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ABSTRACT	

Correlations	 of	 partitioned	 particles	 carry	 essential	 information	 about	 their	

quantumness	 [1].	 Partitioning	 full	 beams	 of	 charged	 particles	 leads	 to	 current	

fluctuations,	 with	 their	 autocorrelation	 (namely,	 shot	 noise)	 revealing	 the	 particles’	

charge	[2,	3].	This	is	not	the	case	when	a	highly	diluted	beam	is	partitioned.	Bosons	or	

fermions	will	exhibit	particle	antibunching	(due	to	their	sparsity	and	discreteness)	[4-

6].	However,	when	diluted	 anyons,	 such	 as	 quasiparticles	 in	 fractional	 quantum	Hall	

states,	 are	 partitioned	 in	 a	 narrow	 constriction,	 their	 autocorrelation	 reveals	 an	

essential	aspect	of	their	quantum	exchange	statistics:	their	braiding	phase	[7].	Here,	we	

describe	detailed	measurements	of	weakly	partitioned,	highly	diluted,	one-dimension-

like	edge	modes	of	 the	one-third	 filling	 fractional	quantum	Hall	 state.	The	measured	

autocorrelation	agrees	with	our	theory	of	braiding	anyons	in	the	time-domain	(instead	

of	braiding	in	space);	with	a	braiding	phase	2θ=2π/3,	without	any	fitting	parameters.	

Our	work	offers	a	relatively	straightforward	and	simple	method	to	observe	the	braiding	

statistics	of	exotic	anyonic	states,	such	as	non-abelian	states	[8],	without	resorting	to	

complex	interference	experiments	[9].	
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Main	
Fractional	quantum	Hall	(FQH)	systems	host	exotic	quasiparticles	(QPs),	named	anyons,	that	carry	fractional	charges	

and	obey	fractional	statistics.	An	adiabatic	braiding	of	abelian	anyons	leads	to	an	added	fractional	statistical	phase	2θ,	

whereas	for	non-abelian	anyons,	the	original	state	transforms	into	another	degenerate	state	[8,	10,	11].	The	charge	of	

the	QPs	can	be	determined	by	partitioning	a	full	beam	of	QPs,	leading	to	excess	shot	noise	(autocorrelation	of	charge	

fluctuations)	[2,	3].	Here,	we	demonstrate	that	partitioning	a	dilute	anyon	beam	reveals	the	braiding	phase	of	the	QPs	in	

the	autocorrelation’s	Fano	factor.	

The	 traditional	 strategy	 to	 observe	 the	 statistics	 of	 QPs	 of	 FQH	 states	 involves	 interference	 in	 a	 Fabry-Pérot	

Interferometer	 [12,	 13]	 or	 a	 Mach-Zehnder	 Interferometer	 [14],	 where	 edge	 modes	 circulate	 localized	 QPs	 in	 the	

insulating	bulk.	Another	recent	approach	[15]	exploited	a	configuration	of	three	quantum	point	contacts	(QPCs)	where	

two	 highly	 dilute	 beams,	 partitioned	 by	 two	 side	 QPCs,	 ‘collided’	 at	 a	 central	 QPC	 (a	 typical	 Hong-Ou-Mandel	

configuration	[16-18]).	Measured	for	the	anyonic	one-third	filling	FQH	state,	the	cross-correlation	of	the	back-scattered	

QPs	beams	was	interpreted	as	a	partly	anionic	bunching	at	the	central	QPC	[15,	19].	

A	different	origin	of	the	three-QPC	outcome	is	based	on	time-domain	braiding	between	the	two	impinging	dilute	anyon	

beams	and	the	thermally	(or	vacuum)	excited	particle-hole	anyon	pairs	at	the	central	QPC	[7,	9].	To	test	this	scenario,	we	

focused	on	a	two-QPC	geometry	where	one	QPC	dilutes	an	anyon	beam,	further	partitioned	by	a	second	QPC,	resulting	in	

excess	 shot	 noise	 (autocorrelation).	 Testing	 under	 different	 conditions,	 such	 as	 beam	 dilution,	 the	 second	 QPC’s	

transmission,	and	beam	travel	distance,	we	found	an	anomalous	autocorrelation	Fano	factor	(ℱ!"#$%&)	that	agrees	with	

our	theory	of	time-domain	braiding	at	the	second	(partitioning)	QPC	(without	any	fitting	parameters).	

Notably,	 although	 the	 theoretical	 description	 of	 the	 time-domain	 anyon	 braiding	 in	 a	 QPC	 is	 based	 on	 the	 chiral	

Luttinger	liquid	(CLL)	theory	(or	the	equivalent	conformal	field	theory)	[7,	9],	the	saddle	potential	in	the	QPCs	[20]	is	far	

from	 the	 ideal	 barrier	 in	 the	 CLL	 theory.	 To	 overcome	 this	 difficulty,	 we	 developed	 a	 theoretical	 description	 that	

hybridizes	the	CLL	theory	and	a	phenomenological	theory	in	the	spirit	of	the	successful	ubiquitous	approach	of	charge	

determination	via	autocorrelation	measurements	[2,	3].	

	

Shot	Noise	of	Full	Beam	

Our	experimental	setup	is	shown	in	Fig.	1(a)	(Supplementary	Note	I).	The	source	(S)	is	biased	by	voltage	𝑉',	injecting	

a	full	QP	beam	with	current	𝐼' 	= 𝐺𝑉',	flowing	chirally	along	Edge1,	with	conductance	𝐺 = 𝜈𝑒(/ℎ	at	filling	factor	𝜈 = 1/3,	

where	𝑒	is	the	electron	charge	and	ℎ	is	the	Planck	constant.	The	full	beam	is	highly	diluted	by	QPC1,	with	a	reflection	

probability	𝑅)*+, 	and	 thus	 current	𝐼)*+, = 𝐼'𝑅)*+, .	 The	 dilute	 beam	 flows	 chirally	 along	 Edge2,	 impinging	 at	 QPC2	

(being	2	µm	away),	where	it	is	further	partitioned.	The	scattered	current	fluctuations	are	measured	after	being	amplified	

by	 amplifiers	 A	 and	 B,	 with	 the	 spectral	 densities	𝑆- ,	𝑆. 	and	𝑆-. 	measured.	 The	 charge	 of	 the	 diluted	 QPs	𝑒∗ 	was	

determined	from	the	autocorrelation	shot	noise	of	QPC1	[2,	3,	21-23]	

𝑆)*+, = 2𝑒∗𝐼'𝑅)*+,01 − 𝑅)*+,2 3coth 8
𝑒∗𝑉'
2𝑘.𝑇

; −
2𝑘.𝑇
𝑒∗𝑉'

<		,	 (1)	

which	was	determined	by	𝑆)*+, = 𝑆- + 𝑆. + 2𝑆-. ,	which	 the	electron	 temperature	𝑇	and	 the	Boltzmann	constant	𝑘.	

(Fig.	1(b)	and	Methods).	The	data	agrees	well	with	Eq.(1)	with	𝑒∗ = 𝑒/3	(a	similar	measurement	was	performed	with	

QPC2	(Supplementary	Note	II)).	
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We	 now	 elaborate	 on	 the	 phenomenological	 hybridization	 of	 the	 non-interacting	 expression	 in	 Eq.	 (1)	 and	 the	

interacting	theory	of	the	CLL.	In	the	limit	of	very	large	𝑉'/𝑇	and	very	small	𝑅)*+,,	Eq.	(1)	agrees	with	the	prediction	of	

the	CLL	theory.	 In	the	CLL	theory,	 the	current	and	shot	noise	are	expressed	as	𝐼)*+, = 𝑒∗(𝑊,→( −𝑊(→,)	and	𝑆)*+, =

2𝑒∗((𝑊,→( +𝑊(→,),	where	𝑊1→2 	is	the	tunnelling	rate	of	an	anyon	from	Edgei	to	Edgej.	When	a	full	(undiluted)	biased	

beam	obeys	𝑒∗𝑉' ≫ 𝑘.𝑇,	the	rate	𝑊(→,	is	exponentially	suppressed	compared	with	𝑊,→(,	resulting	in	𝑆)*+, = 2𝑒∗𝐼)*+,.	

The	phenomenological	binomial	factor	(1 − 𝑅)*+,)	in	Eq.	(1)	relates	to	charge	fluctuation	of	non-interacting	particles	in	

the	QPC.	The	temperature-dependent	term	emanates	from	the	detailed	balance	principle	[22].	

	

Time-Domain	Braiding	by	Diluted	Beam	
We	extend	Eq.	(1)	to	the	two-QPC	configuration.	When	a	diluted	beam	is	partitioned	by	QPC2,	the	spectral	density	

𝑆)*+(	of	the	excess	autocorrelation	of	current	fluctuations	in	QPC2	can	be	expressed	as,	

	 𝑆)*+( = ℱ!"#$%& × 2𝑒∗𝐼)*+,𝑅)*+(01 − 𝑅)*+(2 3coth 8
𝑒∗𝑉'
2𝑘.𝑇

; −
2𝑘.𝑇
𝑒∗𝑉'

<		,	 (2)	

with	ℱ!"#$%& 	being	dependent	on	 the	diluting	𝑅)*+, 	of	 the	beam	 (Supplementary	Note	 III),	 and	𝑅)*+( 	is	 the	 reflection	

probability	of	QPC2.	This	expression	has	the	same	structure	as	Eq.	(1),	with	the	replacement	of	𝐼'	with	𝐼)*+,	and	𝑅)*+,	

with	𝑅)*+( .	 In	 the	 limit	 of	 large	𝑉' 	and	 small	𝑅)*+( ,	 it	 becomes	𝑆)*+( = ℱ!"#$%& × 2𝑒∗𝐼)*+( 		 with	 the	 current	𝐼)*+( =

𝐼)*+,𝑅)*+(.		It	is	note	that	for	free	fermions	ℱ!"#$%& = 1.	

The	Fano	factor	ℱ!"#$%&	distinguishes	between	different	partitioning	processes.	We	consider	the	limits	of	large	𝑉'	and	

small	𝑅)*+(,	where	𝐼)*+( = 𝑒∗(𝑊(→3 −𝑊3→(),	with	spectral	density	𝑆)*+( = 2𝑒∗((𝑊(→3 +𝑊3→(),	and	ℱ!"#$%& = (𝑊(→3 +

𝑊3→()/(𝑊(→3 −𝑊3→().	Among	possible	partitioning	processes,	we	first	consider	the	trivial	partitioning	where	an	anyon	

in	 the	dilute	beam	directly	 tunnels	 at	QPC2	 from	Edge2	 to	Edge3	 (Fig.	 2(a)).	This	ubiquitous	partitioning	manifests	

particle	antibunching	[4-6],	regardless	of	whether	the	particle	is	a	boson,	a	fermion	or	an	anyon.	Here	ℱ!"#$%& = 1	as	the	

rate	𝑊(→3	exponentially	dominates	𝑊3→(	at	high	enough	voltage	(𝑒∗𝑉' ≫ 𝑘.𝑇),	in	a	similar	fashion	to	the	partitioning	of	

a	full	beam.	

However,	the	trivial	partitioning	process	of	a	highly	diluted	anyonic	beam	with	a	high	source	voltage	𝑉4	leads	to	only		

a	subdominant	contribution	to	the	observables.	Instead,	a	more	dominant	process,	which	involves	anyon	braiding,	takes	

place	[7,	9].	In	this	process,	which	we	call	time-domain	braiding,	the	anyon	that	tunnels	between	Edge2	and	Edge3	(for	

example,	from	Edge2	to	Edge3)	at	time	𝑡,,	leaving	a	hole	behind	(on	Edge2).	This	anyon	tunnels	back	at	time	𝑡(	and	is	

‘pair-annihilated’	with	the	hole	as	long	as	𝑡( − 𝑡, ≲ ℏ 𝑘.𝑇⁄ ,	where	ℏ	is	the	reduced	Planck	constant.	These	probabilistic	

events	of	the	particle-hole	excitation	and	recombination	form	a	loop	in	the	time-domain.	The	time-domain	loop	of	the	

thermal	anyon	in	QPC2	braids	with	the	anyons	in	the	diluted	beam	that	arrive	at	QPC2	during	the	time	interval	𝑡( − 𝑡,	

(Fig.	2(b)),	thus	gaining	a	braiding	phase	(see	below).	The	time-domain	braiding	dominates	over	the	trivial	partitioning	

as,	according	to	the	CLL	theory,	anyon	tunnelling	at	a	QPC	becomes	suppressed	at	higher	energy.	Within	QPC2,	anyon	

tunneling	for	a	thermal	particle-hole	pair	excitation	(with	energy	approximately	𝑘.𝑇)	happens	much	more	frequently	

than	the	tunneling	of	an	arriving	diluted	anyons	(with	energy	approximately	𝑒∗𝑉' ≫ 𝑘.𝑇,	and	required	for	the	trivial	

partition).	
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Being	fundamental	in	our	experiment,	we	stress	the	time-domain	braiding	process	again.	The	thermal	particle-hole	

excitation	happens	at	QPC2	between	Edge2	and	Edge3	either	before	(at	𝑡,)	or	after	(at	𝑡()	the	arrival	of	the	diluted	anyons	

at	QPC2.	These	two	subprocesses	differ	by	an	exchange	phase,	as	the	spatial	order	of	the	anyons	(the	thermal	particle-

hole	 and	 the	 arriving	 dilute	 anyons)	 on	 Edge2	 differs	 between	 the	 sub-processes	 (Supplementary	 Fig.	 S9).	 The	

interference	between	the	subprocesses	forms	the	time-domain	loop	of	the	thermal	anyons	that	braids	the	diluted	anyons.	

