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Abstract 
Neurons in the hippocampus fire in consistent sequence over the timescale 
of seconds during the delay period of some memory experiments. For longer 
timescales, firing of hippocampal neurons also changes slowly over minutes 
within experimental sessions. It was thought that these slow dynamics are 
caused by stochastic drift or a continuous change in the representation of 
the episode, rather than consistent sequences unfolding over minutes. This 
paper studies the consistency of contextual drift in three chronic calcium 

10 imaging recordings from the hippocampus CA1 region in mice. Computa- 
tional measures of consistency show reliable sequences within experimental 
trials at the scale of seconds as one would expect from time cells or place 
cells during the trial, as well as across experimental trials on the scale of 
minutes within a recording session. Consistent sequences in the hippocam- 
pus are observed over a wide range of time scales, from seconds to minutes. 
Hippocampal activity could reflect a scale-invariant spatiotemporal context 
as suggested by theories of memory from cognitive psychology. 

 
 



 

Introduction 

11 When we remember a particular experience from a trip, other memories from the same 
12     trip would also come into mind. Indeed, the retrieval of an episodic memory is believed 
13     to involve recovery of the spatiotemporal context associated with that particular episode 
14     (Tulving, 1983). The hippocampus has long been implicated in episodic memory (Scoville 
15     & Milner, 1957) and it contains single neurons that are active when the animal is at a 
16     particular location within an environment (O’Keefe & Dostrovsky, 1971; Moser, Kropff, & 
17     Moser, 2008) or at a particular time point during the gap between two stimuli (Pastalkova, 
18     Itskov, Amarasingham, & Buzsaki, 2008; MacDonald, Lepage, Eden, & Eichenbaum, 2010; 
19     Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013) (Figure 1a, top). Taken together, 
20     this neural population activity can be thought of as a state of spatiotemporal context 
21     upon which memories are organized (O’Keefe & Nadel, 1978; Howard, Fotedar, Datey, 
22     & Hasselmo, 2005; Polyn & Kahana, 2008; Staresina & Davachi, 2009; Hasselmo, 2012; 
23     Eichenbaum, 2017; DuBrow, Rouhani, Niv, & Norman, 2017; Buzsáki & Tingley, 2018; 
24     Ekstrom & Ranganath, 2018; Yonelinas, Ranganath, Ekstrom, & Wiltgen, 2019). 
25 Episodic memory retrieval is organized according to spatiotemporal proximity at many 
26     different scales. When a participant has an episodic memory for an event from a particular 
27     temporal position within a list (Kahana, 1996) or spatial position within an environment 
28     (Miller, Lazarus, Polyn, & Kahana, 2013), this brings to mind events from nearby posi- 
29     tions, in time or in space. If episodic memory is indeed associated with the recovery of a 
30     spatiotemporal context (Tulving, 1983), then the effect of proximity on behavior could be 
31     caused by gradual changes in spatiotemporal context reflected in hippocampal ensembles 
32     (Manns, Howard, & Eichenbaum, 2007; Ezzyat & Davachi, 2014; Rubin, Geva, Sheintuch, & 
33     Ziv, 2015; Cai et al., 2016). In this view, memories for events close in space or time are linked 
34     because of overlap in the spatiotemporal contexts associated with those events. Sequences of 
35     time cells or place cells could serve as a spatiotemporal context; because they change slowly 
36     over time they could mediate associations between nearby events (Wallenstein, Eichenbaum, 
37     & Hasselmo, 1998; Howard et al., 2005; Hsieh, Gruber, Jenkins, & Ranganath, 2014). Thus 
38     far, time cell sequences have only been observed over a few seconds within the delay pe- 
39     riod of an experimental trial embedded in a much longer recording session (Pastalkova et 
40     al., 2008; MacDonald, Lepage, Eden, & Eichenbaum, 2011; Kraus et al., 2013). However, 
41     behavioral effects linking memories separated in time are observed over many timescales 
42     in list learning experiments (Howard, Youker, & Venkatadass, 2008; Unsworth, 2008) and 
43     can span days and weeks in memory for real-world events (Healey, Long, & Kahana, 2019; 
44     Uitvlugt & Healey, 2019). If memories across lists separated by many minutes can be linked, 
45     this suggests that hippocampal sequences should also unfold across trials over the scale of 
46     minutes. Perhaps the sequence of cells that unfolds in the moments following the beginning 
47     of a delay period of a few seconds has an analog in a sequence that unfolds over the entire 
48     recording session following the beginning of the session. 
49 A series of studies have found that the activity of hippocampal neurons does change 
50     slowly over long timescales. For example, it was reported that population neuronal activity 
51     in CA1 exhibits gradual changes over multiple trials that span minutes (Manns et al., 2007; 
52     Ziv et al., 2013; Mau et al., 2018) (Figure 1a, bottom). It has also been reported that place 
53     cell and time cell activity slowly “drift” across hours and days (Ziv et al., 2013; Mankin, 
54     Diehl, Sparks, Leutgeb, & Leutgeb, 2015; Mankin et al., 2012; Rubin et al., 2015; Mau et 
55     al., 2018; Cai et al., 2016). The observation of these slow changes with multiple recording 
56     techniques make it unlikely that they are a recording artifact. However, it is possible that 
57     this slow drift is simply caused by stochastic processes in the neural system or perhaps 
58     a gradual but continuous change in the representation of events. Stochastic mechanisms 
59     would cause changes in firing across trials but there is no reason to expect that they would 



 

60     cause the same sequence over repeated experiences (Figure 1b, bottom left). However, if 
61     slow changes are generated by the same mechanism as time cell sequences, we would expect 
62     the dynamics to be consistent across repeated experiences. In much the same way as time 
63     cell sequences can be understood as coding for the time since the delay period began, slow 
64     changes in firing across trials could contain information about the time since the recording 
65     session began. 



 

 
66 A more recent study shows evidence for such coding of progression within a session (Sun, 
67     Yang, Martin, & Tonegawa, 2020). In that study, mice were trained to run four consecutive 
68     laps to obtain a reward. Some neurons in the hippocampus CA1 show elevated activity 
69     during a particular lap, and this firing pattern is consistent across repetitions of the same 
70     task (Sun et al., 2020). However, it still remains unclear whether similar neural activity 
71     patterns can be observed in tasks without a demand to maintain the task progression. It 
72     is also interesting to examine whether other forms of temporal modulations are present in 
73     encoding the progression of the task. As will be shown in the rest of the manuscript, the 
74     answers are positive to both questions. 
75 Figure 1 describes a strategy for data analyses to distinguish consistent sequences from 
76     stochastic drifts. Consider a population of cells being recorded over two separate experi- 
77     ences. During each experience the activity of the population changes gradually. This effect 
78     can be demonstrated by measuring the correlation of the population activity patterns at 
79     different points in time. As one chooses time points further apart from one another within 
80     the experience the population becomes more decorrelated. Now, suppose that the popula- 
81     tion fires consistently from one experience to the next (Figure 1b, top left). In this case 
82     one would observe an analogous decorrelation when examining firing across different expe- 
83     riences (Figure 1b, top right). Although the two experiences could be separated by a time 
84     interval much longer than the duration of the experience itself, the population activity from 
85     a particular time point in each experience will be similar even if those time points are taken 
86     from different experiences. In contrast, if the within-experience correlation were not due to 
87     consistent sequences but, say, stochastic variability (Figure 1b, bottom left), the population 
88     would still change gradually over time within one experience. However, if the population 
89     activity simply decorrelates with time, that would also mean that one would not observe 
90     correlation between analogous time points within different experiences (Figure 1b, bottom 
91     right). 
 

