable roles are a concept that is different from the al-
gorithmic patterns that are frequently used as pedagogical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’04, June 28-30, 2004, Leeds, United Kingdom.

Copyright 2004 ACM 1-58113-836-9/04/0006 ...$5.00.

Jorma Sajaniemi
University of Joensuu
Department of Computer Science
P.O.Box 111, FIN-80101 Joensuu
Finland

jorma.sajaniemi@joensuu.fi

aids, because the concept of roles focuses on the data flow
through single variables. For example, in the long list of pat-
terns given in [10], we find Pattern D1 (The Counter Pattern
Using a Loop) with the following structure (in C++):

while (cost!=0) {loopCount++; ...}

and Pattern F1 (Performing an Action on Each Element of
an Array) with the following totally different structure:

for (int index=0; index<MAX_ELEMENTS; index++)

In terms of roles of variables, however, both loopCount and
index take on a predictable sequence of values and are as-
signed the same role (stepper); the choice of role is easily
made just by examining the data flow. We believe that
classroom discussions based upon roles of variables can con-
tribute to the ability of students to understand and write
programs.

The concept of roles of variables is based upon earlier
work on variable use: Ehrlich and Soloway [4] and Rist [7]
were interested in the mental representations of variables,
while Green and Cornah [5] wanted to help maintenance
programmers by providing a tool that would explain the
behavior of variables. Our approach to the role concept is
to find a comprehensive, yet small, set of characterizations
for variables primarily for use in teaching.

Roles of variables were identified by Sajaniemi [8] who
analyzed programs in several introductory Pascal textbooks.
He found nine roles that covered 99 % of variables in novice-
level programs. Later, Kuittinen and Sajaniemi [6] con-
ducted an experiment during an introductory programming
course, which compared traditional teaching with teaching
that used roles and role-based animation. The results of this
experiment indicated that the introduction of roles improves
program comprehension and program writing skills.

In this paper, we are interested in computer science (CS)
educators’ attitude to the role concept and individual roles:
if CS educators do not find the role concept intuitive and
easy to apply, it would be unrealistic to expect them to use
roles in teaching. To reveal how CS educators react to the
new concept, we conducted an investigation that was de-
signed to test the understandability and acceptability of the
role concept and of the individual roles as seen by CS edu-
cators. Section 2 presents the concept of roles of variables,
the investigation is described in Section 3 and the results
are discussed in Section 4.

Table 1: Definition of the Roles in the Investigation

A variable that is initialized without
any calculation and whose value does
not change thereafter.

Fixed value

A variable stepping through a succes-
sion of values that can be predicted as
soon as the succession starts.

A variable holding the latest value en-
countered in going through a succes-
sion of values.

A variable holding the “best” value
encountered so far in going through
a succession of values. There are no
restrictions on how to measure the
“goodness” of a value.

Stepper

Most-recent
holder

Most-wanted
holder

Gatherer A variable accumulating the effect of
individual values in going through a
succession of values.

A variable that always gets its new
value from the same calculation from
the values of one or more other vari-
ables.

A variable that gets its values by fol-

lowing the values of another variable.

Transformation

Follower

2. THE ROLE CONCEPT

The role of a variable is defined according to its dynamic
character as embodied by the succession of values the vari-
able obtains and how the new values relate to other vari-
ables. For example, consider a variable used to store the
latest input value given by the user. There is no possibility
for the programmer to guess what values the user will enter;
the role of such a variable is a most-recent holder. On the
other hand, the sequence of values of a variable used as an
index to iterate through an array is totally predictable as
soon as the sequence starts; this variable is a stepper.

The original definition given in [8] contained nine roles, as
well as a role others, for a few cases that could not be fit into
the other categories. The list of roles was obtained by an-
alyzing all the programs in three introductory textbooks.
Later, as a by-product of the present study, a new role
(transformation) was identified and added to the role set.
The definitions of the roles as used in this research is given
in Table 1. The Roles of Variables Home Page at http:
//cs.joensuu.fi/"saja/var_roles/ contains fuller expla-
nations and examples.

