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SUMMARY

Hippocampal subfield CA3 is thought to stably store memories in assemblies of recurrently connected cells
functioning as a collective. However, the collective hippocampal coding properties that are unique to CA3
and how such properties facilitate the stability or precision of the neural code remain unclear. Here, we per-
formed large-scaleCa2+ imaging inhippocampalCA1andCA3of freelybehavingmice that repeatedlyexplored
the same, initially novel environments over weeks. CA3 place cells have more precise and more stable tuning
and show a higher statistical dependence with their peers compared with CA1 place cells, uncovering a cell
assembly organization in CA3. Surprisingly, although tuning precision and long-term stability are correlated,
cellswith strongerpeerdependenceexhibit higherstabilitybutnothigherprecision.Overall, our resultsexpose
the three-way relationship between tuning precision, long-term stability, and peer dependence, suggesting
that a cell assembly organization underlies long-term storage of information in the hippocampus.

INTRODUCTION

The hippocampus is known for its role in episodic and long-term

memory and its contribution to spatial cognition.1–5 From a theo-

retical point of view, the hippocampus has been postulated to

function as a content-addressable memory system with auto-

associative capabilities, allowing long-term storage of memories

as stable attractor states.6–10 These capabilities have been

thought to originate in hippocampal subfield CA3 because of

the abundance of recurrent excitatory synaptic connectivity

between pyramidal cells within it.11,12 This is in contrast to

hippocampal CA1, where local connectivity is mostly between

pyramidal cells and interneurons,13 making it less suited for sup-

porting such auto-associative capabilities. The number of stable

attractor states that can be stored by an auto-associative

network depends on the fraction of cells that participate in the

representation of each item (e.g., a given position within an envi-

ronment).7,8,14,15 Thus, more localized (precise) tuning curves

are predicted to correspond to a higher stability of the stored

set of network states. Consistent with the hippocampal circuit

architecture and the hypothesized role of CA3 in long-term

storage of memories, experimental studies have found more

precise16 and more stable17–20 representations in CA3 than in

CA1. However, it remains unclear whether cooperation between

large populations of pyramidal cells within the hippocampus is a

unique feature of CA3 and whether such cooperation serves as a

neuronal mechanism underlying the precision and stability of the

hippocampal code.

Recent advances in optical imaging techniques allow chronic

readout of activity from hundreds of simultaneously recorded

neurons in freely behaving mice21–23 and to reliably follow the

same cells across multiple weeks.24 Therefore, such tech-

niques enable studying the collective coding properties of hip-

pocampal CA3 neurons and how such properties could support

the stable storage and retrieval of information over long time-

scales. Capitalizing on the advantages of Ca2+ imaging tech-

niques, we longitudinally recorded from large populations of

CA1 and CA3 neurons in mice that repeatedly explored the

same environments over weeks and compared the collective

coding properties across these two hippocampal subfields.

We found that CA3 is organized into assemblies of functionally

correlated cells and that this organization contributes to the

long-term stability, but not to the precision, of the hippocampal

spatial code.

RESULTS

Establishing a preparation for chronic Ca2+ imaging in
hippocampal CA3 of freely behaving mice
To compare the collective coding properties of CA1 and CA3, we

sought to chronically image large populations of pyramidal neu-

rons expressing the Ca2+ indicator GCaMP6f in each of these

two hippocampal subfields. Performing Ca2+ imaging of the dor-

sal CA1 of freely behavingmice has become a relatively standard

procedure.21,25–27 However, imaging of CA3 is more challenging

because of its less accessible location within the hippocampus.

To optically access CA3 neurons without damaging the rest of

the hippocampus, we implanted a microendoscope equipped

with a micro-prism anterior to the hippocampus28 (Figure 1A).

We verified the location of the micro-prism implantation
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postmortem by immunohistochemistry labeling of the adjacent

CA2 using PCP4 (Figure S1A).