[Insert figure 1 around here] 
 
92 The strategy of this paper is to evaluate whether slow changes in hippocampal activity 
93     across trials include consistent sequences extending across multiple trials. In this case, 
94     the experience in the example above would be one experimental session that consists of 
95     multiple trials. To establish the consistency of the population activity on the scale of a 
96     session, it would be necessary to compare the activity between different sessions. By the 
97     same reasoning in the example above, if the population activity from a particular time 
98     point in each session is similar even if those time points are taken from different sessions, it 
99     would indicate that the population firing is consistent between different sessions. Therefore, 

100     it requires analysis across multiple sessions across days to analyze the consistency of the 
101     neuronal dynamics over minute-level time scales. To compare to the more well-understood 
102     sequences—time cells and place cells—we apply the same analyses to the population activity 
103     within trials as well. By the same reasoning, it requires analysis across multiple sessions 
104     over tens of minutes to examine the consistency of the neuronal dynamics across seconds- 
105     level time scales. It is impossible to assess whether a sequence is consistent or not if 
106     one cannot record from the same population. Therefore, we study populations recorded 
107     using the chronic calcium imaging technique that allows identification of the same neurons 
108     across recording sessions (Ziv et al., 2013). We found that across three behavioral tasks, 
109     populations of neurons in the CA1 region of mouse hippocampus exhibit consistent dynamics 
110     both within second-long trials and across trials, spanning many minutes within a recording 
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112 

session.  

Results 

113 To distinguish consistent sequences from stochastic dynamics (Figure 1), we exam- 
114     ined the consistency of the neuronal dynamics across two timescales while mice performed 
115     reward-based navigational tasks (Mau et al., 2018; Levy, Kinsky, Mau, Sullivan, & Has- 
116     selmo, 2019; Rubin et al., 2015). In all experiments, each session consists of multiple trials, 
117     during which mice were trained to navigate through an environment to obtain rewards (Fig- 
118     ure 2). One-photon endoscope calcium imaging was used to record the activity of many 
119     neurons in the CA1 region of the hippocampus across multiple sessions that span days. 
120     Consecutive sessions are separated by at least one calendar day (see Methods section for 
121     details). Images from different sessions were cross-registered so that the activity of the same 
122     neurons could be tracked across sessions (Methods). We develop a series of computational 
123     measures for the consistency of activity over seconds-long delay intervals across trials. Not 
124     surprisingly these measures of consistency detect sequences over seconds that are consistent 
125     across trials, driven by time cells and place cells. Next, we apply the same computational 
126     measures to detect slow sequences of activity over multiple trials that are consistent across 
127     experimental sessions. To the extent these measures show the same kind of consistent dy- 
128     namics described by time cells and place cells, we will establish that hippocampal ensembles 
129     exhibit consistent sequences of activity across trials at the time scale of a session. 
 

[Insert figure 2 around here] 
 

130     Single hippocampal neurons have consistent activity across seconds and minutes 

131 We first extracted the region of interest (ROI), that is, a region of the imaging field 
132     believed to correspond to a particular neuron, from the movie obtained from calcium imag- 
133     ing (see Methods for details). Next, we plotted the normalized calcium transient density 
134     of individual ROIs against position or time within a trial. For each ROI we only included 
135     trials where it had at least one calcium transient event during the trial period examined. 
136     We observed that many ROIs have consistent activity within a trial (Figure 3a-c). For 
137     example, some ROIs always have higher activity around a particular time bin (Figure 3a, 
138     right) or location bin (Figure 3b-c, right) during each included trial. Other ROIs have 
139     higher activity at the start (Figure 3a, left) or end (Figure 3b-c, left) of each active trial. 
140     At longer time scales, similar consistent neural activity was observed when activity was 
141     plotted against trial number (Figure 3d-f, Methods). For example, some ROIs consistently 
142     increase (Figure 3d-e, left) or decrease (Figure 3f, left and 3e, right) their calcium activity 
143     across trials within a session. Other ROIs are consistently more active during particular 
144     trials within the session (Figure 3f, right). 
 

[Insert figure 3 around here] 
 
145 To quantify the extent to which single neurons fire consistently across the population, 
146     we computed a firing consistency score for each neuron, which is a number between zero and 
147     one that represents the consistency of that neuron’s calcium dynamics between pairs of trials 
148     or sessions compared to chance (see Methods for details). We found that in all experiments 
149     and for both timescales, the distributions of the firing consistency score are significantly 
150     skewed towards one compared to those obtained from the surrogate data where the mean 
151     neural activity during different trial bins was randomly shuffled independently for each ROI 



 

152     (Figure 4). A Kolmogorov-Smirnov test between the distribution from true and shuffled



 

 

153     data showed reliable differences in all cases. This test statistic is the maximum distance 
154     between the cumulative distribution functions of the two groups of data, and therefore 
155     can be regarded as an effect size that is independent of the number of data points. As a 
156     comparison, the same statistic between two Gaussian distributions separated by 1 standard 
157     deviation is about 0.38. In order to parallel the more frequently used Cohen’s d measure 
158     for the effect size, we also computed the number of standard deviations d that the two 
159     Gaussian distributions would need to be separated by for the K-S test statistic to be the 
160     same as the ones seen in our data. The results for the above statistical tests are: panel a: 
161 p < .001, D=0.62, n = 1860, d=1.76; panel b: p < .001, D=0.61, n = 4078, d=1.72; panel c: 
162 p < .001, D=0.52, n = 1202, d=1.42; panel d: p < .001, D=0.16, n = 1338, d=0.41, panel e: 
163     p < .001, D=0.13, n = 3573, d=0.33; panel f: p < .001, d=0.07, n = 1675, d=0.18.  This 
164   indicates there are significantly more neurons that have consistent dynamics both across 
165  trials and across sessions than would be expected by chance. The fraction of neurons with a 
166 firing consistency score greater or equal to 0.9 among all the neurons included in the analysis 
167 is: panel a: 1324/1860 = 71.2%; panel b: 2848/4078 = 69.8%; panel c: 728/1202 = 60.6%; 
168 panel d: 324/1338 = 25.6%; panel e: 816/3573 = 22.8%; panel f: 261/1675 = 15.6%. 