The concept of roles of variables is concerned with the
deep structure [3] of the program: Does the variable hold
a predetermined sequence of values, for example, the val-
ues of the index of a for-loop? Or does it hold the best
value encountered so far, for example, when searching for
the largest value in an array? The surface structure of the
program, primarily its syntactic structure, is much less rel-
evant to the concept of roles. The name of the variable, the
places where it occurs within an expression and the relation
between the expression and the enclosing assignment and
control statements are not important in assigning roles.

Even though roles have technical definitions, they are a
cognitive concept. For example, consider a variable that

takes on the values of the Fibonacci sequence by adding up
pairs of previous values in the sequence. A mathematician
can predict the sequence as clearly as a novice can predict
the sequence of values of the index of a simple for-loop, so
she may assign the role of stepper, because the values “can
be predicted as soon as the succession starts.” On the other
hand, a novice who has never seen the Fibonacci sequence
before may assign the role of gatherer, because the variable
accumulates the previous values.

3. THE INVESTIGATION

We conducted an investigation designed to study the un-
derstandability and acceptability of the role concept and of
the individual roles as seen by CS educators. (Further de-
tails of the research methodology and results are available
in an expanded version of this article [2].)

3.1 Methodology

The research materials consisted of web pages divided into
three phases. The tutorial phase introduced the concept of
roles of variables, followed by a section for each role contain-
ing: (a) the definition of the role (as given in Table 1), (b) a
full sample program demonstrating the role, (c¢) additional
examples of the use of the role, and (d) a list of additional
properties that can assist in recognizing the role. Three roles
(one-way flag, temporary and organizer) accounting for only
5.2 % of all variables in the analysis in [8] were not included
in the tutorial in order to simplify and shorten it; the new
role transformation was added as noted above. The tutorial
consisted of a single web page yielding 8 pages when printed,
as the subjects were encouraged to do.

Following the tutorial, subjects were presented with a
training phase: this consisted of a sequence of six programs
containing 24 variables taking on all of the roles described
in the tutorial. After each program, subjects were given
feedback on their assignments of a role to each variable The
analysis phase was similar in format to the training phase;
subjects were presented with six programs containing 24
variables, this time in a single web page. Upon assigning
all of the roles, the results were sent by email to the au-
thors.

program saw;
const last = 7;
type ArrayType = array [1..last] of integer;

var value: ArrayType; { Values to be checked }
i: integer; { Index of array }
up: boolean; { Current direction is up? }
ok: boolean; { Does saw property still hold? }
begin
writeln(’Enter ’, last, ’ values:’);

for i:=1 to last do read(valuel[il);
up := value[1] < value[2];

ok := value[1] <> value[2];

i=2;

while ok and (i < last) do begin
ok := (up and (value[i] > value[i+1])) or

(not up and (value[i] < valuel[i+1]));

up := not up;
i=1i+1

end;

write(’Values ’); if not ok then write(’do not ’);
writeln(’form a saw.’)
end.

Figure 1: Pascal program with controversial vari-
ables.

Table 2: Subjects’ Selections for the Roles (percent)