We performed Ca2+ imaging every other day from pyramidal

cells in either CA1 (n = 4 mice) or CA3 (n = 5 mice) while the

mice freely explored two different, initially novel linear track envi-

ronments (Figure 1B). During the first 8 imaging days, the mice

explored environment A, and then, for 8 additional imaging

days, they explored environment B. This experimental design

allowed us to study the formation and long-term stability of hip-

pocampal spatial representations during familiarization and to

examine whether collective coding properties are shared across

two different spatial contexts. Each imaging day consisted of

two consecutive 10-min sessions separated by a 5-min inter-

session interval. We used previously established routines29 to

detect separated Ca2+ sources corresponding to individual

cells and estimate their underlying spike trains from the imaging

data (Figures S1B–S1F). This procedure yielded comparable

numbers of cells between CA1 and CA3 (465 ± 147 versus

334 ± 190 detected cells in CA1 and CA3, respectively) and

similar estimated firing rates (0.22 ± 0.07 versus 0.19 ± 0.11

spikes/s in CA1 and CA3, respectively; Figures S1G and S1H).

The number of track traversals per day was also similar between

the two groups of mice (66.6 ± 8.7 versus 57.2 ± 20.4 traversals

per day in CA1 and CA3, respectively; Figure S1I). In agreement

with previous studies on hippocampal place cells,4,30–33 a large

fraction of CA1 andCA3 cells were tuned tomouse positionwhile

running in the track (50.5% ± 7.8% versus 42.8% ± 11.2% place

cells of the active population in CA1 and CA3, respectively) and

typically maintained their spatial tuning across the two different

sessions within the same day while changing their tuning across

the two running directions (Figures 1C and 1D).

CA3 place cells are more precisely tuned to position in
novel environments than CA1 place cells
First, we studied the spatial tuning precision of individual hippo-

campal neurons by calculating the spatial information carried by

the activity of place cells. Because naive estimation of informa-

tion from limited sample sizes suffers from an upward bias,34

we estimated information content using bias correction methods

we recently developed that are specifically tailored for the

temporally sparse neuronal activity obtained from Ca2+ imaging

data.35 We found that place cells in CA3 carried significantly

Figure 1. Ca2+ imaging of hippocampal CA1 and CA3 of freely behaving mice during familiarization with novel environments over weeks

(A) Representative example of a sagittal section of amouse implantedwith amicro-prism anterior to the hippocampal CA3, showing GCaMP6f expression (green)

and DAPI-labeled cell nuclei (blue). The micro-prism location is shown in white. Scale bar, 500 mm. D, dorsal; V, ventral; A, anterior; P, posterior.

(B) Ca2+ imaging in CA1 or in CA3 during free exploration of initially novel environments (straight and L-shaped linear tracks) every other day. The mice explored

environment A on 8 imaging days and then environment B on the following 8 days. Each imaging day consisted of two 10-min sessions separated by a 5-min inter-

session interval.

(C and D) Five example place cells recorded simultaneously from amouse imaged in CA1 (C) and amouse imaged in CA3 (D). Top: position of the mouse at times

of estimated neuronal spikes (red and green dots for rightward and leftward running directions, respectively) overlaid on the mouse trajectory (blue curve).

Bottom: corresponding spatial tuning curves, shown separately for rightward (red) and leftward (green) running directions.
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higher spatial information than place cells in CA1 in the first

3 imaging days in each environment (1.21 ± 0.09 versus 1.48 ±

0.14 bit/spike in CA1 and CA3, respectively; Figures 2A and

2B). The higher spatial information carried by place cells in

CA3 was not explained by smaller place field sizes (Figure S2A)