 
 
 
[Insert figure 4 around here] 
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We further confirmed the genuity of this robust long timescale firing by adapting the 
temporal information metric which was previously used for identifying hippocampal “time 
cells” on the timescale of seconds (Mau et al., 2018). Briefly, a temporal information score 
between 0 and 1 was computed based on the Shannon entropy, where 0 indicates that the 
single cell activity does not reliably carry information about trial number within a session 
compared to neural activity shuffled across trials (see Methods for details). The distribution 
of the temporal information score is significantly (p < 0.001, Kolmogorov-Smirnov test) 
different between real and shuffled data in all three datasets (Supplementary figure S20). 

There could be different types of single cell dynamics that contribute to the observed 
high firing consistency across repeated experiences. For example, some cells could have 
gradually increasing or decreasing activity, or they could exhibit non-monotonic dynamics 
over time such as those of time cells. To disentangle these two types of single cell dynamics, 
we used a similar method as above to construct a firing linearity score for each neuron. The 
right panels of Figure 4 show the joint scatter plot of the firing consistency score and the 
firing linearity score for each of the experiments. As can be seen, there is a wide distribution 
of firing linearity across the population. This indicates that there is a diversity of consistent 
temporal dynamics both across a trial and a session. 

We also found that the firing consistency scores on the timescale of minutes and seconds 
are not significantly correlated with one another across neurons for the linear track task 
(Supplementary figure S18c, Kendall’s τ : τ (1099) = 0.01, p = 0.6). They are weakly but 
significantly correlated for the treadmill running and the spatial alternation tasks (Supple- 
mentary figure S18a, b.  Kendall’s τ :  τ (1245) = 0.13, p < 10−8  for a, τ (3019) = 0.079, p < 
10−8  for b).  This result implies that the second-scale neurons and the minute-scale neurons 
are from two independent but overlapping populations in the linear track task, and they 
show slightly more than chance overlap in the treadmill running and the spatial alterna- 
tion tasks. In either case, there exist neurons whose dynamics are jointly modulated by two 
functions of time, one of which changes on the timescale of seconds and one on the timescale 
of minutes. In other words, there is a multiplexed code for these two different time scales. 

Hippocampal population dynamics are consistent both over seconds and min- 
utes 

The single cell analysis above left out trials or sessions where a given neuron is not 
active (does not have any calcium transient during the selected time period). To examine 
whether the consistency is present when the full ensemble of neurons are considered, we 
next investigated the consistency of the population-level dynamics across trials and sessions. 
To this end, we computed the cosine similarity between pairs of population vectors from 
different trials (Figure 5a-c) or sessions (Figure 5d-f) and assembled them into a matrix 
(see Methods for details). We found that in all experiments and across both timescales, the 
matrices exhibit a pattern where the values are highest along the diagonal, which indicates 
that the population dynamics are consistent across repeated trials and sessions (c.f., Fig- 
ure 1b). Statistical significance was evaluated using a permutation test. A “diagonalness 
score” was computed to quantify the degree to which a matrix shows a diagonal pattern 
(see Methods for details). As a result, the diagonalness score for all matrices are greater 
than the matrices obtained from 10,000 random shuffles of the data. We also computed the 
effect size as the z-scored statistic with respect to the shuffled distribution of diagonalness 

 
213     scores. The values are: Fig 5a: 29.0, Fig 5b: 18.1, Fig 5c: 50.8, Fig 5d: 14.8. Fig 5e: 41.9, 
214     Fig 5f: 6.5. Notably, for the across-trial similarity matrix in the treadmill running task, the 
215     high-valued region spreads out later in the trial, indicating that the population dynamics 



 

216     slow down as time progresses (Figure 5a). This is consistent with the observation in the 
217     original study that the number density of sequentially-activated time cells goes down in 
218     time (Mau et al., 2018). 
219 If the population dynamics are consistent across sessions, it should be possible to decode 
220     the trial that the animal was in from the population activity. Moreover, this decoder should 
221     be generalizable across sessions, meaning that a decoder trained on a subset of sessions 
222     should be able to predict the trial number on the rest of the sessions. To verify this, we 
223     trained a Linear Discriminant Analysis (LDA) classifier to predict the trial bin number 
224     within a session using the neural activity of all the other sessions. The posterior probability 
225     given by the LDA classifier for each trial bin was plotted against the actual trial bin (Figure 
226     6, middle). All three heatmaps show significant diagonal patterns. Statistical significance 
227     was evaluated using a permutation test similar to the one used for the cosine similarity 
228     measure (Figure 5, see Methods for details). The number of shuffles with higher diagonalness 
229     scores than the true data is: Fig 6a: 0/1000, Fig 6b: 0/1000, Fig 6c: 5/1000. An effect 
230     size was computed based on the z-scored statistic with respect to the shuffled distribution 
231     of diagonalness scores, same as for the cosine similarity measure above. The values are: 
232     Fig 6a: 4.6, Fig 6b: 11.6, Fig 6c: 2.6. Moreover, the posterior probability given by the LDA 
233     for the correct trial bin is above chance for all animals in all tasks (Figure 6, right). These



 



 

   234     results show that the LDA classifier trained on all but one sessions can accurately predict 
235     the trial bin number of the left-out session. In other words, the minute-scale population 
236     dynamics over multiple trials are consistent between different sessions. Taken together, 
237     both the cosine similarity and the LDA decoding analysis confirm and reinforce the result 
238     obtained from the single cell analysis (Figure 4) that the population exhibits consistent 
239     dynamics over the timescale of both seconds and minutes. 