This	braiding	process	leads	to	a	modified	Fano	factor	ℱ!"#$%&	(Methods	and	Supplementary	Note	III),	

	 ℱ!"#$%& = −cot 𝜋𝛿 cot KL
𝜋
2 − 𝜃N

(2𝛿 − 1)O ≈ 3.27,	 (3)	

when	𝑅)*+, ≪ 1.	Here,	δ	is	the	scaling	dimension	of	anyon	tunnelling	at	QPC2,	and	2θ	(≠ 0, 2π)	is	the	braiding	angle.	The	

value	ℱ!"#$%&=3.27	is	obtained	with	the	ideal	𝜈 = 1/3	state,	with	the	corresponding	𝛿 = 1/3	and	𝜃 = 𝜋/3.	

As	measuring	the	excess	autocorrelation	of	a	highly	diluted	beam	is	challenging,	we	developed	a	phenomenological	

theory	for	a	moderately	diluted	beam.	Going	beyond	the	CLL	theory,	the	critical	step	is	the	identification	of	the	average	

braiding	phase	in	the	time-domain	braiding	process	

	 V𝑒(156W
7"89:";#

=X𝑃5

<

5=>

𝑒(156 = 01 − 𝑅)*+, + 𝑅)*+,𝑒(162
<	,	 (4)	

where	𝑘	denotes	the	number	of	anyons	in	the	dilute	beam	which	arrive	at	QPC2	in	the	time	interval	𝑡( − 𝑡,.	The	phase	

term	𝑒(156 	corresponds	 to	 the	 braiding	 phase	 of	 a	 thermally	 excited	 anyon	 with	 each	 of	 the	 arriving	 anyons.	 The	

probability	𝑃5	of	the	k	anyon	event	is	naturally	assumed	to	follow	the	binomial	distribution		𝑃5 =
<!

5!	(<B5)!
(𝑅)*+,)5(1 −

𝑅)*+,)<B5 ,	that	is,	the	probability	for	k	anyons	being	reflected	by	QPC1	with	reflection	probability	𝑅)*+,.	The	maximum	

value	of	k	is	𝑛 = 𝐼'(𝑡( − 𝑡,)/𝑒∗.	The	average	braiding	phase	is	implemented	in	the	calculation	of	ℱ!"#$%&	using	the	ideal	

CLL	parameters	(as	above)	and	integrating	over	the	time	difference	𝑡( − 𝑡,.	As	the	beam	is	less	diluted	(that	is,	fuller),	

the	trivial	partitioning	process	is	also	considered	in	the	above	expression,	although	its	contribution	is	small	(Methods	

and	Supplementary	Note	III).	It	is	note	that	the	average	braiding	phase	is	〈𝑒(156〉7"89:";# = 1	for	fermions	(𝜃	 = 	𝜋)	and	

for	bosons	(𝜃	 = 	0).	

	

Experimental	Results	

We	measured	the	excess	spectral	density	𝑆.	of	the	excess	autocorrelation	for	two	partitioning	cases:	injection	of	a	full	

beam	and	injection	of	a	dilute	beam.	We	first	performed	these	measurements	in	the	integer	regime	(the	outer	edge	mode	

of	 filling	 factor	𝑣 = 3).	 The	 Fano	 factors	 in	 both	 cases	 agree	with	 trivial	 partitioning	ℱ!"#$%& = 1 ,	 with	 the	 expected	

electronic	charge	𝑒∗ = 𝑒	(Supplementary	Note	II).	Similar	measurements	were	performed	at	filling	𝑣 = 1/3.	Injecting	a	

full	beam	led	to	𝑆.	agreeing	with	Eq.	(1)	with	charge	𝑒∗ ≈ 	𝑒/3	(Supplementary	Note	II).	 Injecting	a	dilute	beam,	with	

𝑅)*+,, 𝑅)*+( ≈ 0.1 ≪ 1,	the	experimental	values	of	ℱ!"#$%&	were	found	close	to	ℱ!"#$%& ≈ 	3.27	(Eqs.	(3	and	4)	and	Fig.	3);	

ruling	out	the	trivial	process	(ℱ!"#$%& = 1)	and	substantiating	the	time-domain	braiding	process.	Here	we	utilized	that	𝑆.	

coincides	with	𝑆)*+(	at	large	voltages	(Supplementary	Note	IV).	

In	 Fig.	 4,	 the	 spectral	 density	𝑆. 	of	 the	 autocorrelation	was	measured	with	 varying	dilutions,	𝑅)*+, ,	 and	different	

partitioning,	𝑅)*+(.	With	less	dilution	(‘fuller’	beam),	the	time-domain	braiding	process	gives	rise	to	smaller	ℱ!"#$%&	and	
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the	 trivial	partitioning	contribution	 to	ℱ!"#$%&	is	higher,	albeit	 still	 small.	Notice	 the	excellent	agreement	between	 the	

experimental	 data	 and	 the	 phenomenological	 theory	 over	 a	 wide	 range	 of	𝑉'/𝑇 ,	𝑅)*+, 	and	𝑅)*+( ,	 without	 fitting	

parameters.	 The	 deviation	 of	 the	 data	 from	 the	 theory	 at	 large	𝑉' ,	 compounded	with	 less	 dilution	 (larger	𝑅)*+,),	 is	

probably	due	to	the	variation	of	the	QPC	reflection	with	the	source	voltage	𝑉'	(not	taken	into	account	in	the	theory).	

Time-domain	 braiding	 requires	 coherence	 between	 the	 two	 subprocesses	 [7,	 9].	 The	 agreement	 between	 the	

experimental	data	and	the	theory	with	2𝜃	 = 	2𝜋/3	and	𝛿 = 1/3	in	Figs.	3	and	4	implies	that	the	inter-QPC	distance	of	2	

µm	is	indeed	shorter	than	the	phase	coherence	length,	and	edge	reconstruction	[24]	does	not	take	place.	To	test	this	

assumption,	we	fabricated	a	similar	two-QPC	geometry	with	an	inter-QPC	distance	of	20	µm.	In	this	case,	the	measured	

𝑆.	showed	a	clear	deviation	from	ℱ!"#$%& ≈ 	3.27,	following	the	trivial	formalism	of	Eq.	(1)	for	non-interacting	particles,	

with	𝑅)*+, → 𝑅)*+,𝑅)*+(	[25]	(Fig.	5).	

We	extended	our	study	to	the	 fraction	𝜈 = 2/5	(Supplementary	Note	V).	Partitioning	dilute	anyons	with	𝑒∗ 	= 	𝑒/3	

(the	outermost	edge	mode)	at	QPC2,	we	 find	a	Fano	 factor	 close	 to	ℱ!"#$%& ≈ 	3.27,	which	 supports	 the	 time-domain	

braiding	 with	 2𝜃	 = 	2𝜋/3 	and	 𝛿 = 1/3 	as	 in	 𝜈 = 1/3 .	 However,	 partitioning	 with	 QPC2	 the	 inner	 edge	 mode	

(conductance	𝑒(/15ℎ),	 carrying	 charge	𝑒∗ 	= 	𝑒/5,	we	 found	ℱ!"#$%& ≈ 	1,	which	 is	 in	 our	measurement’s	 uncertainty	

(𝑅)*+, = 0.088,	𝑅)*+( = 0.186).	The	result	is	close	to	the	Fano	factor	corresponding	to	the	trivial	partition	process	(see	

above).	

	

Promise	of	Time-Domain	Braiding	

It	might	be	worthwhile	to	compare	our	two-QPC	configuration	with	a	recent	work	based	on	a	three-QPC	setup	[15].	In	

the	 latter	 work,	 the	 measured	 cross-correlation	 (of	 partitioned	 diluted	 1/3-filling	 beams)	 agreed	 with	 quantum	

calculations	 [9,	19],	 and	was	attributed	 to	 ‘anyon-bunching	by	 collision’	 following	a	 classical	 lattice	model	 [19].	The	

collision	is	a	different	process	from	the	time-domain	braiding,	providing	only	a	subdominant	contribution	to	the	cross-

correlation	(similarly	to	trivial	partitioning)	[9].	In	the	collision	process,	two	diluted	anyons,	injected	from	two	side	QPCs,	

simultaneously	arrive	at	the	central	QPC	and	the	presence	of	one	anyon	alters	the	tunneling	of	the	other	one	(at	the	

central	QPC)	owing	to	anyonic	bunching.	Consequently,	we	tested	our	theory	by	performing	a	three-QPC	experiment	and	

found	 the	 results	 to	 agree	 well	 with	 our	 phenomenological	 approach	 (at	 a	 relatively	 large	𝑅)*+, ),	 supporting	 the	

underlying	physics	of	the	time-domain	anyon	braiding	(Supplementary	Note	VI).	Therefore,	we	believe	that	the	previous	

three-QPC	experimental	results	[15]	should	be	regarded	as	time-domain	braiding	rather	than	anyons	bunching.	We	note	

that	two	recent	experiments	also	support	the	time-domain	braiding	process	[26,	27].	

Here	we	demonstrate	a	relatively	simple	experimental	configuration	 that	 identifies	 the	statistical	phase	of	abelian	

anyons	 in	 the	 FQH	 states.	 Our	 findings	 are	 also	 substantial	 considering	 the	 long-time	 disagreements	 between	

experiments	 (conductance	and	shot	noise)	and	 the	chiral	Luttinger	 theory	 [28].	For	example,	 the	 theoretical	voltage	

dependence	of	reflection	probability	in	a	QPC,	𝑅)*+ ∝ 𝑉(DB(,	has	not	been	confirmed	experimentally	(Supplementary	

Note	II).	As	such,	it	is	worth	examining	the	robustness	of	our	Fano	factor,	ℱ!"#$%&,	with	respect	to	a	variation	in	the	scaling	

dimension	δ.	We	find	that	ℱ!"#$%&	is	expected	to	vary	only	by	10%	throughout	the	range	1/3	 < 	𝛿	 < 	2/3	(Supplementary	

Note	III).	

Although	it	is	natural	to	expect	that	a	highly	diluted	particle	beam,	such	as	photons	or	electrons	[4-6],	exhibits	single-

particle	scattering	at	a	barrier,	our	work	shows	an	exception	to	this	expectation:	impinging	highly	diluted	fractional	QPs	
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undergo	multi-particle	scattering	at	a	QPC	constriction,	as	they	are	topologically	linked	(braided)	with	the	time-domain	

trajectory	of	thermally	excited	anyons	within	the	constriction.	This	feat	is	accomplished	by	a	relatively	simple	two-QPC	

configuration	–	allowing	a	straightforward	identification	of	the	braiding	phase	in	a	considerably	simpler	method	than	

interference	experiments.	Moreover,	our	work	suggests	a	promising	route	towards	observing	the	topological	order	of	

non-abelian	anyons,	such	as	in	the	5/2	filling	in	the	FQH	regime	[9].	
	
	
	
	
	
	
	
	

METHODS	

Theory	of	the	Fano	factor	

In	the	CLL	theory	and	the	equivalent	conformal	field	theory	[9],	the	time-domain	braiding	process	is	described	by	a	non-

equilibrium	 correlator	𝐶8&E(𝑡,, 𝑡()	of	 the	 anyon	 tunnelling	operator	 at	QPC2	 in	 the	presence	of	 a	 dilute	 anyon	beam	

impinging	at	QPC2.	It	is	expressed	as	𝐶8&E(𝑡,, 𝑡() = V𝑒(156W
*9"FF98";8

𝐶&E(𝑡,, 𝑡()	in	the	limit	of	a	highly	diluted	beam,	namely,	

𝑅)*+, ≪ 1,	where	𝐶&E(𝑡,, 𝑡()	is	 the	 equilibrium	correlator	 in	 the	 absence	of	 the	dilute	beam.	Here,	V𝑒(156W*9"FF98";8 =

∑ 𝑄5G
5=> 𝑒(156	is	 the	average	of	 the	braiding	phase	𝑒(156 ,	which	accumulates	when	the	 time-domain	 loop	of	 thermally	

excited	anyons	braids	with	k	anyons	of	the	dilute	beam	arriving	at	QPC2	in	the	time	interval	𝑡( − 𝑡,.	The	probability	𝑄5	

represents	𝑘	random	anyon	injections	from	Edge1	to	Edge2	at	QPC1	(Figs.	1	and	2)	over	the	time	interval	𝑡( − 𝑡,.	For	a	

highly	diluted	beam	the	Poisson	distribution	is	𝑄5 =	 (𝑚5/𝑘!)𝑒BH	,	where	𝑚 = 𝐼)*+,(𝑡( − 𝑡,)/𝑒∗.	

It	is	naturally	expected	that	in	a	less	dilute	(‘fuller’)	beam	(with	a	relatively	large	𝑅)*+,,	yet	small	enough	for	anyon	

tunnelling),	the	distribution	of	anyons	in	the	beam	follows	a	binomial	distribution	rather	than	the	Poissonian	distribution.	

Hence,	 to	describe	 the	cases	of	 less	dilute	beams,	we	replace	 the	multiplicative	 factor	V𝑒(156W
*9"FF98";8

	by	 the	average	

braiding	phase	V𝑒(156W
7"89:";#

,	with	the	latter	averaged	over	the	binomial	distribution	in	Eq.	(4).	Then	the	correlator	is,	

	 𝐶8&E(𝑡,, 𝑡() = 01 − 𝑅)*+, + 𝑅)*+,𝑒(16F"I8(J!BJ")2
K#
L∗|J"BJ!|𝐶&E(𝑡,, 𝑡().	 (5)	

In	 the	 dilute	 limit	 of	𝑅)*+, ≪ 1 ,	 the	 multiplicative	 factor	(1 − 𝑅)*+, + 𝑅)*+,𝑒±(16)
%#
&∗|J"BJ!| 	is	 reduced	 to	 the	 factor	

𝑒B(,BL
±!())

%*+,"
&∗ |J"BJ!| 	found	 in	 a	 previous	 work	 [9].	 Employing	 𝐶8&E(𝑡,, 𝑡() 	with	 an	 integral	 over	 𝑡( − 𝑡, ,	 it	 is	

straightforward	to	compute	the	rates	of	anyon	tunnelling	(back	and	forth)	at	QPC2	in	the	time-domain	braiding	process.	