but rather by a smaller number of place fields per cell (Fig-

ure S2B). Moreover, we found that spatial information content

in CA1 and CA3 place cells increased over the course of familiar-

ization with the environment (Figure 2C), validating previous

reports of hippocampal coding precision gradually increasing

during learning.32,36,37 Interestingly, the increase in information

over time was greater in CA1, gradually closing the gap on

CA3 as the mice became familiar with the environments. Next,

we measured the similarity in the activity of all place cells across

different positions and running directions by calculating the pop-

ulation vector (PV) correlations between each pair of positions

and across both running directions in the track (Figures 2D and

2E). CA1 and CA3 place cells were highly specific to the running

direction in the track, exhibiting comparable near-zero PV corre-

lations between the representations of the same position in the

two running directions (0.04 ± 0.02 versus 0.07 ± 0.05 PV corre-

lation in CA1 and CA3, respectively; Figure 2F), in agreement

with previous reports of global remapping across direc-

tions.33,38–40 The spatial code similarity across directions was

higher in one environment (an L-shaped track) than in the other

environment (a straight linear track) in CA1 but not in CA3 (Fig-

ure 2G, inset), suggesting that the corner in the L-shaped track

serves as a salient visual cue promoting a view-invariant spatial

representation in CA1.40 The spatial code similarity across

running directions decreased over time in both hippocampal

subfields as the environments became familiar (Figure 2G), sug-

gesting that the hippocampus actively separates the representa-

tions of the two directions.41 We also measured the short-term

stability of the spatial representations by calculating the PV cor-

relations between the representations of the same position and

running direction across the pairs of consecutive sessions

imaged 5min apart. This analysis revealed higher short-term sta-

bility in CA3 than in CA1 in the first three imaging days in each

environment (0.62 ± 0.03 versus 0.78 ± 0.04 PV correlation

across sessions in CA1 and CA3, respectively; Figure 2H).

Similar to tuning precision, the short-term stability of the spatial

representations increased over time42 in both hippocampal

subfields but to a greater extent in CA1 (Figure 2I). These results

are in line with the role of CA3 in rapid one-trial contextual

learning20,32,43,44 and suggest that CA1 may inherit its tuning

properties from CA3 throughout the process of familiarization.

The dynamics of the improvement in most aspects of the hippo-

campal spatial code during learning did not differ across the two

environments (Figures S2C–S2E). We also recapitulated the

changes in the spatial tuning properties over time while subsam-

pling the data to obtain a fixed number of track traversals across

days and mice, verifying that our results are not due to changes

in animal behavior that occur with learning (Figures S2F–S2I).

Overall, we demonstrated that, in novel environments, CA3 place

cells exhibit higher tuning precision and short-term stability than

CA1 place cells, while the spatial representations in CA1 un-

dergo a higher degree of refinement throughout the process of

familiarization.

CA3 spatial representations aremore stable over weeks
than CA1 spatial representations
Taking advantage of the ability to reliably track the same popu-

lations of neurons over weeks with Ca2+ imaging,21,24 we next

studied the long-term stability of the hippocampal spatial repre-

sentations. We registered the cells across all imaging days,

which yielded similar numbers of registered cells (1,070 ± 272

versus 817 ± 317 registered cells per mouse for CA1 and CA3,

respectively) and comparable registration accuracy (7.6% ±

0.8% versus 12.0% ± 4.1% estimated registration error rates

for CA1 and CA3, respectively; Figures S3A–S3G). Then, we

calculated the neuronal ensemble rate correlations across

days, which measure the similarity in the cells’ activity levels

throughout the entire session irrespective of position (Figure 3A).

The ensemble rate correlations as a function of the time differ-

ence between pairs of sessions were comparable between

CA1 and CA3 (Figure 3B). However, the long-term stability of

the spatial representations, as quantified by the PV correlations

across days and weeks, was significantly higher in CA3 than

in CA1 (Figures 3C and 3D), in agreement with previous

studies.17–20 Similar results were obtained while controlling for

differences in the overall number of registered cells across

mice and hippocampal subfields (Figures S3H and S3I).

Together, our results demonstrate that hippocampal CA3 can

support the stable maintenance of spatially precise representa-

tions over long timescales.

Hippocampal CA3 is organized into functionally related
place cell assemblies
To study the emergent collective coding properties within the

hippocampus, we looked for a statistical dependence between

place cells that could not be explained by the spatial tuning prop-

erties of individual cells (Figure 4A, illustration). To this end, we

calculated the distribution of pairwise tuning-curve correlations

across all the recorded cells that were tuned to position in a given

running direction. While the distributions seemed similar, a

significantly larger fraction of cell pairs in CA3 had high tuning-

curve correlations (3.0% ± 0.2%versus 4.8%± 0.9%of cell pairs

with a correlation > 0.7 for CA1 andCA3, respectively; Figure 4B).

Next, we focused on themore correlated pairs of cells and asked

whether place cells with the same preferred position exhibit a

similarity between the shapes of their tuning curves (Figure 4C,

illustration).We found that the tuning-curve correlations between

pairs of place cells with the same preferred position were consid-

erably higher in CA3 than in CA1 (40.0% ± 2.2% versus 54.9% ±

6.8% of cell pairs with a correlation > 0.7 for CA1 and CA3,

respectively; Figure 4D). However, because pairwise tuning-

curve correlations and spatial information are correlated (Fig-

ure S4A), the higher pairwise tuning correlations in CA3 could

also stem from the higher tuning precision in this hippocampal

subfield and not necessarily from a dependence between cells.