[Role | n | Role selected |
[| | Fix [stp [MRH [MWH [GTH [TRN [FOL | OTH | DNK |

FIX 5 91 7 2

STP 6 91 2 1 4 2

MRH 2 7 1 92

MWH | 3 1 1 79 3 3 10 1

GTH 2 1 1 10 1 60 26 1

TRN 3 9 1 7 3 1 75 4 1

FOL 2 2 96

OWF 1 8 10 10 61 6 6

While the roles in the training phase were straightforward,
some of the variables in the analysis phase were “controver-
sial,” i.e., borderline cases. Such programs would not nor-
mally be shown to novices, but these variable usages were
included in order to validate the definitions of the roles. One
such program was an iterative program for constructing ele-
ments of the Fibonacci sequence.Another (Figure 1) checks
if a sequence of values forms a “saw,” in which the direc-
tion of change of the values alternates. The controversial
variables are up and ok. The former is ostensibly a stepper,
because we can predict that its values alternate between
true and false, though other roles are plausible since the
initial value of the variable is computed from the values of
other variables. The variable ok is a one-way flag—one of
the three roles not included in the tutorial. A one-way flag
is the role assigned to a variable that may change its value
only once; this role is frequently used for a variable of type
boolean used as a “flag.” We wanted to see if the absence of
this role would be missed by the subjects and what choices
they would make.

The first version of the material was pretested by using
five CS educators as subjects. They used materials contain-
ing eight programs intended to form the analysis phase. The
time needed to complete the task varied from 28 to 90 min-
utes with mode being 60 minutes. The final materials can
be found at http://cs.joensuu.fi/"saja/role_survey/.

3.2 Sample Demographics

Fifty-three computer science educators volunteered to par-
ticipate in the investigation. They were recruited by publi-
cizing the URL containing the research material among CS
educators in the authors’ countries, as well as on mailing
lists belonging to the special interest groups in computer
science education and psychology of programming.

One subject selected a quit option while working on the
material; another’s result was discarded as apparently con-
sisting of randomly selected answers. The results of the
remaining 51 subjects were used in the analysis. Subjects
represented both high-school teachers (n = 8) and university
or college teachers (n = 38). Some subjects had been worked
at both levels (n = 6) while some did not report teaching at
either level (n=11).

3.3 Results

Table 2 displays the selections made by the subjects for
each role in the analysis phase. The column labeled with n
gives the number of variables having the role given in the
first column. Other columns are labeled with the possible
roles that could have been assigned. Therefore, an entry
(row, col) in the table gives the percentage of the occurrences

when role col was assigned to a variable whose correct role
was row. The diagonal, the percentage of correct assign-
ments, is emphasized. OTH means that a subject thought
the variable to have some other role not listed in the tuto-
rial, while DNK means that a subject did not know which
role should be used. OWF is the role one-way flag, discussed
above.

Most roles are identified by at least 90% accuracy. The
low success in identifying of most-wanted holders and gath-
erers can be explained by controversial variables. In non-
controversial cases, most-wanted holders were identified cor-
rectly in 91% of the cases, and gatherers in 94% of the cases.
Only 75% recognized transformations, though even here, in
a simple case the role was recognized with 90% accuracy.

Excluding the one-way flag, subjects made on average 3.4
errors in the classification of the 23 variables (average accu-
racy of 85 %), and 1.3 errors in the classification of the 19
non-controversial ones (average accuracy of 93 %). Subjects
making at most 1 error (n = 10) were more experienced both
in teaching introductory programming courses (two-tailed ¢
test, t = 2.310,df, p = .0317) and in teaching advanced CS
courses (f = 2.944,df, p = .0080) than subjects making at
least 5 errors (n = 12).

We also looked at the distribution of error selections for
high and low performers. To obtain roughly the same amount
of errors for both groups, high performers were defined to be
subjects with at most 3 errors (making a total of 60 errors)
and low performers were subjects having at least 6 errors
(with a total of 63 errors). We counted the number of er-
roneously selected roles for each variable; for all variables
(except the one-way flag) low performers selected a wider
variety of roles. The difference is statistically significant
(paired t test, t = 3.943,df =22, p =.0007). For the one-way
flag the difference is opposite: high performers made a wider
variety of selections (5 different roles) than low performers
(3 different roles).