At	zero	temperature	and	𝑅)*+( ≪ 1,	we	get	

𝑊(→3
7O;"! ∝ Re 3𝑒1PD L− log L1 + 𝑅)*+,0𝑒B1(6 − 12NN

(DB,
<,	

	𝑊3→(
7O;"! ∝ Re 3𝑒1PD L− log L1 + 𝑅)*+,0𝑒1(6 − 12NN

(DB,
<,		

(6)	
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with	the	full	expressions	given	in	Supplementary	Note	III.	In	contrast	to	the	trivial	process	where	𝑊3→(
	 	is	exponentially	

suppressed	 in	 comparison	 with	𝑊(→3
	 ,	 both	𝑊(→3

7O;"! 	and	𝑊3→(
7O;"! 	are	 non-negligible	 in	 the	 time-domain	 braiding.	 The	

appearance	of	 the	 combination	 (e±i2θ	−1)	 in	Eq.	 (6)	 implies	 that	 the	 rates	𝑊(→3
7O;"! 	and	𝑊3→(

7O;"! 	vanish,	 and	 thus	do	not	

contributing	to	the	tunnelling	currents	and	noise	at	QPC2	in	the	cases	of	fermions	(θ	=	π)	or	bosons	(θ	=	0).	Hence	the	

time-domain	braiding	does	not	exist	with	fermions	or	bosons,	but	only	with	anyons	[29-32].	

When	the	time-domain	braiding	process	dominates	over	other	processes,	the	Fano	factor	is	written	as	

	 ℱ!"#$%& =
Q!→.
/0123RQ.→!

/0123

Q!→.
/0123BQ.→!

/0123 = −cot 𝜋𝛿
S&TUB #9IU,RV*+,"WL4(!)B,XYY

!54"
Z

[:TUB #9IU,RV*+,"WL4(!)B,XYY
!54"

Z
	.	 (7)	

In	the	dilute	limit	of	𝑅)*+, ≪ 1,	we	find	ℱ!"#$%& →	−cot𝜋𝛿
S&[(,BL4(!))!54"]
[:[(,BL4(!))!54"]

		as	in	Eq.	(3).	That	zero-temperature	value	of	

ℱ!"#$%&	of	the	two-QPC	set-up	corresponds	to	the	Fano	factor	of	the	cross-correlation	of	a	three-QPC	set-up	predicted	in	

Ref.	[9,	19].	As	the	beam	becomes	less	dilute	(‘fuller’),	the	trivial	partitioning	process	contributes	more	to	the	rates	of	

𝑊(→3
%O"^	and	𝑊3→(

%O"^	(Supplementary	Note	III).	Then	the	Fano	factor	ℱ!"#$%&	is	obtained	according	to	all	the	rates	accounted	

for	 all	 the	processes,	𝑊(→3 = 𝑊(→3
7O;"! +𝑊(→3

%O"^ 	and	𝑊3→( = 𝑊3→(
7O;"! +𝑊3→(

%O"^ ,	with	 the	experimentally	measured	𝑅)*+, 	as	

input	of	the	calculation.	We	note	that	𝑊(→3
%O"^	and	𝑊3→(

%O"^	are	not	negligible	but	much	smaller	than	𝑊(→3
7O;"!	and	𝑊3→(

7O;"!	for	the	

values	of	𝑅)*+,	studied	in	our	experiments.		

It	should	be	noted	that	partitioning	a	non-diluted	beam	can	provide	an	anyonic	signature	through	a	different	process	

from	our	partitioning	a	strongly	diluted	beam	[33].	

	

Obtaining	𝑺𝐐𝐏𝐂𝟏	in	a	two-QPC	configuration	

While	performing	the	two-QPC	measurements,	the	noise	generated	by	QPC1	(𝑆)*+,)	is	not	directly	accessible	(owing	to	

the	locations	of	the	amplifiers).	However,	current	conservation	can	be	used	to	relate	𝑆)*+,	to	the	correlations	measured	

in	the	experiment.	By	current	conservation	in	QPC2,	

𝐼)*+, = 𝐼)*+(- + 𝐼)*+(	. ,	

where	𝐼)*+,	is	the	dilute	current	generated	by	QPC1	and	𝐼)*+(
-/. 	is	the	output	current	of	QPC2	that	reaches	amplifier	A/B	

(Fig	1(a)).	The	same	relation	also	holds	for	the	averages	

〈𝐼)*+,〉 = 〈𝐼)*+(- 〉 + 〈𝐼)*+(. 〉.	

Subtracting	these	two	equations	and	taking	the	square	we	arrive	at	a	relation	between	the	current	correlations	

𝑆)*+, = 𝑆- + 𝑆. + 2𝑆-.,	

which	allows	us	to	obtain		𝑆)*+,	by	summing	the	autocorrelations	(𝑆-	and	𝑆.)	and	the	cross-correlation	(𝑆-.)	measured	

in	the	experiment.	
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Figure	1.		Partitioning	diluted	anyons	in	a	two-QPC	geometry.	(a)	The	experimental	set-up.	False-colour	SEM	image	

with	edge	modes.	The	metallic	gates	of	the	QPC	are	coloured	yellow.	The	ohmic	contacts	are	more	than	100	µm	away	

from	the	core	structure.	The	source	current	propagates	along	Edge1	and	is	diluted	by	QPC1	with	RQPC1.	The	diluted	beam	

reaches	QPC2	fabricated	2	µm	away	along	Edge2.	Partitioning	takes	place	in	QPC2	with	back	reflection	along	Edge3.	The	

two	amplifiers	measure	 the	 excess	 autocorrelations	 and	 the	 cross-correlation.	 (b)	 The	 spectral	 density	 of	 the	noise	

generated	by	QPC1,	with	charge	𝒆∗ = 𝒆/𝟑	(blue	dots	–	data;	yellow	dashed	line	-	expected).	It	is	obtained	by	a	summation	

of	the	autocorrelations	and	cross-correlation	of	the	current	fluctuation	in	QPC2	diluted	by	QPC1	(Methods).	Using	this	

method,	the	injected	QP	charge	towards	QPC2	was	found	to	be	𝒆/𝟑.	The	experimental	parameters	are	shown	on	the	top	

left	(detail	in	Supplementary	Note	II).	The	expected	shot	noise	for	a	charge	𝒆∗ = 𝒆	is	shown	for	comparison	(red	dashed	

line).	
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Figure	2.		Trivial	and	braiding	partitioning	processes	in	QPC2.	(a)	Trivial	partitioning:	QPC1	dilutes	the	incoming	

beam	by	reflection	RQPC1	(red	wavepackets),	which	is	partitioned	further	in	QPC2	by	𝑹𝐐𝐏𝐂𝟐.	Shot	noise	is	proportional	to	

𝑹𝐐𝐏𝐂𝟏𝑹𝐐𝐏𝐂𝟐 .	 (b)	 Time-domain	 braiding:	 QPC1	 dilutes	 the	 incoming	 beam	 by	 reflection	𝑹𝐐𝐏𝐂𝟏 	(red	wavepackets).	 A	

thermally	activated	particle-like	anyon,	depicted	by	a	blue	wavepacket,	(leaving	a	hole,	a	white	wavepacket)	tunnels	

within	QPC2	(blue	arrow	from	one	edge	mode	to	another)	at	time	𝒕𝟏.	The	diluted	anyon	arrived	(with	probability	𝑹𝐐𝐏𝐂𝟏).	

The	particle-anyon	tunnels	back	at	a	later	time	𝒕𝟐	(blue	dashed	arrows),	thus	braiding	the	arriving	diluted	anyon	during	

the	interval	time	𝒕𝟐 − 𝒕𝟏.	
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Figure	3.	 	Excess	 autocorrelation	noise	 as	measured	 at	 amplifier	B	 (see	 Fig.	 1a).	 A	 diluted	 beam	of	 anyons	 is	

generated	by	reflection	from	QPC1	with	probability	𝑅)*+, = 0.112.	The	dilute	beam	impinges	on	QPC2	with	𝑅)*+( =

0.115,	creating	excess	autocorrelation	(shot	noise),	shown	by	the	blue	dots.	The	yellow	dashed	line	corresponds	to	the	

prediction	 of	 the	 phenomenological	model	 given	 by	Eq.(2),	where	ℱdilute	 	is	 calculated	 based	 on	 the	measured	𝑅QPC1	

(Supplementary	Note	II	and	III).	The	black	dotted	line	corresponds	to	the	time-domain	braiding	process	that	dominates	

over	 the	 trivial	 process,	 with	 the	 Fano	 factor	ℱdilute	 = 3.27 	(in	 the	 dilute	 limit	𝑅)*+, ≪ 1).	 The	 black	 dashed	 line	

corresponds	to	ℱdilute	 = 1,	namely,	the	predicted	noise	of	trivial	partitioning	in	QPC2.	
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Figure	4.	 	The	dependence	of	the	autocorrelation	(amplifier	B,	Fig.	1a)	on	beam	dilution	(RQPC1)	and	on	𝑹𝐐𝐏𝐂𝟐.	

(a)-(d)	From	more	to	less	dilution	via	𝑅)*+,,	with	(a)	𝑅)*+, = 0.117,	(b)	𝑅)*+, = 0.192,	(c)	𝑅)*+, = 0.297,	(d)	𝑅)*+, =

0.358;	excess	autocorrelation	(shot	noise,	blue	dots)	in	the	two-QPC	configuration	for	different	values	of	beam	dilution.	

The	yellow	dashed	lines	are	the	theoretical	predictions	according	to	the	phenomenological	theory	of	Eq.	(2).	The	black	

dashed	lines	are	for	the	trivial	process.	The	black	dotted	lines	are	for	the	dilute	limit	where	the	primary	contribution	to	

the	noise	results	from	the	time-domain	braiding	process.	The	data	are	in	a	good	agreement	with	the	theory	over	a	wide	

range	of	parameters.	As	predicted	by	Eq.	(3),	a	higher	dilution	(smaller	𝑅)*+,)	minimizes	the	contribution	of	the	trivial	

partitioning	to	the	data,	allowing	the	Fano	factor	of	the	autocorrelation	to	reach	ℱdilute	 = 3.27.	See	also	Supplementary	

Fig.	S5. 
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Figure	5.		Two-QPC	configuration	with	an	inter-QPC	distance	of	20µm.	(a)	Scanning	electron	microscope	image	of	

the	experimental	set-up.	The	gates	are	marked	in	yellow.	The	2-µm	QPC	separation	structure	is	shown	(for	comparison)	

in	the	white-bordered	inset.	(b)	The	blue	dots	are	the	measured	excess	autocorrelation	with	dilution	of	𝑹𝐐𝐏𝐂𝟏 = 𝟎. 𝟐𝟔𝟏	

and	𝑹𝐐𝐏𝐂𝟐 = 𝟎. 𝟏𝟕𝟔.	The	measurement	results	agree	with	the	trivial	model	(that	is,	integer	filling	factor)	in	Eq.	(1)	with	

𝑹𝐐𝐏𝐂𝟏 → 𝑹𝐐𝐏𝐂𝟏𝑹𝐐𝐏𝐂𝟐,	suggesting	energy	loss	and	dephasing	due	to	the	long	propagation	distance.	The	black	dotted	line	

is	the	ideal	anyonic	behavior	with	Fano	Factor	𝓕𝐝𝐢𝐥𝐮𝐭𝐞	 = 𝟑.𝟐𝟕.	
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2	
SI.	EXPERIMENTAL	SETUP	DETAILS	

We	employ	a	high	mobility	GaAs-AlGaAs	heterostructure	that	supports	a	two-dimensional	electron	gas	(2DEG)	125	
nm	below	the	surface.	The	2DEG	has	an	electron	density	of	9.2	×	1010	cm−2	and	low	temperature	(4.2kelvin)	dark	mobility	
of	3.9	×	106	cm2V−1s−1.	Our	experimental	setup	is	shown	in	Fig.	S1.	Three	Quantum	Point	Contacts	(QPCs)	were	patterned	
in	close	proximity	and	served	as	beam-splitters,	and	ohmic	contacts	were	used	as	Sources	and	Drains.	In	the	two-QPC	
setup,	QPC1	dilutes	the	DC	current	𝐼!	that	is	injected	from	source	contact	S1.	The	diluted	reflected	part	of	the	current	is	
then	partitioned	by	QPC2.	 In	 the	 three-QPC	setup,	another	source	contact	S2	 is	biased	and	 injects	DC	current	 to	 the	
sample.	The	current	from	S2	is	diluted	by	QPC3,	and	then	injected	towards	QPC2.	In	both	setups,	the	auto-correlation	
(AC),	shot	noise	of	each	output	beam,	as	well	as	the	cross-correlation	(CC)	between	the	two	outputs,	are	measured	at	a	
frequency	of	730kHz	(set	by	two	separated	the	LC	circuits).	Each	signal	was	amplified	by	a	home-made	preamplifier	
cooled	to	4.2	K,	which	was	followed	by	a	room	temperature	amplifier.	The	output	of	the	amplification	chain	was	fed	into	
a	home-made	analog	cross-correlator	circuit,	which	can	multiplies	each	signal	with	itself	(AC),	or	with	a	second	signal	
(CC).	The	output	voltage	from	the	analog	cross-correlator	was	measured	by	a	digital	multimeter.	In	order	to	calibrate	
the	auto-correlation	and	cross-correlation	measurements,	we	measured	the	shot	noise	(AC)	of	a	full	beam	at	an	integer	
filling	 factor	 (outer − most	edge	mode	at	𝜈 = 3).	This	was	performed	by	 fully	pinching	QPC1	while	 source	 contact	 is	
biased,	such	that	only	the	QPC2	partitioned	the	beam.	Comparing	the	auto-correlations	and	cross-correlations	with	Eq.	
(1)	(in	the	text)	allowed	us	to	calibrate	our	system.	In	addition,	we	repeated	this	measurement	at	𝜈 = 1/3,	and	made	
sure	that	both	auto-correlations	and	the	cross	correlations	leads	to	the	correct	fractional	charge	based	on	Eq.	(1).	