To address this issue, instead of directly comparing the correla-

tions in CA1 with those in CA3, we sought to compare the

correlations in each mouse against the correlations obtained

from a set of cells with matching tuning precision and pairwise

tuning correlations but with independent tuning curves (Fig-

ure 4E, illustration). Because the spatial tuning of place cells

randomly remaps across running directions in the linear track
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Figure 2. CA3 place cells exhibit higher spatial tuning precision and short-term stability than CA1 place cells

(A) Distributions of average spatial information content carried by the activity of individual hippocampal place cells on the first 3 imaging days in each environment

in CA1 (blue) and in CA3 (red).

(B) Spatial information of place cells on the first 3 imaging days in each environment (mean ± SEM) was significantly higher in CA3 than in CA1 (Mann-Whitney U

test, U = 11, p < 0.05).

(C) Spatial information (mean ±SEM) increased over the days of the experiment in CA1 (blue; one-way repeated-measures ANOVA, F(15) = 6.51, p < 10�6) andCA3

(red; one-way repeated-measures ANOVA, F(15) = 3.74, p < 0.001). The increase in information over time was greater in CA1 than in CA3 (two-way repeated-

measures ANOVA, F(1,15) = 2.56, p < 0.01, interaction between hippocampal subfield and time).

(D and E) PV correlation between all pairs of positions across the two running directions for CA1 (D) and CA3 (E). The correlations were averaged across the first 3

imaging days in each environment and over mice.

(F) PV correlation between the same positions across the opposite running directions in the track on the first 3 imaging days in each environment (mean ± SEM)

was not significantly different between CA1 and CA3 (Mann-Whitney U test, U = 15, p = 0.29).

(G) PV correlation between the same positions across the opposite running directions (mean ± SEM) decreased over the days of the experiment for CA1

(blue; one-way repeated-measures ANOVA, F(15) = 4.81, p < 10�4) and CA3 (red; one-way repeated-measures ANOVA, F(15) = 2.05, p < 0.05). Inset: the across-

directions PV correlations on the first 3 imaging days in each environment were significantly higher in the L-shaped than in the straight linear track in CA1

(matched-pairs t test, t(3) = 7.82, p < 0.01) but not in CA3 (matched-pairs t test, t(4) = 1.70, p = 0.16).

(H) PV correlation between the pairs of sessions imaged 5min apart on the first 3 imaging days in each environment (mean ± SEM) was significantly higher in CA3

than in CA1 (Mann-Whitney U test, U = 10, p < 0.05).

(I) PV correlation between pairs of sessions imaged 5 min apart (mean ± SEM) increased over the days of the experiment for CA1 (blue; one-way repeated-

measures ANOVA, F(15) = 7.11, p < 10�6) and CA3 (red; one-way repeated-measures ANOVA, F(15) = 2.75, p < 0.01). CA1 exhibited a greater increase in PV

correlations over time (two-way repeated-measures ANOVA, F(1,15) = 1.81, p < 0.05, interaction between hippocampal subfield and time).

Data were averaged over 4 mice in CA1 and 5 mice in CA3. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figures 2D–2G), cells from the samemouse that are tuned to the