240 Discussion 

241 In this paper, we show that the firing dynamics of hippocampal neurons are consistent 
242     over both seconds and minutes. The novel observation is that slow dynamics over minutes 
243     include slow sequences and are not simply random drifts (Figure 5d-f, Figure 1b). This 
244     population effect results from a significant proportion of neurons with consistent dynam- 
245     ics over repeated experiences (Figure 4). These neurons have both monotonic and more 
246     complex activity modulations across each experience (Figures 3 and 4 and Supplemen- 
247     tary figures S1 and S2). Therefore, the hippocampal neurons exhibit consistent dynamics 
248     over two nested timescales—changing both systematically within a trial and systematically 
249     within a session—in each of these experiments. 
250 As seen above, the effect sizes for the population analysis are much higher than those 
251     for the single cell analysis. This is because the effect size for the single cell analysis is 
252     more affected by the variability across cells in terms of their firing consistency, whereas the 
253     one for the population analysis measures the significance of the firing consistency on the 
254     population level, therefore less affected by single cell variability. 
255 Multiple metrics were used to quantify the firing consistency on the single cell and 
256     population levels. The single cell rank metric (Figure 4) directly measures the correlation 
257     between the temporal firing patterns of two experiences. The temporal information metric 
258     (Figure S20) measures the temporal modulation of the average firing across experiences, 
259     and is commonly used to identify second-scale time cells (e.g. Mau et al., 2018). The two 
260     population analyses also serve slightly different purposes: the cosine similarity metric (Fig- 
261     ure 5) directly measures the consistency of the population temporal firing patterns across 
262     two experiences. On the other hand, the LDA classification accuracy metric (Figure 6) 
263     measures the ability for the same downstream population to linearly read out elapsed time 
264     on the scale of seconds across trials, and to read out task epoch on the scale of minutes 
265     across sessions. 
266 This result suggests that the spatiotemporal context as represented by population of 
267     neurons in the hippocampus has meaningful dynamics over multiple timescales, from sec- 
268     onds to minutes. The sensitivity to multiple timescales may enable the hippocampus to 
269     adaptively encode natural stimuli, which vary at many different scales (Voss & Clarke, 
270     1975; Hasson, Yang, Vallines, Heeger, & Rubin, 2008) and account for the self-similar 
271     structure in hippocampal correlations (Meshulam, Gauthier, Brody, Tank, & Bialek, 2019). 
272     The responsiveness of hippocampal dynamics provides a constraint for behavioral models 
273     of human memory. Models that rely on boundaries and event segmentation (Farrell, 2012; 
274     Franklin, Norman, Ranganath, Zacks, & Gershman, 2020) must be able to construct and 
275     utilize segments over multiple nested scales. Similarly, neural models for sequence gener- 
276     ation (Buzsáki & Tingley, 2018; Rajan, Harvey, & Tank, 2016; Howard et al., 2014) must 
277     have the capacity to generate sequences at many different scales. 
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A recent study shows that there are neurons in the hippocampus CA1 of mice that 
encode the number of laps that the animal has traversed in a task where they have to run 
four consecutive laps to obtain a reward (Sun et al., 2020). These “lap cells” also constitute 
a reproducible hippocampal sequence, but our results differ from this study in three aspects. 
First, while some of the neurons reported in our work indeed show elevated activity for a 
particular trial bin, analogous to the “lap cells” in Sun et al., the majority of neurons that 
we observed exhibit other types of temporal modulations (Figure 3d-f and Supplementary 
figures S1- S2). Second, the information about trial number is beneficial for the mice in 
the task of Sun et al., yet is not useful for the mice in the tasks we analyzed. Yet, slow 
dynamics are still observed. Third, the timescale of the slow dynamics in our study is an 
order of magnitude longer than that observed in Sun et al.. 

Possible causes of slow dynamics 

Possible non-physiological causes. There are recording artifacts specific to calcium 
imaging that could conceivably cause slow dynamics. For example, photobleaching could 
cause the calcium fluorescence signal to decrease gradually during each imaging session or 
gradual heating of the brain could potentially produce stereotypical changes in the apparent 
calcium fluorescence signal for each ROI over the course of an imaging session. It is difficult 
to reconcile these artifactual accounts of slow dynamics with non-monotonic patterns of 
firing over the session or the similarity between effects observed across trials to the effects 
within trial. The findings within-trial are quite consistent with results using extracellular 
electrodes. We conclude that it is likely that the slow dynamics are physiological in origin. 

Variables correlated with time during a session. It is possible that the slow 
dynamics observed in the hippocampus are not due to memory per se but reflect consistent 
slow dynamics in the environment or internal state of the animal over the course of the 
recording session. There are several possibilities for such variables. For example, the satiety 
of the animal presumably decreases over the course of each recording session. Indeed, it has 
recently been reported that thirst level has a dramatic impact on the population activity in 
multiple brain regions in mice over the course of minutes (Allen et al., 2019). Moreover, a 
recent study shows that slow drifts over minutes in area V4 and prefrontal cortex of monkey 
are correlated with systematic changes in animal’s behavior during a perceptual decision 
making task (Cowley et al., 2020). In addition, microdialysis of acetylcholine shows higher 
levels of acetylcholine when an animal is first removed from the home cage and placed in a 
task (Acquas, Wilson, & Fibiger, 1996). Acetylcholine levels decrease over time on the scale 
of minutes and have been shown to depolarize hippocampal neurons (Cole & Nicoll, 1984) 
and increase firing rate (Fu et al., 2014), consistent with the cells that gradually increase or 
decrease their activity (Figure 3, 4). In all of these cases, the sequential activation of cells 
over the recording session would require that the hippocampus codes for a monotonically 
changing variable with a sequence of receptive fields. Indeed, this kind of pattern has been 
observed for hippocampal receptive fields as a function of smooth changes in frequency of 
a behaviorally-relevant tone (Aronov, Nevers, & Tank, 2017). 

In some sense the empirical story for very slow sequences is analogous to the empirical 
story for place cells or time cells shortly after their initial report. Although a consensus has 
emerged that place cells and time cells express spatial and temporal relationships between 
events in the service of memory (e.g., Eichenbaum, 2017), this view only emerged after 
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extensive empirical studies. For instance, a neuron that fires when the animal is in a 
specific position of an environment could be responding to the visual stimuli available at 
that location, the particular configuration of auditory stimuli available, or olfactory cues 
present on the track. Early studies ruled out a series of possible confounds of spatial 
position (e.g., Quirk, Muller, & Kubie, 1990; Save, Cressant, Thinus-Blanc, & Poucet, 1998). 
Similarly, it is possible that initial reports of time cells could have been solely a reaction to 
a behavioral confound during the delay such as a stereotyped behavior. However, time cells 
have been observed in head-fixed animals and different stimuli trigger distinct sequences 
(e.g., Pastalkova et al., 2008; Taxidis et al., 2020; Cruzado, Tiganj, Brincat, Miller, & 
Howard, 2020), ruling out most possible confounds. 

Slow dynamics as memory for the past. It has been clearly established that hip- 
pocampal time cells express memory for the time and identity of past events (e.g., Pastalkova 
et al., 2008; Taxidis et al., 2020; Cruzado et al., 2020). The most interesting possible cause 
of the slow dynamics observed here is that they reflect the same computational mechanism, 
but over much slower time scales than within-trial time cells. How might the same compu- 
tational mechanism generate neural dynamics across a wide range of timescales? It has been 
suggested (Rolls & Mills, 2019; Shankar & Howard, 2012) that sequential activity across 
multiple timescales could originate from cells that show exponential decaying activity over 
the same range of timescales, which have been reported in two recent studies. Tsao et al. 
(2018) observed slow changes in the firing of neurons in lateral entorhinal cortex (LEC). 
In that study, LEC neurons changed their firing rate abruptly and then relaxed back to 
baseline with a broad range of decay rates. For instance, upon entry to a particular envi- 
ronment, a neuron might rapidly increase its firing rate and then decay exponentially back 
to baseline over several minutes. Other neurons ramped over the entire recording session 
so there was a variety of decay rates across neurons. This slowly-varying signal in LEC at 
the scale of minutes could be a cause of the slow sequences we observed in hippocampus. 
In another study, Bright et al. (2020) studied neurons in monkey EC during a visual task. 
After an image was presented, the neurons changed firing rate then gradually relaxed back 
to baseline with a variety of decay rates. Because there was a variety of relaxation rates it 
was possible to decode time since image onset over several seconds (see also Hyde & Strow- 
bridge, 2012). Very long-lasting firing in EC has been observed in vitro (Egorov, Hamam, 
Fransén, Hasselmo, & Alonso, 2002) and is believed to be caused by the nonspecific calcium- 
sensitive (CAN) cationic current. Computational models show that the CAN current can 
also induce slowly decaying firing with a variety of decay rates in a simple integrate-and-fire 
neuron model (Tiganj, Hasselmo, & Howard, 2015). Computational models have shown 
that the temporal information carried by slowly-decaying activity can be used to generate 
a population of sequentially-activated time cells (Shankar & Howard, 2012; Howard et al., 
2014; Liu, Tiganj, Hasselmo, & Howard, 2019; Rolls & Mills, 2019; Liu & Howard, 2020). 
Of course, the definitive test of whether the slow hippocampal sequences reflect a very slow 
form of memory is whether the identity of events on previous trials can be decoded. This 
analysis is not feasible given the design of the tasks analyzed here, but similar analysis 
have been done on the neural activity from other cortical regions (e.g. Schoenbaum & 
Eichenbaum, 1995b, 1995a; Bernacchia, Seo, Lee, & Wang, 2011; Morcos & Harvey, 2016). 