	

FIG.	S1:	‘Two-QPC’	and	‘three-QPC’	configurations.	(a)	A	full	beam	is	injected	from	source	contact	S1	and	propagates	along	Edge1.	
The	current	is	diluted	by	QPC1,	the	reflected	part	continues	along	Edge	2	and	is	partitioned	by	QPC2.	(b)	A	second	source	(S2)	is	used	
to	inject	a	full	beam	to	QPC3,	which	is	tuned	such	that	it	has	the	same	tunneling	probability	as	QPC1.	The	reflected	current	from	QPC3	
reaches	the	second	input	of	QPC2.	In	both	cases,	the	auto-correlation	noise	in	each	output	beam	is	measured	together	with	the	cross-
correlation	between	them.	
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SII.		SUPPLEMENTARY	DATA	

A. Noise	of	a	full	beam	impinging	on	QPC2	

Here	we	compare	the	situation	in	which	a	dilute	beam	is	injected	to	QPC2	(Fig.	3	in	the	main	text)	to	that	of	a	full	beam	
injection.	For	this	purpose,	we	utilized	a	second	source	contact	[S2	contact	in	Fig.	S1]	to	inject	a	full	beam	to	QPC2,	while	
QPC3	was	fully	pinched.	QPC1	and	QPC2	were	held	fixed	at	the	same	reflection	used	in	the	measurement	of	the	dilute	
beam	 noise.	 As	 shown	 in	 Fig.	 S2,	 the	 noise	 follows	 Eq.(1)	 of	 the	main	 text	with	 charge	𝑒∗@	𝑒/3.	 This	measurement	
emphasizes	the	remarkable	difference	between	a	full	beam	injection	to	a	QPC	and	the	dilute	injection.	In	the	former	as	
Fig.	S2,	the	Fano	factor	is	sensitive	only	to	the	partitioned	charge	dominated	by	the	trivial	partitioning.	In	the	latter	as	
Fig.	3	in	the	main	paper,	the	time-domain	braiding	takes	over	and	the	Fano	factor	becomes	dependent	on	the	braiding	
phase	of	anyons.	

	
FIG.	S2:	Noise	of	a	full	beam	partitioned	at	QPC2.	A	full	beam	is	injected	to	QPC2	by	biasing	S2	and	fully	pinching	QPC3.	QPC1	and	
QPC2	were	held	at	the	same	condition	used	to	measure	the	noise	of	a	dilute	beam	(RQPC2=0.194).	The	AC	noise	at	the	two	amplifiers	
(blue	dots)	is	plotted	together	with	the	prediction	of	Eq.	(1).	The	yellow	dashed	line	is	the	expected	noise	with	charge		𝑒∗ = 𝑒/3	,	while	
the	 red	 dashed	 line	 shows	 the	 expected	 noise	 for	 𝑒∗ = 𝑒 	for	 comparison.	 The	 data	 is	 in	 very	 good	 agreement	 with	 Eq.	 (1),	
demonstrating	that	the	noise	of	a	full	beam	is	only	sensitive	to	the	charge	of	the	partitioned	particles.	This	should	be	contrasted	with	
the	 noise	 of	 a	 dilute	 beam,	 shown	 in	 the	 main	 paper,	 where	 the	 Fano	 factor	 becomes	 a	 probe	 of	 the	 statistical	 phase	 due	 to	
contributions	from	the	time-domain	braiding	process.	
	

B. Two-QPC	experiment	in	the	IQH	of	filling	factor	3	

We	performed	the	two-QPC	experiment	in	the	integer	quantum	Hall	(IQH)	regime,	using	the	outer	edge	mode	of	filling	
factor	3.	The	condition	is	simpler	(more	ideal)	to	calculate	because	the	DC	bias	dependency	of	the	reflection	probability	
is	flat	compared	to	other	edge	modes.	In	this	regime,	due	to	the	trivial	braiding	phase	of	fermions,	only	the	trivial	partition	
process	 is	 expected	 to	 contribute	 to	 the	 noise,	 leading	 to	ℱ#$%&'( = 1 .	 In	 Fig.	 S3,	 we	 compare	 the	 measured	 auto-
correlation	noise	at	amplifier	A	and	B	with	Eq.(1)	(dashed	lines	in	Fig.	S3),	with	the	electronic	charge	𝑒∗ = 𝑒	and	𝑅)*+,	
replaced	 by	 the	 total	 probability	 to	 reach	 the	 amplifier	 such	 that	 for	 amplifier	 A,	 namely,	𝑅)*+, 	is	 replaced	 by	
𝑅)*+,:1 − 𝑅)*+-;,	while	 for	 amplifier	B,	𝑅)*+, 	is	 replaced	by	𝑅)*+,𝑅)*+- .	 The	 theoretically	 expected	 values	 and	 the	
measurement	results	are	in	very	good	agreement,	supporting	that	only	the	trivial	partition	process	happens	in	the	IQH.	
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FIG.	S3:	Excess	auto-correlation	noise	in	the	two-QPC	geometry	at	an	integer	filling	factor	(𝝂 = 𝟑).	The	upper	panel	shows	the	
reflection	probability	of	QPC1	and	QPC2.	In	the	lower	panel,	the	red	and	blue	dots	are	the	measured	the	AC	noises	at	the	two	amplifiers.	
The	 red	 dashed	 line	 is	 the	 noise	 expected	 by	 Eq.	 (1),	with	 the	 electronic	 charge	𝑒∗ = 𝑒 		 and	𝑅"#$% 	is	 replaced	 by	 the	 combined	
probability	to	reach	amplifier	A,	which	is	𝑅"#$%(1 − 𝑅"#$&+.	Similarly,	the	blue	dashed	line	is	the	expected	noise	at	amplifier	B	with	
𝑒∗ = 𝑒	and	𝑅"#$% → 𝑅"#$%𝑅'()&.	The	agreement	with	the	expected	noise	indicates	that	there	is	no	additional	contribution	to	the	noise	
apart	from	the	contribution	of	the	trivial	partitioning.	

	

C. Bias	dependence	of	the	reflection	

In	the	main	text,	each	noise	measurement	is	shown	along	with	the	value	of	the	reflection	probability	of	each	of	the	
relevant	QPCs	averaged	over	the	bias	range.	Here,	we	show	the	full	bias	dependence	of	the	reflection	probabilities	which	
was	used	in	generating	the	theoretical	curves	shown	in	the	main	text.	Each	panel	of	Fig.	S4	shows	the	measured	reflection	
probability	for	QPC1	(𝑅"#$%)	and	QPC2	(𝑅"#$&)	and	corresponds	to	one	of	the	noise	measurement	presented	in	the	main	
text.	The	corresponding	noise	measurement	in	the	main	text	is	written	in	the	inset	of	each	of	the	sub-figures.	Figures	S4	
(a)	to	(e)	measured	at	45	mK	and	Figure	S4	(f)	measured	at	12	mK.	
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FIG.	S4:	Bias	dependence	of	 the	reflection	probability.	Each	of	 the	panels	(a)-(f)	 shows	the	 full	bias	dependence	of	reflection	
probability	measurement	 results	 for	𝑅"#$% 	(green	dots)	 and	𝑅"#$&	(purple	 dots).	 Each	 panel	 corresponds	 to	 noise	measurement	
results	in	the	main	text:	(a)	corresponds	to	Fig.	1(b)	and	Fig.	3,	(b)	to	Fig.	4(a),	(c)	to	Fig.	4(b),	(d)	to	Fig.	4(c),	(e)	to	Fig.	4(d),	and	(f)	
to	Fig.	5(b).	

	

D. Fitting	of	the	exchange	phase	𝜽	

In	Figs.	3	&	4	of	the	main	text,	the	data	is	shown	alongside	the	prediction	of	the	phenomenological	model	for	the	ideal	
𝜈 = 1/3	case,	with	𝛿 = 1/3	and	𝜃 = 𝜋/3.	 In	this	sub-section,	we	show	the	results	of	fitting	the	data	to	the	theoretical	
prediction	of	the	phenomenological	model,	with	𝜃	as	a	fitting	parameter	and	𝛿 = 1/3.	We	used	Eq.	(2)	together	with	the	
ℱ#$%&'(	of	the	Eq.	(7)	 in	the	main	text,	which	means	that	we	omit	the	contribution	of	the	trivial	partition	process	and	
employ	 the	 zero-temperature	 value	 of	ℱ#$%&'( 	for	 simplicity	 [see	 Supplementary	 Note	 SIII	 for	 the	 trivial	 process’	
contribution	and	the	temperature	dependence].	In	Fig.	S5(a),	we	plotted	the	best	fitted	𝜃	together	with	95%	confidence	
intervals	 as	 a	 function	of	 the	 averaged	beam	dilution	𝑅)*+, .	 The	uncertainty	of	 each	point	 results	 from	a	 statistical	
uncertainty	involved	in	measuring	noise	and	a	systematic	uncertainty	coming	from	the	calibration	process.		
For	the	most	dilute	case	[corresponding	to	Fig.	3]	we	find	𝜃 = 0.982 ± 0.074,	and	the	corresponding	fitting	curve	is	
shown	in	Fig.	S5(b).	The	fitted	value	of	𝜃	deviates	more	from	the	ideal	value	of	𝜋/3	for	the	less	dilute	beams.	It	is	partially	
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because	we	did	not	include	the	trivial	partition	process	in	the	fitting	[the	contribution	from	the	trivial	partition	process	
becomes	larger	for	a	less	dilute	beam;	see	Eq.	(S11)].	Also,	the	distortion	of	the	QPC	potential	at	the	large	voltage	would	
be	more	severe	for	a	less	diluted	beam.	

	
FIG.	S5:	Fitting	of	exchange	phase	𝜽.	(a)	The	result	of	fitting	the	data	to	the	phenomenological	model	of	Eq.	(2)	and	Eq.	(7)	in	the	
main	text,	with	𝜃	as	the	fitting	parameter	and	𝛿 = 1/3	(blue	dots),	is	plotted	against	the	averaged	𝑅"#$%.	From	the	most	dilute	to	the	
least	dilute	case,	each	data	point	corresponds	to	Fig.	3	&	Fig.	4(a-d)	respectively.	The	theoretical	value	of	𝜃 = 𝜋/3	is	indicated	by	the	
yellow	dashed	line.	(b)	The	curve	with	the	best	fitted	value	of	𝜃	(red	dashed	line)	is	shown	with	the	experimental	data	(blue	dots)	for	
the	most	dilute	case,	corresponding	to	Fig.	3.	For	comparison,	the	theoretical	curve	with	the	ideal	value	of	𝜃 = 𝜋/3(yellow	dashed	line)	
is	shown	together.	Note	that	the	curve	is	slightly	different	from	the	one	in	Fig.	3,	as	we	here	do	not	include	the	contribution	of	the	
trivial	partition	process	and	the	finite	temperature	effects	to	ℱ*+,-./.	
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SIII.	THEORY	OF	THE	ANOMALOUS	PARTITION	NOISE	

 A.	 Fano	factor	ℱ#$%&'(	

We	 provide	 the	 theory	 of	 the	 Fano	 factor	ℱ#$%&'( 	at	 sufficiently	 small	𝑅)*+- 	and	𝑒∗𝑉! ≫ 𝑘.𝑇 .	 In	Ref.	 [S1],	 the	 non-
equilibrium	correlator	of	anyon	tunneling	at	QPC2	was	derived	for	the	dilute	limit	of	𝑅)*+, ≪ 1. 
We	 first	 restate	 the	 result	 for	 Abelian	 anyons	 [S1].	 The	 tunneling	 operator	 at	 QPC2	 is	 expressed	 as	𝒯(𝑡) =

𝛾-𝜓/
†(0, 𝑡)𝜓-(0, 𝑡),	where	𝜓0(𝑥, 𝑡)	is	 the	 anyon	 annihilation	 operator	 on	Edgei	at	 position	𝑥 	and	 time	𝑡 ,	 and	𝛾- 	is	 the	

tunneling	strength	at	QPC2.	For	simplicity,	the	position	of	QPC2	is	chosen	as	𝑥 = 0	on	both	Edge2	and	Edge3.	The	non-
equilibrium	correlator	of	the	tunneling	operator	𝐶1(2(𝑡,, 𝑡-) ≡ 〈𝒯(𝑡,)𝒯3(𝑡-)〉1(2	in	the	presence	of	the	dilute	anyon	beam	
is	related	to	the	equilibrium	correlator	𝐶(2(𝑡,, 𝑡-) ≡ 〈𝒯(𝑡,)𝒯3(𝑡-)〉(2	in	the	absence	of	the	beam,	
	

𝐶1(2(𝑡,, 𝑡-) = 𝑒4
5!"#$
6∗ 76&'()*+,(.'/.$)4,8|:'4:$|𝐶(2(𝑡,, 𝑡-) + subleading	terms.	 (S1)	

This	was	derived	with	the	firm	theoretical	ground	based	on	the	conformal	field	theory	or	the	bosonization	(the	chiral	
Luttinger	 liquid	 (CLL)	 theory)	 for	FQH	edge	 channels,	 combined	with	 the	Keldysh	perturbation	 theory	 for	 arbitrary	
orders	of	anyon	tunneling	at	QPC1.		
The	multiplicative	factor,	the	non-equilibrium	part	of	the	expression	of	𝐶1(2(𝑡,, 𝑡-),	is	a	consequence	of	time-domain	

anyon	braiding.	We	found	that	the	factor	equals	the	average	of	 the	braiding	phase	𝑒-0;< 	accumulated	when	the	time-
domain	loop	of	a	thermally	excited	anyon	braids	with	k	anyons	of	the	dilute	beam	arriving	at	QPC2	in	the	time	interval	
𝑡- − 𝑡,	(≫ ℎ/𝑒∗V!),	

〈𝑒-0;<〉*=$>>=1$?1 =]𝑄;𝑒-0;<
@

;AB

= 𝑒4
5!"#$
6∗ 76'&(4,8(:'4:$).	 (S2)	

The	probability	𝑄; 	of	the	event	of	k	anyons	arriving	at	QPC2	in	the	interval	𝑡- − 𝑡,	follows	the	Poissonian	distribution	

𝑄; =
E1

;!
𝑒4E,	and	𝑚 = 𝐼)*+,(𝑡- − 𝑡,)/𝑒∗	is	the	average	number	of	anyons	arriving	at	QPC2	in	the	interval	𝑡- − 𝑡,.	The	

Poisson	distribution	is	natural,	since	anyons	of	the	dilute	beam	is	generated	by	tunneling	from	Edge1	to	Edge2	at	QPC1	
in	the	regime	of	𝑅)*+, ≪ 1.	
For	a	less	dilute	beam	with	relatively	large	𝑅)*+,,	yet	small	enough	for	the	anyon	tunneling,	it	is	natural	to	expect	that	

the	time	distribution	of	anyons	of	the	beam	follows	a	binomial	distribution,	instead	of	the	Poissonian	distribution.	Hence,	
in	 our	 phenomenological	 theory,	we	 replace	 the	multiplicative	 factor	〈𝑒-0;<〉*=$>>=1$?1 	by	 the	 average	 braiding	 phase	
〈𝑒-0;<〉G$1=H$?%	over	the	binomial	distribution	𝑃;	of	the	number	k,	

〈𝑒-0;<〉G$1=H$?% =]𝑃;𝑒-0;<
I

;AB

= :1 − 𝑅)*+, + 𝑅)*+,𝑒-0<;
52(:'4:$) 6∗⁄

	 (S3)	

where	𝑃; =
I!