3.4 Error analysis

Recall from Section 2 that roles of variables are used to
describe the deep, rather than the surface, structure of the
program. When analyzing errors this distinction is impor-
tant: for example, an error that confuses two roles with dif-
ferent deep structures but similar surface structures reveals
that the subject has a weak understanding of the distinction
between two roles. This difference between surface and deep
structures was explicitly mentioned by one of the subjects
who was analyzing the role of the variable second that holds
the second largest value seen so far in a search for the two
largest values in a sequence of values:

At the code [i.e., surface] level second seems to
have two roles “follower,” and “most-wanted”,
but semantically [i.e., at the deep level] it has
just one: “most-wanted.” It is the best choice
for the criterion “to be the 2nd largest.”

Errors in the assignment of roles were frequently caused by
atypical use of the variables. For example, steppers are typ-
ically used for sequences whose values increase or decrease
monotonically, often in an arithmetic progression. This typ-
ical use is so dominant that it may be hard to recognize that
other successions, such as the alternating sequence of values
{true, false, true, false, ...} assigned to the variable up,
are just as predictable and therefore this variable should also

be assigned the role stepper. Many subjects erred, because
although the surface structure is typical (up:=not up is syn-
tactically similar to the typical i:=i+1), the deep structure
with its nonmonotonic sequence is not. Being misled by an
atypical use of a variable does not indicate that the role
is counterintuitive; instead, it is a pedagogical challenge to
learn to gloss over surface structure in order to analyze deep
structure. The controversial variables presented in the in-
vestigation involved both atypical surface and atypical deep
structures. The most-wanted holder second has an atypical
surface structure, while the stepper up has an atypical deep
structure.

Errors made by high performers on non-controversial
variables are potential indicators that the entire concept
is not viable. There were only two error types of this kind.
Several subjects erred in assigning the role to an array whose
elements were read in at the beginning of the program. Since
each element is a fized value, the array is a fized value, but
the subjects considered it to be a most-recent holder, be-
cause each component of the array holds the latest value
read from the input. The error was less frequent on the sub-
sequent occurrence of an array in a program, so we believe
that with more experience, subjects would cease to make
the error.

The second error concerned the role of transformation
which identifies cases where a variable has no independent
existence, but merely serves to contain a value obtained by
computation, for example, a unit conversion from a number
to a percentage, or from degrees to radians, or a split of
a number into its quotient and remainder upon division by
another number. The difference between a transformation
and the role of the original variable, or between a transfor-
mation and some other role having the same surface struc-
ture, was not always apparent to the subjects. For exam-
ple, the variable factor was a transformation computed as
percent/100, but thereafter not modified. Clearly subjects
were justified in assigning the role fized value to that vari-
able.

There were also two types of errors made by high per-
formers when assigning roles to controversial vari-
ables. The first type appeared in three cases when an
atypical surface structure misled some subjects to select the
role whose typical surface structure matched the variable in
question. For example, if the variable was assigned different
values in the two alternatives of an if-statement, some sub-
jects did not recognize that the variable was still assigned a
value only once and thus should be assigned the role fixed
value.

The second error type (one case) was caused when an
atypical deep structure triggered a large variety in the roles
suggested by the high performers. In this case (the variable
up discussed above), the subjects searched for roles with a
more appropriate deep structure. Since the roles are de-
signed to characterize distinct deep structures, there were
no other roles that were appropriate for this case resulting
in a variety of answers.

In general, low performers made the same types of er-
rors for both controversial and non-controversial variables as
did high performers and made them more often. Other er-
rors that they made can be explained by a tendency to make
decisions based on surface structure only. The role most-
wanted holder was assigned even when no possible “measure
of the goodness of the value” existed; gatherer was assigned

when no “accumulation” was being carried out; follower was
assigned when it did not contain values of the variable being
followed, etc.