In summary, it was shown that the slow neuronal activity on the timescale of minutes 
are consistent across repeated sessions. This slow dynamics is most likely related to either a 
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gradual change of the animal’s internal state, or a gradual evolution of the animal’s memory 
trace about past events, or both. The exact function of and the mechanism that generates 
this slow consistent activity remains to be elucidated in future experiments. 

Methods 

Behavioral tasks and calcium imaging 

The treadmill running task. All procedures were in compliance with the guidelines 
of the Boston University Animal Care and Use Committee. Four mice were trained to 
traverse a rectangular track followed by running in place on a motorized treadmill for 10 s 
at a constant velocity to receive sucrose water reward after traversing an additional part 
of the track (Figure 2, Experiment 1). During each session, the mice completed between 
35-37 trials. A total of 4 sessions were performed for each mouse. 

Mice received infusions of AAV9- Syn-GCaMP6f (U Penn Vector Core). Imaging data 
in dorsal CA1 were acquired using a commercially available miniaturized head-mounted 
epifluorescence microscope (Inscopix). The raw video was pre-processed using an image 
segmentation algorithm called Tenaspis (D.W. Sullivan et al., 2017, Soc. Neurosci., ab- 
stract, software available at https://github.com/SharpWave/TENASPIS) to extract ROIs 
and assign calcium transient events to each ROI. This algorithm is designed to better dis- 
tinguish between overlapping ROIs. The calcium transients it detects correspond to the 
rising phase of the calcium fluorescence. 296-1136 ROIs were identified during each session. 
There is a total of 4 imaging sessions spanning 4 calendar days. 

In order to identify the same neurons across recording sessions that are days apart, 
ROIs were cross-registered across days. Briefly, this was done by first aligning the field of 
view of each session to the first session using vasculature as stationary landmarks via image 
registration software from MATLAB’s Image Processing Toolbox, assuming rigid geomet- 
ric transformation. Then, cells were successively registered from each session to the next 
session (Day 1 to Day 2, Day 2 to Day 3, etc.). Cells were registered by searching for the 
nearest ROI with a threshold that the ROI centroids must be within 3.3 microns apart. 
To ensure that neurons do not drift excessively across days, the first day’s neurons were 
registered with the last day’s neurons, and any registrations between Day 4 and Day 1 that 
are different from Day 4 and Day 3 were discarded. Cells are stably tracked across sessions 
using this method, as illustrated in the original paper (Figure 4, 5 and S3 in Mau et al., 
2018). More details about the behavioral setup and the calcium imaging experiment can 
be found in the Methods section of Mau et al. (2018). 

 
The spatial alternation task. All procedures presented here were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Boston University. Four mice 
received infusions of AAV9-Stn134 GCaMP6f (University of Pennsylvania Vector Core, ob- 
tained at a titer of 4 1013GC/mL and 135 diluted it to 5 6 1012GC/mL with 0.05 M 
phosphate buffered saline). They were trained on a spatial alternation task, during which 
they alternated between “study” and “test” trials. On study trials, mice were placed on the 
center stem of maze, ran to the crossroads, where a removable barrier forced them to run 
down one of the two return arms and received a reward of chocolate sprinkle. They were 
then moved into the delay area located at the bottom of the center stem, waited through a 
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20-second delay, and the delay barrier was lifted to start the test trial. On a test trial, mice 
again ran up the center stem to the crossroads but this time there was no barrier and they 
had to remember the direction they traveled on the study trial and turn to the return arm 
opposite to the preceding study trial in order to receive a reward. They then moved to the 
delay area, and were placed in their home cage to wait through a 15-25 second inter-trial 
interval while the next study trial was set up (Figure 2, Experiment 2). Mice completed 
between 25 and 40 study-test trial pairs per session. Each of these trial pairs is considered 
a “trial” in the analysis in the main text. There is a total of 9-11 imaging sessions spanning 
up to 17 calendar days 

The experimental procedures for calcium imaging and the data pre-processing pipeline 
are the same as the treadmill running task. 1149-3165 ROIs were identified for each ses- 
sion. The cell cross-registration procedure is slightly different from the treadmill running 
task. Sessions were aligned to a “base” session from the middle of the recording schedule 
using 25-40 “anchor” cells. Cells with centers within 3 microns were identified as the same 
cell. Cells are stably tracked across sessions using this method, as illustrated in the original 
paper (Figure 1 and Supplemenatary Figure 1 in Levy et al., 2019). More details about the 
experimental setup can be found in Levy et al. (2019). 

 
The linear track task. All procedures were approved by the Weizmann Institute 

IACUC. Three mice (2 were injected with AAV2/5-CaMKIIa-GCaMP6f and one was a 
Thy1-GCaMP6f transgenic; Jackson stock number 025393) were trained to run back and 
forth on an elevated 96 cm long linear track. They received water sweetened with lemon 
flavored fruit juice concentrate at each end of the track. An overhead camera (DFK 33G445, 
The Imaging Source, Germany) was used to record mouse behavior. Each session consisted 
of five 3-min trials with 3-min intertrial intervals. There are 7-8 imaging sessions conducted 
every other day for each mouse. Sessions are in the morning and the afternoon in alternation. 

An integrated miniature fluorescence microscope (nVistaHD, Inscopix) was used to ob- 
tain the imaging data from the CA1 region of the hippocampus. Imaging data was pre- 
processed using commercial software (Mosaic, Inscopix) and custom MATLAB routines as 
previously described in Ziv et al., 2013. Spatial filters corresponding to individual ROIs 
were first identified using a cell-sorting algorithm that utilizes principal component analysis 
and independent component analysis (PCA and ICA, Mukamel, Nimmerjahn, & Schnitzer, 
2009) and then subjected to further manual cell sorting (see the “Materials and methods” 
section of Rubin et al. (2015) for more details). Calcium transient events were identified 
when the amplitude of the calcium traces dF crossed a threshold of 5 median absolute 
deviations (MAD). Further measures were taken to avoid the detection of multiple peaks 
as well as the spillover of the calcium fluorescence to neighboring cells. More details about 
the method can be found in the “Materials and methods” section of Rubin et al. (2015) 

Registration of cells across sessions was performed by first aligning the field of view 
in each session to the first session and then computing the spatial correlation between 
ROI centroids in the reference coordinate system. Pairs with spatial correlation > 0.7 or 
distance < 5 µm were registered as the same neuron. Cells can be stably tracked over days, 
as illulstrated in the original article (Figure 1 and Figure 1-figure supplment 3 in Rubin et 
al., 2015). For the full detail on the experimental setup please refer to the “Materials and 
methods” section of Rubin et al., 2015. 