;!(I4;)!
𝑅)*+,; :1 − 𝑅)*+,;

I4; ,	and	𝑛 = 𝐼!(𝑡- − 𝑡,)/𝑒∗	is	the	number	of	anyons	impinging	at	QPC1	on	Edge1	in	
the	time	interval	𝑡- − 𝑡,	(≫ ℎ/𝑒∗V!).	Using	the	factor,	we	write	the	non-equilibrium	correlator,	

𝐶1(2(𝑡,, 𝑡-) = :1 − 𝑅)*+, + 𝑅)*+,𝑒-0< >$K1(:'4:$);
52|:'4:$| 6∗⁄

𝐶(2(𝑡,, 𝑡-) + subleading	terms.	 (S4)	

This	 expression	 is	 also	 applicable	 to	 the	 case	 of	𝑡- < 𝑡, ,	 in	which	 the	 braiding	 direction	 of	 the	 time-domain	 loop	 is	
opposite	to	the	𝑡- > 𝑡, 	case.	Eq.	(S4)	reduces	to	the	previous	results	of	Eq.	(S1)	for	𝑅)*+, ≪ 1.	This	equation	is	valid	for	
the	 long	 time	regime	|𝑡- − 𝑡,| ≫ ℎ/𝑒∗V! ,	where	 the	spatial	width	of	 the	wave	packet	of	anyons	 in	 the	dilute	beam	 is	
sufficiently	narrow	so	that	the	time-domain	braiding	is	well-defined.	The	sub-leading	terms	describe	the	trivial	partition	
process	and	become	important	in	the	short	time	regime	of	|𝑡- − 𝑡,| ≃ ℎ/𝑒∗V!.	

Once	the	non-equilibrium	correlator	is	obtained,	it	is	straightforward	to	calculate	the	tunneling	rates	𝑊-→/ 	and	𝑊/→-,	
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𝑊-→/ = g 𝑑𝑡〈𝒯3(0)𝒯(𝑡)〉1(2
@

4@
	,					𝑊/→- = g 𝑑𝑡〈𝒯(𝑡)𝒯3(0)〉1(2

@

4@
	.	 (S5)	

We	first	compute	the	contribution	from	the	long	time	|𝑡- − 𝑡,| ≫ ℎ/𝑒∗V!	described	by	the	time-domain	braiding	process,		

𝑊-→/
GM?$# = 2

|𝛾-|-

ℏ- Γ(1 − 2𝛿)Re l𝑒0NO m−
𝐼!
𝑒∗ log n1 + 𝑅)*+,:𝑒

4-0< − 1;op
-O4,

q	 ,	

𝑊/→-
GM?$# = 2

|𝛾-|-

ℏ- Γ(1 − 2𝛿)Re l𝑒0NO m−
𝐼!
𝑒∗ log n1 + 𝑅)*+,:𝑒

-0< − 1;op
-O4,

q	.	
(S6)	

Note	that	the	only	difference	between	the	two	rates	is	the	braiding	phase	factor,	e4-0< ↔ 𝑒-0< .	This	is	explained	by	the	
fact	that	the	the	braiding	direction	of	the	time-domain	loop	is	opposite	between	the	processes	of	the	two	rates,	particle	
tunneling	from	Edge2	to	Edge3	for	𝑊-→/

GM?$#	and	hole	tunneling	from	Edge2	to	Edge3	for	𝑊/→-
GM?$# 	.	The	time-domain	braiding	

process	 contributes	 to	 the	 tunneling	 current	 and	 noise	 across	 QPC2	 as	 𝐼)*+-GM?$# = 𝑒∗:𝑊-→/
GM?$# −𝑊/→-

GM?$#; 	and	𝑆)*+-GM?$# =
2(𝑒∗)-:𝑊-→/

GM?$# +𝑊/→-
GM?$#;,	

𝐼)*+-GM?$# = −4
𝑒∗

ℏ-
|𝛾-|-Γ(1 − 2𝛿) sin 𝜋𝛿 Im lm−

𝐼!
𝑒∗ log n1 + 𝑅)*+,:𝑒

4-0< − 1;op
-O4,

q	 ,	

𝑆)*+-GM?$# = 8
𝑒∗-

ℏ-
|𝛾-|-Γ(1 − 2𝛿) cos 𝜋𝛿 Re lm−

𝐼!
𝑒∗ log n1 + 𝑅)*+,:𝑒

4-0< − 1;op
-O4,

q	.	
(S7)	

If	only	the	time-domain	braiding	determines	the	current	and	noise,	the	Fano	factor	ℱ#$%&'(	is	written	as,	

ℱ#$%&'(≃
𝑆)*+-GM?$#

2𝑒∗𝐼)*+-GM?$# = −cot 𝜋𝛿
Re vn− log n1 + 𝑅)*+,:𝑒4-0< − 1;oo

-O4,
w

Im vn− log n1 + 𝑅)*+,(𝑒4-0< − 1)oo
-O4,

w
	.	 (S8)	

The	dependence	of	ℱ#$%&'( 	on	the	diluteness	𝑅)*+, 	is	plotted	as	the	blue	curve	in	Fig.	S6.	The	Fano	factor	approaches	to	
ℱ#$%&'( ≃ 3.27	in	the	Poissonian	limit	𝑅)*+, ≪ 1,	and	decreases	as	the	beam	becomes	less	dilute.	

	

	
FIG.	S6:	Dependence	of	Fano	factor	𝓕𝐝𝐢𝐥𝐮𝐭𝐞	on	the	diluteness	𝑹𝐐𝐏𝐂𝟏.	The	blue	curve	shows	the	Fano	factor	computed	only	with	the	
time-domain	braiding	process,	while	the	red	curve	shows	the	Fano	factor	contributed	from	both	the	time-domain	braiding	process	
and	the	trivial	partition	process.	
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There	is	also	the	trivial	partition	process,	in	which	an	anyon	of	the	dilute	beam	directly	tunnels	at	QPC2.	This	process	

occurs	with	the	short	time	of	|𝑡- − 𝑡,| ≃ ℎ/𝑒∗V!.	It	is	sub-dominant	in	contributing	to	the	current	and	noise	at	QPC2,	
and	described	by	the	sub-leading	terms	in	Eq.	(S1)	and	Eq.	(S4),	

the	sub-leading	terms	of	Eq.	(S1)	and	Eq.	(S4)	≃
𝑒
𝑒∗
Γ(2𝛿)
Γ(𝛿)- 𝑅)*+,𝑒

406∗P2(:$4:')/ℏ𝐶(2(𝑡,, 𝑡-)	.	 (S9)	

Using	this,	the	contribution	of	the	trivial	partition	process	to	the	current	and	noise	at	QPC2	is	obtained,	

𝐼)*+-'M$S$?% = 𝑒∗𝑊-→/
'M$S$?% = 𝑅)*+, ×

2𝜋𝑒|𝛾-|-

ℏ-Γ(𝛿)- m
2𝜋𝐼!
𝑒 p

-O4,

	,					𝑆)*+-'M$S$?% = 2𝑒∗𝐼)*+-'M$S$?%	.	 (S10)	

For	the	dilute	limit	𝑅)*+, ≪ 1,	the	contribution	of	the	trivial	process	is	sub-dominant	compared	to	that	of	the	braiding	
process,		

contribution	of	the	trivial	partition
contribution	of	the	time-domain	braiding ∝ 𝑅)*+,

-4-T .	 (S11)	

We	note	that	if	there	were	only	the	trivial	partition	process,	the	Fano	factor	has	the	value	of	ℱ#$%&'( 	= 	 𝑆)*+-'M$S$?%	/(2𝑒∗	

𝐼)*+-'M$S$?%	) 	= 	1	[see	Eq.	(S10)],	as	discussed	in	the	main	text.	

The	 total	 current	and	noise	at	QPC2	are	𝐼)*+- 	=	 𝐼)*+-GM?$# + 𝐼)*+-'M$S$?% 	and	𝑆)*+- 	=	𝑆)*+-GM?$# + 𝑆)*+-'M$S$?% ,	where	both	 the	 time-
domain	braiding	process	and	the	trivial	partition	process	are	taken	into	account.	The	full	Fano	factor	is,	

ℱ#$%&'( =
𝑆)*+-
2𝑒∗𝐼)*+-

=
𝑆)*+-GM?$# + 𝑆)*+-'M$S$?%

2𝑒∗:𝐼)*+-GM?$# + 𝐼)*+-'M$S$?%;
.	 (S12)	

The	dependence	of	the	full	Fano	factor	on	𝑅)*+, 	is	shown	as	the	red	curve	in	Fig.	S6.	As	the	contribution	of	the	trivial	
partition	process	becomes	larger	(yet	smaller	than	that	of	the	braiding	process)	for	larger	𝑅)*+,,	the	Fano	factor	
further	decreases.	
	
 B.	 Phenomenological	extension	in	Eq.	(2)	

In	the	last	sub-section	we	have	derived	𝑆)*+- = ℱ#$%&'( × 2𝑒∗𝐼)*+-	for	high	voltage	𝑒∗𝑉! ≫ 𝑘.𝑇	and	small	QPC2	
reflection	𝑅)*+- ≪ 1.	We	now	phenomenologically	extend	it	to	the	form	in	Eq.	(2)	of	the	main	text,	to	compare	the	
result	with	our	experimental	data	in	a	wider	range	of	the	parameters.	We	restate	the	equation,	

𝑆)*+- = ℱ#$%&'( × 2𝑒∗𝐼)*+,𝑅)*+-:1 − 𝑅)*+-; vcoth m
𝑒∗𝑉!
2𝑘.𝑇

p −
2𝑘.𝑇
𝑒∗𝑉!

w.	 (S13)	

We	here	provide	the	rationale	behind	the	extension.	
Firstly,	[coth(𝑒∗𝑉!/2𝑘.𝑇)	− 	2𝑘.𝑇/𝑒∗𝑉!]	is	 introduced	 to	 describe	 a	 parameter	 range	 of	 relatively	 small	 values	 of	

voltage	𝑉! .	 The	 factor	coth(𝑒∗𝑉!/2𝑘.𝑇)	comes	 from	 the	hole-like	anyon	 injection	process	at	 the	QPC1	 [S2].	 It	 can	be	
considered	that	the	hole-like	anyons	are	incoming	from	the	source	to	QPC1	with	a	rate	𝐼!exp(−𝑒∗𝑉!/𝑘.𝑇)/𝑒∗,	which	is	
exponentially	suppressed	in	comparison	with	the	particle-like	anyon	injection.	The	hole-like	anyon	injection	affects	both	
the	time-domain	braiding	process	and	the	trivial	partition	process.	In	the	time-domain	braiding	process,	when	a	hole-
like	anyon	is	injected	at	QPC1	to	the	dilute	beam	flowing	along	Edge2,	the	time-domain	loop	of	a	thermally	excited	anyon	
at	QPC2	can	braid	the	hole-like	anyon,	giving	rise	to	the	braiding	phase	factors	of	𝑒±-0< ,	instead	of	the	factors	𝑒∓-0< 	of	the	
case	of	the	particle-like	anyon	injection	in	Eq.	(S4).	As	a	result,	the	first	term	of	the	non-equilibrium	correlator	in	Eq.	(S4)	

has	an	additional	multiplicative	factor	of	:1 − 𝑅)*+, + 𝑅)*+,𝑒4-0<>$K1	(:'4:$);
32
4∗(XY	Z4

4∗52
167

[|:'4:$|	coming	from	the	hole-like	
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anyon	injection.	Then	the	current	and	noise	at	QPC2	are	modified	accordingly.	On	the	other	hand,	in	the	trivial	partition	

process,	the	hole-like	anyon	injection	modifies	the	current	and	noise	at	QPC2	as	𝐼)*+-'M$S$?% →	 𝐼)*+-'M$S$?% �1 − exp	 n− 6∗P2
;6\

o�	and	

𝑆)*+-'M$S$?% →	𝑆)*+-'M$S$?% �1 + exp	 n− 6∗P2
;6\

o�.	The	Fano	factor	ℱ#$%&'(	is	then	calculated	by	ℱ#$%&'( =
]!"#'

-6∗5!"#'^='_(6∗P2/-;6\)
.	The	last	

term	of	Eq.	(S13)	proportional	to	−2𝑘.𝑇/𝑒∗𝑉!	is	introduced	to	make	the	excess	noise	to	vanish	at	the	zero	bias	of	𝑉! = 0.	
Note	that	all	the	temperature	dependence	is	 introduced	from	the	detailed	balance	principle,	while	we	used	the	zero-
temperature	 correlator	 of	 the	 CLL	 theory	 in	 the	 calculation	 of	 ℱ#$%&'( .	 See	 also	 Supplementary	 Note	 IV.	 This	
phenomenological	 treatment	 is	 in	 analogy	 to	 the	 full	 beam	 case	 [S2],	 which	 remedies	 the	 power-law	 temperature	
dependence	of	 the	CLL	theory	that	disagrees	with	experiments.	 In	Fig.	S7,	we	plot	 the	calculated	value	of	ℱ#$%&'(	as	a	
function	of	𝑒∗𝑉!/2𝑘.𝑇.	For	the	calculation,	the	reflection	probability	𝑅)*+,	in	Fig.	S4	is	used.	
Secondly,	we	did	the	substitution	of	𝑅)*+-	to	𝑅)*+-(1 − 𝑅)*+-)	to	obtain	Eq.	(S13).	With	this	substitution,	a	parameter	

range	 of	 relatively	 large	 values	 of	 𝑅)*+- 	is	 described	 by	 Eq.	 (S13).	 This	 is	 done	 in	 the	 same	 spirit	 with	 the	
phenomenological	expression	of	Eq.(1)	 for	 the	partition	of	a	 full	beam,	where	 the	substitution	of	𝑅)*+, 	to	𝑅)*+,(1 −
𝑅)*+,)		has	been	performed	[S3]	to	have	comparison	between	experimental	data	and	the	phenomenological	expression	
in	determination	of	fractional	charges	by	shot	noise,	going	beyond	the	parameter	regime	of	the	CLL	theory.	Excellent	
agreement	 between	 the	 phenomenological	 expression	 in	 Eq.	 (S13)	 (namely	 Eq.	 (2)	 of	 the	 main	 text)	 with	 our	
experimental	data	is	found	as	shown	in	Figs.	3	&	4	of	the	main	text.	
	