An interesting exception to the similarity of errors is the
case of the controversial variable with atypical deep struc-
ture (the variable up): high performers spread their errors
evenly among many roles, while low performers concentrated
their errors on a single role transformation, the one with
closest surface structure. The same behavior was seen in the
case of the one-way flag, which was the role that was missing
from the tutorial. High performers assigned a larger vari-
ety of roles than did the low performers. When confronted
with a variable where none of the roles seems to appropri-
ate, low performers tend to look at the surface structures.
In this case, the structure of the expression matched a few
roles only, so the low performers made their selection among
these. On the other hand, high performers looked at the
deep structures, and, as discussed above, found that a vari-
ety of roles were plausible.

The roles most-recent holder and transformation were most
often assigned in case of doubt, presumably, because their
definitions are the least specific. Any variable holds the most
recent value of some calculation, even though most-recent
holder is reserved for “raw” data such as input values. Sim-
ilarly, many variables are the result of computation from
other variables, even though transformation is intended to
be used in specific cases like scaling values.

4. DISCUSSION

The fact that subjects agreed with our assignment of the
roles after such a short introduction is encouraging (more
than 90% of the cases for non-controversial variables for ev-
ery role except transformation). The results make it clear
that increased teaching experience improves the ability to
assign roles correctly, and they indicate that experts have
little problem with the role concept, supporting the assump-
tion that roles represent tacit expert knowledge. Roles are
not hard for non-experienced teachers either, since for the
19 non-controversial variables, 86% of the subjects made at
most two errors.

Many subjects stated in their comments that they had had
problems in remembering the definitions of the roles or that
the definitions were ambiguous, but the same subjects scored
between zero to two errors on non-controversial variables, in-
dicating that they understood, perhaps subconsciously, the
deep structure of variables represented by the roles. Sub-
jects’ comments on the role concept in general were mostly
positive, and they believed that roles could contribute to
understanding programs.

The one-way flag role that was not included in the tutorial
garnered the largest number of alternative suggestions for
other roles. This provides evidence that the one-way flag is a
distinct role, not subsumed by or similar to the others. New
roles suggested by the subjects for this variable, including
checker, guardian, state and latch, are consistent with our
definition of the role. Furthermore, the dearth of suggestions
for new roles for the other variables supports our claim that
the role set is sufficient for the analysis of variables in novice-
level programs.

The only role that caused frequent confusion was transfor-
mation. As discussed above, it is intended to identify cases
where a variable has no independent existence, but merely
serves to contain a value obtained by computation. In a

sense, this role “usurps” the role or roles assigned to the
variables from which the transformation is computed. The
definition of this role has to be clarified.

Variables become controversial if either the surface struc-
ture or the deep structure is atypical. The ability to recog-
nize and go beyond an atypical surface structure is gained by
increased expertise and developing this ability is the task of
the teacher. Variability in surface structures is so large that
it makes no sense to add or modify roles to take surface
structure into account. On the other hand, atypical deep
structure is a sign that a new role might be needed. This
claim is justified by the similarity in the subjects’ approach
to the atypical deep structure and to the missing role. Since
we want to keep the number of roles small so that they can
be used in introductory teaching, we prefer that new roles
that rarely occur should be embedded within the existing
roles.

The tutorial and training materials were deliberately kept
short to encourage compliance by our subjects. Obviously,
the number of examples should be much greater in order to
explore the ramifications of the definitions of the roles in a
wider selection of programs. This will not be a problem in
an educational setting, where the roles can be introduced
gradually during an introductory course and reinforced in
all the examples and exercises.

The error analysis suggested improvements in the tutorial.
First, it should stress that roles concern the deep structure
of variables, even though roles can often be identified from
typical surface structures (for example, the index of a for-
loop is almost certainly a stepper). Second, the tutorial
has to give criteria for distinguishing transformations and
gatherers from other “computationless” roles. Finally, the
application of roles to structured data types must be covered
thoroughly.