 

 
 

455 

 

456 
 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 
 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 
 

495 

496 

497 

498 

Data analysis methods 

Coarse-graining of calcium activity. 
Coarse-graining for the across session dynamics. To extract the slow neuronal 

dynamics across multiple trials while filtering out the fast within-trial dynamics, the neural 
activity was first temporally coarse-grained before further analysis. When comparing a pair 
of sessions, the session with more trials was first truncated to have the same number of trials 
as the other session. Then, all the remaining trials within a session were evenly divided into 
5 trial bins by using the array_split function in Numpy. Then the neural activity for each 
ROI is the calcium transient density averaged over that trial bin. Therefore, the temporally 
coarse-grained activity of an ROI n during a session i was represented by a time series with 
length 5: 𝑣𝑣𝑛𝑛,𝑖𝑖 =  �𝑣𝑣𝑛𝑛,𝑖𝑖,1, 𝑣𝑣𝑛𝑛,𝑖𝑖,2, 𝑣𝑣𝑛𝑛,𝑖𝑖,3, 𝑣𝑣𝑛𝑛,𝑖𝑖,4,𝑣𝑣𝑛𝑛,𝑖𝑖,5�. Furthermore, since we are interested in 
the temporal modulation of the neural activity rather than the absolute magnitude of the 
activity, the coarsed-grained activity of each cell was z-scored across trial bins. We chose 
5 as the number of time bins within a session since each session in the linear track task 
consists of 5 running trials (Figure 2, Experiment 3), and we wish to keep the way trials 
are divided consistent across experiments. Similar results were obtained for the treadmill 
running task and the spatial alternation task by using 10 trial bins. Furthermore, we only 
averaged over the calcium activity during time periods when the animal’s behavior is under 
experimental control. In the treadmill running task, the time periods used are when the 
animal is running on the treadmill for 10 seconds. In the spatial alternation experiment, 
the time periods used are when the animal is running along the start arm. In the linear 
track experiment, the time periods used are when the animal’s position is within the middle 
60% of the linear track. 

Coarse-graining for the within-trial dynamics. To extract the within-trial neu- 
ronal dynamics, coarse-graining was done in a similar way by computing the calcium tran- 
sient density over 10 time bins or location bins within each trial. For the treadmill running 
task, calcium event rate was averaged over each second during the 10-second running pe- 
riod. For the spatial alternation task, the start arm was evenly divided into 10 location 
bins and total number of calcium transient events within each bin divided by the amount 
of time the animal spent in that bin was computed. Unless otherwise specified, all analysis 
was performed separately for the two task epochs (study and test) and two trial types (turn 
left and turn right) and the results were averaged. For the linear track task, the within-trial 
neural activity was computed by first computing for each individual run the number of 
calcium transient events within each location bin divided by the amount of time the animal 
spent in that bin, and then averaging this quantity over all runs within a 5-minute trial. 
This was done for the two running directions separately, and the results were averaged. The 
10 location bins span the middle 30% of the track. We chose the middle 30% of the linear 
track because this is similar to the length of the start arm in the spatial alternation task. 
Lastly, for all experiments, the activity of each neuron was z-scored across all spatial or 
time bins for each trial. 

Population analyses. To quantify the consistency of the population dynamics across 
sessions (Figure 5d-f), we computed the cosine similarity between pairs of population activ- 
ity vectors during different sessions after they were coarse-grained and z-scored as described 
above. We then built a matrix where each element represents the cosine similarity between 
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499     a pair of population vectors at two trial bins during two different sessions, averaged over all 
500     pairs of sessions and all animals. 
501 To quantify the consistency of the population dynamics across trials (figure 5a-c), popu- 
502     lation vectors were computed by averaging neural activity over time or location bins within 
503     each trial, as described above. Then a similar correlation matrix was constructed where 
504     each element is the cosine similarity between a pair of population vectors from different 
505     trials. 
506 To test that the matrix shows a significant diagonal pattern, neural activity across 
507     all bins within each session (Figure 5d-f) or trial (Figure 5a-c) was shuffled 10000 times 
508     independently for each neuron and matrices from this shuffled data were constructed. We 
509     characterized the degree to which each matrix shows a diagonal pattern by an index d, 
510     which equals the difference between the average value of the near-diagonal matrix elements 
511     to that of the off-diagonal matrix elements. The near-diagonal matrix elements are those 
512     whose row and column indices are differed by less than half the dimension of the matrix. 
513      Mathematically, d =< 𝑀𝑀𝑖𝑖𝑖𝑖 >|𝑖𝑖−𝑖𝑖|>𝑁𝑁2

 − < 𝑀𝑀𝑖𝑖𝑖𝑖 >|𝑖𝑖−𝑖𝑖|≥𝑁𝑁2
 , where N  is the dimension of the 
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and indicates the mean. Then we counted how many matrices constructed from the 
shuffled data have a value d greater than the matrix obtained from the true data. As a 
result, none of the 10000 matrices from the shuffled data has a higher d than the matrices 
in Figure 5. 

The same method was used to quantify the significance of the diagonal patterns of the 
matrices obtained from the decoding analyses (Figure 6), except that the shuffling was done 
1000 times. 

Firing consistency score. To assess the consistency of the single neuron dynamics 
across repeated trials or sessions, we computed a firing consistency score for each neuron. 
For each cell n and each pair of sessions or trials (for example i and j), we computed 
the Pearson correlation coefficient between the coarse-grained activity vectors vn,i and vn,j 
obtained from the method described above. Then we shuffled the entries in each activity 
vector and computed the Pearson’s correlation coefficient again. This was repeated for 100 
times. The Pearson correlation coefficients from all pairs of sessions (or trials) were then 
averaged to obtain a mean Pearson correlation coefficient across pairs of sessions, for the 
true data and each shuffle. For the second-level scores (Figure 4a-c), the Pearson correlation 
coefficients were only computed between pairs of trials with the same trial type. The firing 
consistency score was computed as the percentile where the true mean Pearson correlation 
is at among all the shuffles (if there are multiple shuffles that yield the same Pearson’s 
correlation as the true data, the median percentile was used). Sessions or trials where the 
neuron does not have any calcium transient event during the selected time period were 
excluded from the analysis. 