	
FIG.	S7:	Calculated	values	of	𝓕𝐝𝐢𝐥𝐮𝐭𝐞,	as	a	function	of	𝒆∗𝑽𝐒/𝟐𝒌𝐁𝑻.	The	values	are	used	for	drawing	the	theoretical	curves	in	Figs.	3	
and	4	of	the	main	text.	In	the	calculation	of	ℱ*+,-./,	the	experimental	results	of	the	reflection	probability	𝑅"#$%	in	Fig.	S4.	

	
C.	Dependence	of	Fano	factor	𝓕𝐝𝐢𝐥𝐮𝐭𝐞 	on	the	scaling	dimension	δ	

While	the	chiral	Luttinger	liquid	theory	predicts	the	power	law	behavior	𝑅)*+ ∝ 𝑉-O4- 	of	the	reflection	probability	
𝑅)*+ 	at	a	QPC	with	respect	to	a	bias	voltage	𝑉,	this	expected	behavior	has	not	been	confirmed	by	experiments	[S4].	As	
the	Fano	factor	ℱ#$%&'( 	of	our	theory	also	depends	on	the	scaling	dimension	𝛿,	 it	is	in	fact	surprising	that	the	excellent	
agreement	between	the	theory	and	our	experiment	is	found	over	a	wide	range	of	the	parameters.	To	understand	why,	
we	 investigate	how	ℱ#$%&'(varies	as	a	 function	of	 the	scaling	dimension	𝛿.	For	simplicity,	we	concentrate	on	 the	high	
voltage	regime	of	𝑒∗𝑉! ≫ 𝑘.𝑇.	
For	the	Poissonian	limit	of	𝑅)*+, ≪ 1,	the	time-domain	braiding	process	dominates	the	trivial	partition	process,	and	

the	Fano	factor	is	written	concisely,	



11	

ℱ#$%&'( = −cot 𝜋𝛿 cot �n
𝜋
2 − 𝜃o

(2𝛿 − 1)�.	 (S14)	

As	non-ideal	effects	at	QPCs	usually	affect	the	scaling	dimension	δ	to	become	larger	than	its	ideal	value	1/3	at	ν	=	1/3	[S5,	
S6],	we	explore	how	the	Fano	factor	varies	as	δ	increases	from	the	ideal	value.	The	result	is	shown	as	the	blue	curve	in	
Fig.	S8.	As	δ	increases,	the	Fano	factor	decreases	from	the	ideal	value	(≃ 3.27)	at	δ	=	1/3	to	3	at	δ	=	1/2,	and	increases	
back	to	the	original	value	at	δ	=	2/3.	It	shows	that	the	Fano	factor	varies	less	than	10	%	over	the	range	of	1/3	<	δ	<	2/3.	
This	may	in	part	explain	the	excellent	agreement	between	the	theory	and	the	experiment.	
Next	we	take	the	realistic	value	of	𝑅)*+, = 0.1,	as	in	Fig.	3	of	the	main	text.	If	we	consider	the	time-domain	braiding	

process	only,	ℱ#$%&'(	starts	from	3.13	at	δ	=	1/3,	reduces	to	2.87	at	δ	=	1/2,	and	increases	back	to	the	original	value	3.13	
at	δ	=	2/3	(see	the	red	curve	in	Fig.	S8).	Again,	the	variation	of	ℱ#$%&'( 	is	less	than	10%	over	the	range	of	δ.	The	variation	
becomes	bigger	if	we	also	include	the	trivial	partition	process.	It	starts	from	3.08	at	δ	=	1/3	and	decreases	monotonically	
to	2.36	at	δ	=	2/3	(see	the	yellow	curve	in	Fig.	S8).	In	this	case,	the	difference	becomes	about	20%.	The	relatively	big	
variation	is	because	the	trivial	process	is	less	suppressed	for	larger	δ,	as	expected	from	the	ratio	𝑅)*+,-4-T 	of	the	contribution	
of	the	trivial	process	to	that	of	the	braiding	process	shown	in	Eq.	(S11).	Still,	however,	the	variation	is	not	that	strong	
compared	to	the	variation	range	of	δ.	
Nevertheless,	our	transmission	data	are	nearly	flat,	corresponding	to	δ	=	1	(Supplementary	Note	SII	C).	With	δ	=	1,	the	

Fano	factor	in	Eq.	(S14)	diverges	and	cannot	explain	our	experimental	results.	This	suggests	to	revisit	the	long-time	issue	
of	whether	and	how	the	scaling	dimension	can	be	obtained	from	experimental	data	of	the	voltage	dependence	of	QPC	
transmission.	For	example,	the	QPC	model	Hamiltonian	used	in	the	chiral	Luttinger	liquid	theory	for	the	prediction	of	the	
voltage	dependence	(the	power-law	behavior	𝑅)*+ ∝ 𝑉-O4-	of	the	QPC	reflection	probability	𝑅)*+ 	on	a	voltage	𝑉	)	might	
be	too	simplified;	while	the	bare	anyon-tunneling	strength	at	a	QPC	has	been	assumed	to	be	energy	independent	in	the	
theory,	it	could	be	energy	dependent	in	realistic	situations,	which	distorts	the	predicted	power-law	behavior	even	when	
the	 scaling	 dimension	 remains	 around	 the	 ideal	 value.	 Or,	 measurements	 of	 other	 quantities	 might	 be	 useful	 for	
experimental	identification	of	the	scaling	dimension	(see,	e.g.,	Ref.	[S8]).	

	

	

FIG.	S8:	Dependence	of	Fano	factor	𝓕𝐝𝐢𝐥𝐮𝐭𝐞	on	the	scaling	dimension	δ.	The	blue	curve	is	for	the	Poissonian	limit,	while	the	red	
and	yellow	curves	are	for	𝑅"#$% = 0.1.	In	the	red	curve,	only	the	time-domain	braiding	process	is	taken	into	account,	while	the	
yellow	curve	accounts	both	the	braiding	process	and	the	trivial	partition	process.	
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D.	Illustration	of	the	time-domain	braiding	process	

We	describe	the	time-domain	braiding	process	in	more	details.	In	the	process,	anyons	in	the	injected	diluted	beam	
propagate	along	Edge2	without	tunneling	at	QPC2,	while	a	particle-hole	anyon	pair	is	virtually	or	thermally	excited	at	
QPC2	and	braids	with	some	of	the	diluted	anyons.		
For	illustration,	we	consider	thermal	equilibrium	without	injection	of	diluted	anyons,	with	QPC2	tuned	to	the	weak	

backscattering	 regime.	 The	 thermal	 fluctuations	 at	 QPC2	 are	 described	 by	 the	 equilibrium	 correlator	𝐶(2(𝑡,, 𝑡-) ≡
〈𝒯(𝑡,)𝒯3(𝑡-)〉(2	of	the	anyon	tunneling	operator	𝒯(𝑡)	at	QPC2	[introduced	around	Eq.	(S1)].	The	correlator	is	interpreted	
as	 the	 interference	 between	 two	 sub-processes	|𝒯(𝑡,)⟩(2 	and	|𝒯(𝑡-)⟩(2 .	 In	 the	 sub-process	|𝒯(𝑡,)⟩(2 ,	 a	 particle-hole	
anyons	pair	is	virtually	or	thermally	excited	at	QPC2	at	time	𝑡,.	Then,	the	particle-like	anyon	propagates	along	one	edge,	
say	Edge2,	while	the	hole-like	anyon	propagates	along	the	other	edge,	Edge3.	In	the	other	sub-process	|𝒯(𝑡-)⟩(2,	another	
pair	 is	 excited	 at	QPC2	 at	 time	𝑡- ,	 and	 the	 particle	moves	 along	Edge2	while	 the	 hole	 propagates	 along	Edge3.	 The	
interference	occurs	by	the	overlap	between	|𝒯(𝑡,)⟩(2	and	the	time	reversal	of	|𝒯(𝑡-)⟩(2,	forming	a	time-domain	loop	at	
QPC2	as	long	as	𝑡- − 𝑡, ≲ ℏ 𝑘.𝑇⁄ 	in	which	the	particle	tunnels	to	Edge2	at	𝑡,,	tunnels	back	to	Edge3	at	𝑡-,	and	recombines	
with	the	hole.	The	two	sub-processes	|𝒯(𝑡,)⟩(2	and	|𝒯(𝑡-)⟩(2	correspond	to	those	in	Fig.	S9(a)	and	(b)	but	without	the	
diluted	anyon	(the	red	wave	packet),	and	the	blue	dashed	loop	in	Figure	2(b)	of	the	main	text	provides	a	schematic	view	
of	the	time-domain	loop.	The	time-domain	loop	results	in	the	known	equilibrium	noise	of	tunneling	currents	at	QPC2.	
Mathematically,	 in	 the	CLL	 theory,	 the	 tunneling	current	and	noise	are	determined	by	an	 integral	of	 the	equilibrium	
correlator	𝐶(2(𝑡,, 𝑡-) =

,

[ ℏ
91:7

>$17N;6\7gh0	(:$4:')8/ℏi
';	over	𝑡,	and	𝑡-	where	𝑎 → 0h	is	a	short	distance	cutoff.	The	integral	is	

governed	by	the	domain	of	𝑡- − 𝑡, ≲ ℏ 𝑘.𝑇⁄ ,	supporting	the	above	interpretation.		
We	next	consider	the	non-equilibrium	by	dilute	anyons	injection	via	QPC1,	focusing	on	a	simple	case	[the	𝑘 = 1	event	

below	Eq.	(4)	of	 the	main	text]	where	a	single	diluted	anyon	experiences	braiding	by	the	time-domain	 loop.	 It	 is	 the	
interference	between	the	two	sub-processes	in	Fig.	S9	(a)	and	(b)	[S1,S9].	In	the	sub-process	(a),	a	particle-hole	anyons	
pair	is	thermally	excited	at	QPC2	at	𝑡,	as	in	the	equilibrium	case.	Later	at	time	𝑡B

(g),	a	diluted	anyon	passes	QPC2	without	
partitioning.	In	the	sub-process	(b),	the	diluted	anyon	firstly	passes	QPC2	at	time	𝑡B

(j),	and	then	the	particle-hole	pair	is	
excited	at	QPC2	at	𝑡-.	Due	to	the	source	voltage	𝑉],	𝑡B

(g)and	𝑡B
(j)	are	in	the	range	|𝑡B

(g) − 𝑡B
(j)| < ℏ

6∗P2
,	leading	to	𝑡B

(g)	≈	𝑡B
(j)≈ 

𝑡B	at	sufficiently	large	𝑉].	To	summarize,	in	the	sub-processes	(a)	and	(b),	the	particle-hole	pair	is	excited	before	and	after	
the	diluted	anyon	passes	QPC2,	respectively,	i.e.	𝑡, < 𝑡B < 𝑡-.	The	spatial	order	of	the	anyons	differs	between	the	sub-
processes,	resulting	in	the	braiding	phase	in	their	interference	(see	Supplementary	Video).	
Analytically,	the	braiding	phase	stems	from	the	double	exchange	between	the	diluted	anyon	and	the	thermal	anyon.	

The	 interference	 is	 described	 by	 the	 non-equilibrium	 correlator	⟨𝜓-		(−𝑑, 𝑡B
(j) − 𝑑/𝑣)𝒯3(𝑡-)𝒯(𝑡,)𝜓-

3(−𝑑, 𝑡B
(g) − 𝑑/𝑣)⟩,	

where	 anyon	 creation	 operators	𝜓-
3(−𝑑, 𝑡B

(g) − 𝑑/𝑣) 	and	𝜓-
3(−𝑑, 𝑡B

(j) − 𝑑/𝑣) 	on	 Edge2	 describe	 the	 injection	 of	 the	
diluted	anyon	via	QPC1	in	(a)	and	(b)	(with	the	inter-QPC	distance	d,	QPC1	placed	at	𝑥 = −𝑑,	the	anyon	velocity	v).	At	
sufficiently	 large	𝑉! ,	 we	 have	𝑡, < 𝑡B

(g) ≃ 𝑡B
(j) < 𝑡-  and	 annihilate	 the	 operator	𝜓-

3(−𝑑, 𝑡B
(g) − 𝑑/𝑣)	with	𝜓-		(−𝑑, 𝑡B

(j) −
𝑑/𝑣)	in	the	correlator	after	bringing	it	in	front	of	𝒯(𝑡,)	and	𝒯3(𝑡-)	by	operator	exchanges.	The	double	exchange	results	
in	the	braiding	phase	2θ,	and	the	non-equilibrium	correlator	becomes	equivalent	with	e-0<⟨𝒯3(𝑡-)𝒯(𝑡,)⟩(2.		