S. CONCLUSION

The concept of roles of variables can be used as a peda-
gogical technique to teach how the constructs of a program-
ming language work together to implement the solution of
a problem. Preliminary results of using roles in teaching
elementary programming indicate that the introduction of
roles improves program comprehension and program writing
skills. In this paper, we were interested to find out how com-
puter science educators react to this new concept and to the
individual roles. The outcome of the investigation is encour-
aging because CS educators accepted the concept of roles as
intuitive and found it easy to assign roles consistently.

Even in those cases where assignment is controversial, the
debate itself can be an excellent pedagogical tool for clari-
fying the structure of programs in introductory courses. It
is important to emphasize that we do not regard roles as
an end in themselves and we do not think that students
should be graded on their ability to assign roles. Roles of
variables are design rules and pedagogical aids intended to
help novices over the hurdle of learning programming.

Roles of variables can also change the way that program
visualization and animation are carried out [9]. Traditional
systems such as Jeliot [1] provide visualizations that oper-
ate on the programming language level; therefore, the rep-
resentation and animation of variables is uniform reflecting
the surface structure of the program, not its deep structure.
Role-specific representation of variables and role-specific an-
imation for operations should result in visualizations on a

higher level that will be more informative to students.

Future research on roles will include: (a) cognitive stud-
ies to investigate if roles are truly part of the knowledge
structure of experts, though even if the answer is negative,
it would not rule out their pedagogical use; (b) further em-
pirical research in classrooms in order to determine if roles
are pedagogically useful; (c) development and evaluation of
program animation for visualization of roles; (d) extension
of the role set to cover other programming paradigms and
other expertise levels.

6. ACKNOWLEDGMENTS

We would like to thank all those who volunteered to par-
ticipate in the study, and especially Noa Ragonis for her
extensive comments on the first version of the tutorial and
on a draft of this paper.

7. REFERENCES

[1] M. Ben-Ari, N. Myller, E. Sutinen, and J. Tarhio.
Perspectives on program animation with Jeliot. In
Software Visualization: International Seminar,
Lecture Notes in Computer Science 2269, pages 3145,
Dagstuhl Castle, Germany, 2002.

[2] M. Ben-Ari and J. Sajaniemi. Roles of variables as
seen by CS educators. Technical Report A-2003-6,
University of Joensuu, 2003. ftp://ftp.cs.joensuu.
fi/pub/Reports/A-2003-6.pdf.

[3] F. Détienne. Software Design — Cognitive Aspects.
Springer Verlag, London, 2002.

[4] K. Ehrlich and E. Soloway. An empirical investigation
of the tacit plan knowledge in programming. In J. C.
Thomas and M. L. Schneider, editors, Human Factors
in Computer Systems, pages 113-133, Norwood, NJ,
1984. Ablex Publishing Co.

[5] T. R. G. Green and A. J. Cornah. The programmer’s
torch. In Human-Computer Interaction —
INTERACT’84, pages 397-402. IFIP, Elsevier Science
Publishers (North-Holland), 1985.

[6] M. Kuittinen and J. Sajaniemi. First results of an
experiment on using roles of variables in teaching. In
EASE and PPIG 2003, Papers from the Joint
Conference at Keele University, pages 347-357, 2003.

[7] R. S. Rist. Knowledge creation and retrieval in
program design: A comparison of novice and
intermediate student programmers. Human-Computer
Interaction, 6:1-46, 1991.

[8] J. Sajaniemi. An empirical analysis of roles of variables
in novice-level procedural programs. In Proceedings of
IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (HCC’02), pages 37-39.
IEEE Computer Society, 2002.

[9] J. Sajaniemi. Visualizing roles of variables to novice
programmers. In J. Kuljis, L. Baldwin, and R. Scoble,
editors, Proceedings of the Fourteenth Annual
Workshop of the Psychology of Programming Interest
Group (PPIG 2002), pages 111-127, 2002.

[10] C. Sollohub. C++ in Hypertext. http://cs.nmhu.
edu/personal/curtis/csihtmlfiles/Csltext.htm,
2001.