Firing linearity score. To disentangle the gradually ramping/decaying activity from 
more complex temporal modulations, we computed a firing linearity score for each neuron. 
For a given neuron n and session (or trial) i, we fitted a linear model as a function of 
the bin number for the coarse-grained activity vn,i of that neuron. The F-statistic of this 
linear model was computed along with those obtained from 100 shuffled activity vectors 
(shuffling was performed in the same way as in computing the firing consistency score). 
The F-statistics for both the true and shuffled data were then averaged across all sessions 
(or trials) to obtain a mean F-statistic for the true data and for each shuffle. The firing 
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linearity score was computed as the percentile of the true mean F-statistic among all the 
shuffled mean F-statistic was computed (if the F statistic of multiple shuffles equal the true 
F statistic, the median percentile was used). For each neuron, sessions (or trials) where no 
calcium transients were observed were excluded from the analysis. 

Temporal information score. To assess the single cell basis for the coding of trial 
number, the temporal information metric, which was used as a criteria for identifying hip- 
pocampal “time cells” (Mau et al., 2018), was adapted to identify cells that robustly carry 
information about trial number during a session. First, the average activity during each 
trial bin was computed (see “Coarse-graining for the across session dynamics”. The z- 
score step was not performed), and further averaged across sessions. This results in a 
time series of length N where N is the number of trial bins (N = 5 in our analysis). 
vn =  vn,1, vn,2, vn,3, vn,4, vn,5 .   Then the temporal information for neuron n is the negative 
Shannon entropy of the normalized time series 

 
 TI(n) =  ∑ 𝑝𝑝𝑛𝑛,𝑘𝑘log𝑝𝑝𝑛𝑛,𝑘𝑘

𝑁𝑁
𝑘𝑘=1 , 

where  𝑝𝑝𝑛𝑛,𝑘𝑘 =  
𝑣𝑣𝑛𝑛,𝑘𝑘

∑ 𝑣𝑣𝑛𝑛,𝑘𝑘
𝑁𝑁
𝑘𝑘=1
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If a cell is not modulated by trial number, or it is modulated in a way that is not 
consistent across sessions, its session-averaged activity 𝑣𝑣𝑛𝑛,𝑖𝑖 =  �𝑣𝑣𝑛𝑛,𝑖𝑖,1, 𝑣𝑣𝑛𝑛,𝑖𝑖,2, 𝑣𝑣𝑛𝑛,𝑖𝑖,3, 𝑣𝑣𝑛𝑛,𝑖𝑖,4, 𝑣𝑣𝑛𝑛,𝑖𝑖,5� 
would be weakly modulated by trial number. Since the Shannon entropy is the largest 
for uniform probability distributions, the TI (which is the negative Shannon entropy) 
would be small. The TI was then compared with the TIs of 1000 shuffles where neural 
activity was randomly shuffled across trial bin number before averaging over sessions, and 
the percentile of the true TI among all the shuffled was defined as the “temporal 
information score”. 

 

Data availability 

The data that support the findings of this study are available from the corresponding 
author upon reasonable request. 
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Figure captions 

 
Figure 1 . Distinguishing slow consistent sequences from random drifts. a. Top: 
The firing of time cells changes across seconds in sequences that are consistent across tri- 
als (left), which contributes to the decorrelation of population activity pattern over the 
timescale of seconds (right). Bottom: The firing of hippocampal neurons also changes 
slowly over trials (right), but it is not known if this is driven by consistent sequences on 
the timescale of minutes (left). b. Two possibilities for the nature of the slow dynamics 
over minutes. Top: it may reflect the animal’s experience. If so, the neural activity would 
be similar if the animal goes through the same experience twice (left), analogous to the 
sequences on the timescale of seconds. In this case, the correlation between a pair of pop- 
ulation vectors from different experiences will decay as the difference in their time, each 
within its experience, increases (right). Bottom: alternatively, the slow dynamics may be 
solely driven by the stochastic noise in neural systems and therefore drift randomly during 
different experiences (left). In this case, the correlations described above would not have 
any pattern (right). 

 

Figure 2 . Two timescales in the structure of the experiments. For each experiment 
studied in this paper, the animals are trained to perform some task for several seconds-long 
trials in a recording session spanning tens of minutes. The calcium activity of the same 
neurons are recorded across sessions. During the treadmill running task (Experiment 1), 
mice are trained to run on the treadmill for 10 seconds before going to the opposite side of 
the maze to collect a water reward. The mice perform the same task for tens of trials each 
session for a total of around 20 minutes. For the spatial alternation task (Experiment 2), 
mice are trained to alternate between left and right turns in a T-maze to collect food 
rewards. Each trial consists of a study and test phase where mice have to turn to opposite 
directions at the choice point. Mice perform tens of trials for a total of around 30 minutes 
during each session. For the linear track experiment, mice are trained to run back and forth 
on a linear track to collect water rewards at both ends of the track. Each trial is about 
3 minutes long and is separated by 3-minute resting periods where mice are placed in a 
separate box.  Each session consists of 5 pairs of running and resting trials for a total of 
30 minutes. See Methods section for more details of each experiment. 

 
Figure 3 . Many hippocampal neurons exhibit consistent dynamics across seconds 
and across minutes. a-c. Example neurons with consistent dynamics across trials for 
each of the experiments. In a, the 10-second running period is evenly divided into 10 time 
bins. In b, the start arm of the maze is evenly divided into 10 location bins. In c, the linear 
track is evenly divided into 10 location bins, and neural activity is averaged over all runs 
within a 3-minute trial. See Methods for details. d-f. Example neurons with consistent 
activity across sessions. Trials within each session are evenly divided into 5 trial bins. 
Each line represents the z-scored calcium transient rate over one trial/session. Darker lines 
indicate earlier trials (for a-c)/sessions (for d-f). Inactive trials/sessions are not shown. See 
Supplementary figures S1 and S2 for more example neurons. 

 

Figure 4. Many hippocampal neurons have consistent responses across seconds 
and across minutes. For each neuron, a firing consistency score was computed to estimate 
how consistent the single cell dynamics are for within trial dynamics (a-c) and for across- 
trial dynamics (d-f). The histograms show the distribution of firing consistency score 
relative to a surrogate distribution. To the extent these distributions differ, one can conclude 
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that there are consistent sequences. To evaluate the degree to which dynamics were simply 
monotonic changes in firing rate, we also computed a firing linearity score. The scatter 
plots show the consistency score and linearity score for each neuron. Red dots indicate 
the example single neurons shown in Figure 3. L and R refer to the example neuron 
on the left and right of each panel in Figure 3, respectively. See Methods for more details. 
Supplementary figures S3-S17 show the same analyses for each trial type, session and animal. 