The	braiding	phase	 is	well	defined	when	 the	 temporal	uncertainty	of	 the	diluted	anyon	|𝑡B
(g) − 𝑡B

(j)| < ℏ
6∗P2

	is	 small	
enough	compared	to	|𝑡, − 𝑡-|,	while	|𝑡, − 𝑡-|	should	be	shorter	than	ℏ/𝑘.𝑇	for	the	formation	of	the	time-domain	loop.	
These	 two	 conditions	 are	 satisfied	 in	 our	 interested	 regime	 of	e∗𝑉! ≫ 𝑘.𝑇 .	 When	𝑒∗𝑉! 	is	 not	 sufficiently	 large,	 the	
condition	for	the	braiding	𝑡, < 𝑡B

(g) ≃ 𝑡B
(j) < 𝑡-		is	not	satisfied,	making	the	braiding	phase	blurred.		

We	remark	that	anyon	braiding	on	a	single	edge	channel	 (in	1D)	 is	more	abstract	 than	real	space	braiding	 in	 two	
dimensions	since	the	one-dimensional	system	has	no	room	for	an	adiabatic	circulation	of	one	anyon	around	another.	
Analytically,	an	additional	dimension	for	1D	braiding	is	provided	by	ordering	of	the	anyon	fields	inside	a	correlator	as	
discussed	above,	and	the	braiding	on	the	edge	is	defined	by	double	exchange	of	the	anyon	fields	on	the	edge.	
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FIG.	S9:	Illustration	of	the	time-domain	braiding	process	of	the	𝒌 = 𝟏	event.	The	braiding	occurs	by	the	interference	of	two	sub-
processes	(a)	and	(b).	In	the	sub-process	(a),	a	particle-hole	anyon	pair	(blue	and	white	wave-packets)	is	thermally	excited	via	
tunneling	at	QPC2	at	time	𝑡%	before	a	diluted	anyon	(red	wave-packet)	passes	QPC2.	In	(b),	the	particle-hole	pair	is	excited	at	time	𝑡&	
after	the	diluted	anyon	passes	QPC2.	The	interference	of	the	two	sub-processes	forms	a	time-domain	loop	of	the	thermal	anyons.	
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SIV.			COMPARISON	BETWEEN	𝑆)*+-	AND	𝑆..	

In	this	supplementary	note,	we	argue	why	our	phenomenological	treatment	agrees	well	with	the	experiments,	based	
on	comparison	among	the	experimental	data,	the	excess	noise	S)*+-	in	Eq.	(2),	which	hybridizes	the	zero	temperature	
CLL	theory	and	its	phenomenological	extension	to	the	finite	temperature,	and	the	excess	noise	S.	obtained	from	a	finite	
temperature	CLL	theory.		
For	the	purpose,	we	combine	the	finite	temperature	correlator	of	the	CLL	theory	with	the	binomial	extension.	Then,	

the	noise	and	current	across	QPC2	can	be	found	as		

where	ℐ(𝐼!, 𝐼M(k) = − 52
6∗
log n1 + 𝑅)*+,:𝑒4-0< − 1;o −

5<
6∗
exp	(− 6∗P2

;6\
)log n1 + 𝑅)*+,:𝑒-0< − 1;o + 𝑖

-N
6
𝐼M(k .	 Here,	 the	 first	

and	second	terms	correspond	to	the	braiding	process	from	the	particle-like	anyons	and	hole-like	anyons	of	the	dilute	
beam	respectively,	and	𝐼M(k = −𝐺𝑉/	in	the	third	term	is	the	direct	bias	across	the	QPC2	[S1],	with	𝐺 = 𝜈𝑒-/ℎ.	𝑉/ 	is	the	
small	applied	voltage	to	S2	while	pinching	QPC3	completely	off.		
The	autocorrelation	at	the	amplifier	B	and	the	autocorrelation	across	the	QPC2	are	related	by,	

𝑆.(𝐼!, 𝐼M(k = 0) = 𝑆)*+-(𝐼!, 𝐼M(k = 0) − 4𝑘l𝑇𝐺 	
𝜕𝐼)*+-(𝐼!, 𝐼M(k)

𝜕𝐼M(k
│5=>?AB + 4𝑘.𝑇𝐺.	 (S16)	

Here,	𝑆.(𝐼], 𝐼M(k = 0)	and	𝑆)*+-(𝐼], 𝐼M(k = 0)	are	the	bare	noises,	not	the	excess	noises.	The	second	term	on	the	right	hand	
side	corresponds	to	the	correlation	between	the	tunneling	current	across	QPC2	and	the	current	flowing	along	Edge3.	
The	third	term	is	the	Johnson-Nyquist	noise	of	Edge3.	While	𝑆.(𝐼!, 𝐼M(k = 0)	increases	as	|𝐼]|	increases	both	theoretically	
and	experimentally,	the	first	and	the	second	terms	of	the	right	hand	side	are	theoretically	expected	to	exhibit	the	maximal	
value	for	𝐼! = 0,	reminiscent	of	the	power-law	behavior	of	the	CLL	theory.	There	was	a	theoretical	proposal	to	extract	
the	braiding	statistics	from	the	negative	excess	shot	noise	𝑆)*+-	[S9].	However,	the	experimentally	measured	value	of	
the	second	term	shows	the	opposite	behavior;	while	it	is	minimal	at	𝐼! = 0,	it	is	relatively	flat	across	the	whole	range	of	
the	bias.	While	it	makes	hard	to	observe	negative	excess	shot	noise	of	𝑆)*+-,	this	leads	the	excess		𝑆.	and	𝑆)*+-	to	almost	
coincide.	This	is	why	the	expression	of	𝑆)*+-	in	Eq.	(2)	is	directly	used	for	analyzing	the	experimentally	measured	𝑆..	
To	calculate	the	excess	noise	𝑆.,	we	rewrite		𝑆.(𝐼], 𝐼M(k = 0)	in	the	following	form	

𝑆.(𝐼!, 𝐼M(k = 0) = 2𝑒∗ �
𝑆.(𝐼!, 𝐼M(k = 0)

2𝑒∗𝐼)*+-(𝐼], 𝐼M(k = 0) coth n 𝑒
∗𝑉!

2𝑘.𝑇
o
� 𝐼)*+,𝑅)*+-:1 − 𝑅)*+-; coth m

𝑒∗𝑉!
2𝑘l𝑇

p .	 (S17)	

The	quantity	in	[…]	is	obtained	by	the	theory	and	corresponds	to	the	ℱ#$%&'(	in	Eq.	(2),	where	non-universal	effects	in	𝑆.	
and	𝐼)*+-	 	are	expected	 to	be	cancelled	 in	 the	ratio	𝑆./𝐼)*+-	 .	We	also	did	 the	phenomenological	extension	of	𝑅)*+- →
𝑅)*+-:1 − 𝑅)*+-;.	 For	 further	 calculation	 of	𝑆.(𝐼!, 𝐼M(k = 0)	in	 Eq.	 (S17),	we	utilize	 the	 experimental	 values	 of	𝐼)*+, ,	
𝑅)*+-,	𝑉!/𝑇.	The	excess	noise	𝑆.	can	then	be	calculated	by	subtracting	the	value	at	zero	bias,.		

𝑆. = 𝑆.(𝐼!, 𝐼M(k = 0) − 𝑆.(𝐼! = 0, 𝐼M(k = 0).	 (S18)	

Equations	(S17)	and	(S18)	is	a	phenomenological	extension	of	the	CLL	theory	for	𝑆.	,	comparable	with	the	extension	for		
𝑆)*+-	 	found	in	Eq.	(2).	In	Fig.	S10,	we	plot	𝑆)*+-	from	Eq.	(2)	and	𝑆.	from	Eq.	(S18)	together	with	the	experimental	data	
in	 Fig.	 3.	 Almost	 perfect	 agreement	 among	 the	 three	 supports	 to	 use	𝑆)*+- 	in	 Eq.	 (2)	 for	 the	 comparison	with	 the	

𝐼)*+-	 (𝐼!, 𝐼M(k) = −4
𝑒∗

ℏ-
|𝛾-|-Γ(1 − 2𝛿) sin 𝜋𝛿 (2𝜋𝑘.𝑇/ℏ)-O4,Im �

Γ mℐ(𝐼!, 𝐼M(k)2𝜋𝑘.𝑇/ℏ
+ 𝛿p

Γmℐ(𝐼!, 𝐼M(k)2𝜋𝑘.𝑇/ℏ
+ 1 − 𝛿p

�	,	

𝑆)*+-	 (𝐼!, 𝐼M(k) = 8
𝑒∗-

ℏ-
|𝛾-|-Γ(1 − 2𝛿) cos 𝜋𝛿 (2𝜋𝑘.𝑇/ℏ)-O4,Re �

Γ mℐ(𝐼!, 𝐼M(k)2𝜋𝑘.𝑇/ℏ
+ 𝛿p

Γmℐ(𝐼!, 𝐼M(k)2𝜋𝑘.𝑇/ℏ
+ 1 − 𝛿p

�	.	

(S15)	
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experiments.	It	seems	that	the	power-law	finite	temperature	behavior	of	the	CLL	correlator,	which	is	not	observed	in	the	
experiment,	is	approximately	canceled	between	the	first	and	second	term	of	Eq.	(S16).		
	

	
FIG.	S10:	𝑺𝐁	and	𝑺𝐐𝐏𝐂𝟐.	The	difference	among	𝑆=	from	the	experimental	data	(the	data	set	in	Fig.	3	of	the	main	text),	𝑆=	from	Eq.	(S18),	
and		𝑆"#$&	from	Eq.	(2)	is	sufficiently	small.	

	 	



16	
SV.				TWO-QPC	EXPERIMENT	AT	FILLING	FACTOR	𝝂 = 𝟐/𝟓	

In	this	supplementary	note,	we	extend	our	study	to	the	FQH	regime	at	ν	=	2/5.	Its	edge	structure	is	composed	of	two	
(inner	and	outer)	edge	channels.	The	inter-QPC	distance	is	2	µm.	
First,	we	performed	a	two-QPC	experiment	on	the	outer	edge	channel,	making	the	inner	edge	channels	fully	reflected	

at	the	QPCs.	In	the	same	way	with	Fig.	1(b),	we	confirmed	that	the	tunneling	charge	at	QPC1	is	𝑒∗ = 𝑒/3	[Fig.	S11(a)],	as	
expected.	We	observed	that	partitioning	of	diluted	anyons	of	the	fractional	charge	at	QPC2	results	in	the	Fano	factor	close	
to	ℱ#$%&'(	=	3.27	as	in	ν	=	1/3	[Fig.	S11(b)].	The	Fano	factor	agrees	well	with	our	theory	based	on	the	braiding	angle	2𝜃 =
2𝜋/3	and	the	scaling	dimension	δ = 1/3,	supporting	the	time-domain	braiding	process	also	in	the	outer	edge	channel	at	
ν	=	2/5.		
Next,	we	performed	another	two-QPC	experiment	on	the	inner	edge	channel,	making	the	outer	edge	channels	fully	

transmitted	through	the	QPCs.	The	tunneling	charge	at	QPC2	was	found	as	𝑒∗ = 𝑒/5	from	the	shot	noise	measurement	
where	a	full	beam	impinges	at	QPC2	while	QPC1	is	pinched	off	[Fig.	S12(a)].	Then,	partitioning	a	dilute	beam	at	QPC2,	we	
obtained	ℱ#$%&'(	∼	1	[Fig.	S12(b)]	in	our	measurement	uncertainty	(which	suffers	from	the	very	weak	spectral	density,	
weaker	than	the	ν	=	1/3	case).	The	result	implies	that	the	trivial	partition	process	is	more	substantial	along	the	inner	
channel.	
We	compare	 the	experimental	 result	of	partitioning	 the	 inner	channel	with	existing	 theoretical	models.	There	are	

several	models	for	edges	at	ν	=	2/5.	In	the	model	by	Wen	[S11]	where	large	spatial	separation	between	the	inner	and	
outer	channels	 is	considered,	anyons	with	 fractional	charge	𝑒∗ = 𝑒/5	have	 the	braiding	phase	2𝜃 = 6𝜋/5	and	scaling	
dimension	δ	=	3/5.	This	model	supports	ℱ#$%&'(	≃	−5.16	when	only	the	time-domain	braiding	process	is	considered	and	
ℱ#$%&'(	≃	30	when	both	the	time-domain	braiding	and	the	trivial	partition	processes	are	considered	with	the	measured	
value	of	𝑅)*+, 	= 	0.088.	Hence	it	is	incompatible	with	our	experiment.	Another	model	proposed	by	Lopez	and	Fradkin	
[S12]	predicts	a	downstream	charge	mode	and	non-propagating	neutral	modes.	In	this	case,	the	braiding	phase	is	solely	
from	the	propagating	downstream	charge	mode,	and	it	has	the	value	of	2𝜃 = 𝜋/5.	And,	the	two	𝛿s	appearing	in	Eq.	(S14)	
become	to	have	different	values;	the	first	one	is		8/5	and	the	second	is	1/10.	This	is	because	the	non-propagating	neutral	
mode	contributes	to	the	anyonic	exchange	phase	at	a	QPC,	but	not	to	its	tunneling	exponent.	The	resulting	Fano	factor	is	
ℱ#$%&'( ≃ −0.2,	which	cannot	explain	our	experiment.	On	the	other	hand,	Ferraro	et	al.	[S13]	modified	the	Lopez-Fradkin	
model.	In	their	model,	there	is	a	downstream	charge	mode	and	upstream	neutral	modes.	Then,	while	the	most	relevant	
tunneling	 charge	at	 a	QPC	at	 low	 temperature	 is	𝑒∗ = 2𝑒/5	(which	 is	described	by	2𝜃 = 4𝜋/5	and	𝛿 = 2/5),	 there	 is	
another	quasiparticle	tunneling	of	charge	𝑒∗ = 𝑒/5	(described	by	2𝜃 = 𝜋/5	and	𝛿 = 8/5).	Since	our	experimental	data	
support	𝑒∗ = 𝑒/5	and	it	is	expected	that	the	quasiparticle	of	𝑒∗ = 𝑒/5	has	larger	bare	QPC	tunneling	strength	than	that	
of	𝑒∗ = 2𝑒/5,	we	assumed	that	 the	anyon	with	𝑒∗ = 𝑒/5	dominates	 the	QPC	tunneling	 in	our	experiment.	Our	 theory	
shows	that	this	anyon	results	in	the	Fano	factor	ℱ#$%&'( ≃ 1,	since	the	large	scaling	dimension	𝛿 = 8/5	(> 1)	makes	the	
trivial	partition	process	 to	dominate	over	 the	braiding	process	 [See	Eq.	 (S11)].	This	may	explain	our	experiment	on	
partitioning	the	inner	edge	channel.	There	might	be	also	a	possibility	that	interactions	between	the	channels	give	rise	to	
decoherence	effects	in	favor	of	the	trivial	partition	process.	
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FIG.	S11:	Noise	measurement	for	ν	=	2/5	outer	edge.	(a)	Upper	panel:	Reflection	probabilities	 	𝑅"#$%	(purple	dots)	and	𝑅"#$&	
(green	 dots).	 Lower	 panel:	 Measurement	 of	 tunneling	 charge	 at	 QPC1.	 Blue	 dots	 are	 𝑆A+ 𝑆B+ 2𝑆AB 	noise	 calculation	 from	
measurement.	 Red	 dashed	 line	 and	 yellow	 dashed	 line	 are	 obtained	 from	 Eq.	 (1)	 in	 the	 main	 text,	 with	𝑒∗ = 𝑒 	and	 	𝑒∗ = 𝑒/3	
respectively.	(b)	Dilute	beam	impinges	on	QPC2,	creating	the	excess	AC.	The	reflection	probabilities	of	the	QPCs	are	the	same	as	(a).	

	

FIG.	S12:	Noise	measurement	for	ν	=	2/5	inner	edge.	(a)	QPC1	is	pinched	off	for	injecting	a	full	beam	to	QPC2.		Upper	panel:	
Reflection	probability	RQPC2	for	the	inner	edge.	Lower	panel:	Auto-correlation	shot	noise	measurement	results	(blue	dots)	at	39	mK.	
Red	dashed	line	and	yellow	dashed	line	are	obtained	from	Eq.	(1)	in	the	main	text,	with	𝑒∗ = 𝑒	and		𝑒∗ = 𝑒/5	respectively.	(b)	Two-
QPC	experiment	result.	Upper	panel:	Reflection	probability	𝑅"#$%	(green	dots)	and	𝑅"#$&	(purple	dots).	Lower	panel:	The	measured	
excess	noise	S=	(blue	dots).	The	black	dotted	line	corresponds	to	Eq.	(2)	with	ℱ#$%&'(=	1.	
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SVI.				CROSS	CORRELATION	

Here,	we	show	that	our	experimental	data	of	the	cross	correlation	(CC)	𝑆m. 	of	the	two-QPC	setup	and	an	additional	
three-QPC	setup	are	also	in	excellent	agreement	with	our	theory	mainly	based	on	the	time-domain	braiding	process.	For	
the	two-QPC	setup,	the	CC	𝑆m. 	between	amplifiers	A	and	B	is	related	to	the	AC	noise	of	QPC2	by	

𝑆m. = −𝑆)*+- +
𝜕𝐼)*+-
𝜕𝐼)*+,

𝑆)*+,	,	 (S19)	

where	the	second	term	corresponds	to	the	correlation	between	the	tunneling	current	𝐼)*+, 	at	QPC1	and	the	tunneling	
current	𝐼)*+- 	at	QPC2	[S1,	S7].	For	comparison	between	our	experimental	data	and	the	theory,	we	replace	the	differential	
reflection	𝜕𝐼)*+-/𝜕𝐼)*+,	by	its	averaged	value	RQPC2.	Then	𝑆m.	is	obtained	by	using	𝑆)*+-	in	Eq.	(S13)	and	𝑆)*+, 	in	Eq.(1)	
of	the	main	text.	This	theoretical	result	is	in	good	agreement	with	our	experimental	data	[Fig.	S13(a)].	For	comparison,	
we	also	cite	the	free	fermion	results	from	the	Landauer-Büttiker	formalism,	which	corresponds	to	the	trivial	partition,	

𝑆m. = −2𝑒∗𝐼!𝑅)*+,- 𝑅)*+-:1 − 𝑅)*+-; vcoth m
𝑒∗𝑉!
2𝑘.𝑇

p −
2𝑘.𝑇
𝑒∗𝑉!

w	,	 (S20)	

and	plot	it	in	Fig.	S13(a)	as	the	red	dashed	line	with	𝑒∗ 	= 	𝑒/3.		

	

FIG.	S13:	Cross	correlations	(a)	Cross	correlation	SAB	of	the	two-QPC	geometry.	(b)	SAB	of	the	three-QPC	geometry	with	symmetric	
injection	of	two	dilute	beams	to	QPC2.	The	experimental	data	of	(a)	were	obtained	with	the	same	measurement	(e.g.,	RQPC1,	RQPC2)	with	
Fig.	4(a)	of	the	main	text.	The	data	of	(b)	were	obtained	with	the	average	value	of	RQPC1	=	0.116,	RQPC2	=	0.192,	and	RQPC3	=	0.102.	The	
results	are	in	good	agreement	with	our	theoretical	result	(yellow	dashed	lines).	The	results	of	Eq.	(S20)	and	Eq.	(S23)	for	the	trivial	
partition	process	(red	dashed	lines)	are	shown	for	comparison.	

We	also	analyze	our	experimental	data	of	the	CC	𝑆m.	of	a	three-QPC	geometry	[Fig.	S1(b)],	which	is	essentially	the	same	
configuration	with	Ref.	[S10].	To	have	the	three-QPC	geometry,	we	operated	an	additional	QPC,	QPC3,	located	downside	
of	QPC2.	This	QPC	connects	Edge3	with	an	additional	edge	channel,	Edge4,	via	anyon	tunneling.	By	applying	a	voltage	of	
the	same	amplitude	𝑉!		to	the	source	contact	S2	with	that	applied	to	the	source	contact	S1	of	Edge1,	a	current	𝐼! 	flows	
along	Edge4	(the	same	amount	with	 the	current	along	Edge1).	 It	 is	 reflected	at	QPC3,	 then	a	dilute	beam	of	current	
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𝐼)*+/ = 𝑅)*+/𝐼! 	is	generated	to	flow	along	Edge3	towards	QPC2,	where	𝑅)*+/ 	is	the	reflection	probability	at	QPC3.	So	the	
two	dilute	beams,	one	along	Edge2	and	the	other	along	Edge3,	are	injected	to	QPC2.	Then	the	CC	𝑆m. 	between	amplifiers	
A	and	B	was	measured.	
Theoretically,	the	CC	is	written	as	

𝑆m. = −𝑆)*+- +
𝜕𝐼)*+-
𝜕𝐼)*+,

𝑆)*+, −
𝜕𝐼)*+-
𝜕𝐼)*+/

𝑆)*+/	,	 (S21)	

where	𝑆)*+/ = 2𝑒∗𝐼!𝑅)*+/:1 − 𝑅)*+/; �coth n
6∗P2
-;6\

o − -;6\
6∗P2

�	is	the	excess	tunneling	noise	at	QPC3	following	Eq.	(1).	The	
third	term	is	the	correlation	between	the	tunneling	currents	𝐼)*+- 	and	𝐼)*+/.	As	in	our	phenomenological	theory	for	the	
two-QPC	setup,	we	calculated	the	noise	𝑆)*+- 		as	

𝑆)*+- = ℱ#$%&'( × 2𝑒∗�𝐼)*+, − 𝐼)*+/�𝑅)*+-:1 − 𝑅)*+-; vcoth m
𝑒∗𝑉!
2𝑘.𝑇

p −
2𝑘.𝑇
𝑒∗𝑉!

w.	 (S22)	

The	Fano	factor	ℱ#$%&'( = 𝑆)*+-/2𝑒∗𝐼)*+-	is	calculated	by	the	CLL	theory	for	𝑅)*+- ≪ 1	and	𝑒∗𝑉! ≫ 𝑘.𝑇	as	before.	The	
non-equilibrium	correlator	in	Eq.	(S4)	has	the	multiplicative	factor	in	the	first	term,	which	describes	the	effect	of	the	
dilute	beam	injected	across	QPC1.	In	the	case	of	the	two	dilute	beams,	the	non-equilibrium	correlator	is	modified	such	

that	the	first	term	has	an	additional	multiplicative	factor	of	:1 − 𝑅)*+/ + 𝑅)*+/𝑒4-0<>$K1	(:'4:$);
32
4∗|:'4:$|	which	describes	

the	 effect	 of	 the	 dilute	 beam	 injected	 across	 QPC3.	 We	 note	 that	 the	 braiding	 phase	 factor	𝑒4-0<>$K1	(:'4:$) of	 this	
multiplicative	factor	for	the	dilute	beam	injected	across	QPC3	differs	from	the	factor	𝑒-0<>$K1	(:'4:$)	of	the	multiplicative	
factor	 for	the	dilute	beam	injected	across	QPC1,	because	the	time-domain	 loop	at	QPC2	braids	the	two	beams	in	the	
opposite	direction	to	each	other.	Using	the	modified	non-equilibrium	correlator,	 it	 is	straightforward	to	compute	the	
tunneling	current	and	noise	at	QPC2,	hence,	the	Fano	factor	ℱ#$%&'(.	
Note	 that	 in	 the	case	of	 the	perfectly	symmetric	 injection	of	𝐼)*+, = 𝐼)*+/,	ℱ#$%&'( 	diverges,	and	Eq.	 (S22)	 is	 invalid.	

However,	Eq.	(S22)	is	applicable	to	our	experimental	situation	where	there	was	about	10%	difference	between	𝑅)*+,	
and	𝑅)*+/	[Fig.	S13(b)]	so	that	both	𝐼)*+, − 𝐼)*+/	and	ℱ#$%&'(	are	finite.	
For	comparison	between	our	experimental	data	and	the	theory,	we	replace	the	differential	reflections	𝜕𝐼)*+-/𝜕𝐼)*+,	

and	−𝜕𝐼)*+-/𝜕𝐼)*+/	in	Eq.	(S21)	by	their	averaged	value	𝑅)*+-.	Then	𝑆m. 	is	obtained	by	using	𝑆)*+- 	in	Eq.	(S22),	𝑆)*+, 	in	
Eq.	(1)	of	the	main	text	and	an	equation	for	𝑆)*+/ 	corresponding	to	Eq.	(1).	This	theoretical	result	is	in	good	agreement	
with	 our	 experimental	 data	 [Fig.	 S13(b)].	 The	 excellent	 agreement	 between	 our	 phenomenological	 theory	 and	 our	
measurement	of	the	CC	𝑆m. 		strongly	supports	that	the	time-domain	braiding	process	is	the	underlying	mechanism	in	
both	the	two-	and	three-QPC	geometries.	Note	that	we	also	plot	the	non-interacting	results	from	the	Landauer-Büttiker	
formalism	with	the	trivial	partition	process	(with	𝑒∗ 	= 	𝑒/3),	

𝑆m. = −2𝑒∗𝐼!(𝑅)*+,	 − 𝑅)*+/)-𝑅)*+-:1 − 𝑅)*+-; vcoth m
𝑒∗𝑉!
2𝑘.𝑇

p −
2𝑘.𝑇
𝑒∗𝑉!

w	,	 (S23)	

as	the	red	dashed	line	in	Fig.	S13(b)	for	comparison.	
Last	but	not	least,	we	point	out	that	measurement	of	AC	𝑆. 	at	the	port	B	in	the	two-QPC	geometry	is	more	useful	for	

detecting	the	time-domain	anyon	braiding	at	QPC2	than	the	CC	𝑆m.,	especially	for	the	case	of	non-Abelian	anyons.	It	is	
firstly	because	𝑆. 	is	more	directly	related	to	the	noise	𝑆)*+- 	at	QPC2	where	the	time-domain	braiding	process	happens.	
As	shown	in	Eq.	(S16),	𝑆. 	becomes	the	same	with	𝑆)*+- 	as	the	temperature	becomes	lower.	By	contrast,	the	difference	
between	the	CC	𝑆m. 			and	𝑆)*+- 	is	not	negligible,	as	the	second	term	of	Eq.	(S19)	is	of	the	same	order	with	𝑆)*+-.	Secondly,	
in	the	most	promising	non-Abelian	FQH	states,	upstream	and	downstream	flows	coexist	along	FQH	edges.	Then,	there	
can	occur	some	side-effects	by	 the	coexistence	[S1].	The	ratio	of	 the	side-effects	compared	to	 the	main	signal	of	our	
interest	is	of	the	order	of	𝑅)*+,𝑅)*+- 	for	the	case	of	𝑆.,	but	it	is	of	the	order	of	𝑅)*+, 	for	the	case	of	𝑆m..	The	AC	SB	is	more	
robust	against	the	side-effects	than	CC	𝑆m..	
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