 
Figure 5. Population dynamics in the hippocampus are consistent across both 
seconds and minutes. a-c. Consistent population dynamics within seconds-long 
trials. Each element of the matrix is the cosine similarity between a pair of population 
vectors at different binned locations within a trial, average over pairs of trials, trial types (for 
b and c), sessions and animals. Critically, the population vectors are taken from the same 
time or location bin, but from different trials. See Methods for the details of how binning 
was performed for the different tasks. All three experiments (a: treadmill task, b: spatial 
alternation, c: linear track) show higher correlation along the diagonal, indicating that the 
population goes through a consistent sequence within each trial. This is as we would expect 
from the known properties of time cells (a) and place cells (b and c). d-f. Consistent 
population dynamics across trials. Similar to a-c, except each element of the matrix 
is the cosine similarity between a pair of population vectors from two different sessions, 
averaged over all pairs of sessions and animals. Rather than computing population vectors 
from bins of time or space within a trial, population vectors were computed by averaging 
over entire trials (see Methods for details). The similarity between population vectors from 
different recording session was then computed for different pairs of trial bins. The elements 
of all three matrices are highest on the diagonal and gradually decrease off-diagonal, similar 
to the matrices over a trial (a-c). This indicates that the population dynamics are also 
consistent across minute-long sessions. 

 
Figure 6 . Cross-session decoding for trial bin number. An Linear Discriminant 
Analysis (LDA) classifier was trained to predict the trial bin number within a given session 
from the mean population neural activity during that trial bin. The classifier was trained 
on all but one sessions and tested on the left-out session. Middle: all three heatmaps 
exhibit a diagonal pattern, indicating that the classifier can correctly predict the trial bin 
number within the left-out session. The diagonal pattern in the heatmaps indicate successful 
decoding. Statistical significance was evaluated by computing a diagonalness metric (same 
as the one used for the heatmap of correlations. See Methods) and comparing with shuffled 
data. Right: the posterior probability for the correct trial bin given by the LDA classifier 
(each point represents an animal) compared to chance ( 1 = 0.2, dashed line). 
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Figure S1 . Additional hippocampal neurons that fire consistently across trials. Each line 
represents the z-scored transient rate of that neuron during a trial. Darker lines indicate 
earlier trials within a session. Trials where the neuron is not identified or is inactive are not 
plotted.

 
Figure S2 . Additional hippocampal neurons that fire consistently across multiple sessions. 
Each line represents the z-scored transient rate of that neuron during a session. Darker 
lines indicate earlier sessions. Sessions where the neuron is not identified or is inactive are 
not plotted. 
 

Figure S3 . The distribution of the across-trial firing consistency score for each individual 
session in the treadmill running task. 

 

Figure S4 . The across-trial firing consistency score plotted against the across-trial firing 
linearity score for each individual session in the treadmill running task. 

 

Figure S5 . The distribution of the across-session firing consistent score for real and shuffled 
data (top) and he joint distribution of the across-session firing consistency score and firing 
linearity score (bottom) for each individual mouse in the treadmill running task. 

 

Figure S6 . The distribution of the across-trial firing consistent score for real and shuffled 
data for each individual session and trial type in the spatial alternation task. Data for 
mouse Bellatrix. 

 

Figure S7 . The joint distribution of the across-trial firing consistency score and firing 
linearity score for each individual session and trial type in the spatial alternation task. 
Data for mouse Bellatrix. 

 

Figure S8 . The distribution of the across-trial firing consistent score for real and shuffled 
data (left) for each individual session and trial type in the spatial alternation task. Data 
for mouse Calisto. 

 

Figure S9 . The joint distribution of the across-trial firing consistency score and firing 
linearity score for each individual session and trial type in the spatial alternation task. 
Data for mouse Calisto. 

 

Figure S10 . The distribution of the across-trial firing consistent score for real and shuffled 
data. Data for mouse Nix. 

 

Figure S11 . The joint distribution of the across-trial firing consistency score and firing 
linearity score for each individual session and trial type in the spatial alternation task. 



 

− 

Data for mouse Nix. 
 

Figure S12 . The distribution of the across-trial firing consistent score for real and shuffled 
data. Data for mouse Polaris. 

 
Figure S13 . The joint distribution of the across-trial firing consistency score and firing 
linearity score for each individual session and trial type in the spatial alternation task. 
Data for mouse Polaris. 

 

Figure S14 . The distribution of the across-session firing consistent score for real and shuffled 
data (top) and the joint distribution of the across-session firing consistency score and firing 
linearity score (bottom) for each individual mouse in the spatial alternation task. 

 

Figure S15 . The distribution of the across-trial firing consistency score for each individual 
session in the linear track task. Data shown separately for left and right runs. 

 

Figure S16 . The across-trial firing consistency score plotted against the across-trial firing 
linearity score for each individual session in the linear track task. 

 

Figure S17 . The distribution of the across-session firing consistent score for real and shuffled 
data (top) and the joint distribution of the across-session firing consistency score and the 
firing linearity score (bottom) for each individual mouse in the linear track task. 

 

Figure S18 . The correlation between the firing consistency score on the timescales of 
seconds and minutes for the treadmill running (a), spatial alternation (b) and linear 
track (c) experiments.  The same for the firing linearity score (d-f).  Kendall’s τ : a: 
τ (1245) = 0.13, p < 10−8.  b:  τ (3019) = 0.079, p < 10−8.  c:  τ (1099) =    0.01, p = 0.6.  
d: τ (1245) = 0.014, p = 0.5.  e:  τ (3019) = 0.12, p < 10−15.  f :  τ (1099) = 0.011, p = 0.6. 

 
Figure S19 . Firing consistency ranks are not significantly correlated with x or y position 
in the field of view, either on the timescale of seconds (a, b), or on the timescale of minutes 
(c, d). A statistical test using Pearson’s correlation coefficient was conducted. a top: 
r = −0.02, p = 0.12; bottom: r = 0.0004, p = 0.98. b top: r = −0.01, p = 0.68; bottom: 
r = −0.02, p = 0.43. c top:  r = 0.003, p = 0.84; bottom:  r = −0.02, p = 0.23.  d top: 
r = 0.01, p = 0.67; bottom: r = −0.03, p = 0.14. 

Figure S20 . The distributions of the temporal information score are significantly biased 
towards larger values compared with shuffled data. See Methods section for the definition 
of the temporal information score. 

 
Figure S21 . The cross-trial correlations for each individual session in the treadmill running 
task. 

Figure S22 . The cross-session correlations for each individual mouse in the treadmill run- 
ning task. 

 
Figure S23 . The cross-trial correlations for each individual session, task phase and turn 
direction in the spatial alternation task. Data for mouse Bellatrix. 



 

 
 
Figure S24 . The cross-trial correlations for each individual session, task phase and turn 
direction in the spatial alternation task. Data for mouse Calisto. 

Figure S25 . The cross-trial correlations for each individual session, task phase and turn 
direction in the spatial alternation task. Data for mouse Nix. 

 
Figure S26 . The cross-trial correlations for each individual session, task phase and turn 
direction in the spatial alternation task. Data for mouse Polaris. 

Figure S27 . The cross-session correlations for each individual mouse in the spatial alterna- 
tion task. 
 
Figure S28 . The cross-trial correlations for each individual session and running direction 
in the linear track task. 
 
Figure S29 . The cross-session correlations for each individual mouse in the linear track 
task
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