opposite running direction meet all of these criteria (Figures S4B

and S4C). Therefore, we compared in each mouse the distribu-

tion of tuning correlations across pairs of cells with the same

preferred position in a given running direction against a null dis-

tribution obtained between pairs of cells tuned to the same posi-

tion but across the opposite running directions (Figure 4F). The

difference between the within-direction and across-directions

distributions was significantly higher in CA3 than in CA1 (Fig-

ure 4G). As an additional validation of this effect, we compared

the distributions of pairwise tuning correlations within a given

mouse with those obtained across place cells from different

mice imaged in the same hippocampal subfield, which yielded

similar results (Figures S4D and S4E). These findings point to

an emergent collective assembly organization in hippocampal

CA3, wherein the tuning of place cells shows a higher statistical

dependence with their peers. Similar results were also obtained

when excluding pairs of cells that were less than 50 mm apart

within the brain tissue (Figure S4F), confirming that the stronger

assembly organization observed in CA3 is not due to higher

cross-talk between the Ca2+ signals of neighboring cells. We

did not find any sign that the collective assembly organization

was shared across the two different spatial contexts, possibly

because of the global remapping observed across sessions in

the different environments (Figures S4G–S4I). Next, we as-

sessed whether the assembly organization is specific to func-

tionally related place cells by also calculating the distributions

of pairwise tuning correlations between cells with different

preferred positions. Indeed, the statistical dependence of place

cells on their peers decreased with the difference between their

preferred positions (Figures 4H and 4I). Finally, we compared the

temporal organization of the activity patterns of CA3 and CA1

place cells by calculating the pairwise noise correlations.

Consistent with our finding of a collective organization of the

spatial tuning curves, pairs of place cells in CA3 with the same

preferred position had higher noise correlations than such cell

Figure 3. CA3 exhibits more stable spatial representations over weeks than CA1

(A) Average ensemble rate correlations of place cells across all sessions in the same environment for CA1 (left) and CA3 (right). Correlations were averaged over

the two environments and all mice.

(B) Ensemble rate correlation of place cells between pairs of sessions as a function of elapsed time between them (mean ± SEM) was not significantly different

between CA1 (blue) and CA3 (red; two-way repeated-measures ANOVA, F(1,7) = 0.29, p = 0.61, main effect of hippocampal subfield).

(C) Average PV correlations of place cells across all sessions in the same environment for CA1 (left) and CA3 (right). Correlations were averaged over the two

environments and all mice.

(D) PV correlation between pairs of sessions as a function of elapsed time between them (mean ±SEM) was significantly higher in CA3 (red) than in CA1 (blue; two-

way repeated-measures ANOVA, F(1,7) = 29.7, p < 0.001, main effect of hippocampal subfield).

Data were averaged over 4 mice in CA1 and 5 mice in CA3. ***p < 0.001.
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Figure 4. Hippocampal CA3 is organized into functionally related place cell assemblies

(A) Illustration of a population of place cells with independent tuning curves versus tuning curves of cells that are organized into a cell assembly.

(B) Distribution of pairwise tuning-curve correlations for all pairs of place cells for CA1 (blue) and CA3 (red). Inset: the fraction of cell pairs with a tuning correlation

greater than 0.7 was significantly higher in CA3 than in CA1 (Mann-Whitney U test, U = 10, p < 0.05).

(C) Illustration of a population of place cells that have the same preferred position with independent shapes of their tuning curves (left) versus a population that is

organized into a cell assembly with similar shapes of their tuning curves (right).

(D) Distribution of pairwise tuning-curve correlations across all pairs of place cells with the same preferred position for CA1 (blue) and CA3 (red). Inset: fraction of

cell pairs with the same preferred position with a tuning correlation greater than 0.7 was significantly higher in CA3 than in CA1 (Mann-Whitney U test, U = 10,

p < 0.05).

(E) Illustration of a population of place cells that have the same preferred position in either the rightward or leftward running direction. If place cells exhibit a

dependence between the shapes of their tuning curves, then the tuning correlations between cells with the same preferred position in the same running direction

are expected to be higher than the correlations between pairs of cells with the same preferred position across the opposite running directions.

(F) Cumulative distributions of pairwise tuning-curve correlations between cell pairs with the same preferred position (mean ± SEM) for CA1 (blue) and CA3 (red).

The within-running-direction distributions (solid curves) are shown against the across-running-direction distributions (dashed curves).

(G) Difference between the cumulative within-running-direction and across-running-directions distributions of pairwise tuning-curve correlations (mean ± SEM)

for CA1 (blue) and CA3 (red). Inset: themaximal difference between the cumulative distributions was significantly higher in CA3 than in CA1 (Mann-Whitney U test,

U = 11, p < 0.05).

(H and I) Difference between the cumulative within-running-direction and across-running-direction distributions of pairwise tuning-curve correlations (mean)

across all pairs of place cells with the same or with different preferred positions for CA1 (H) and CA3 (I).

Note that the x axis in (F)–(I) goes from the high correlations to the low correlations. Data were averaged across the first 3 imaging days in each environment. Data

were averaged over 4 mice in CA1 and 5 mice in CA3. *p < 0.05.
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Figure 5. Place cells with peer-dependent tuning exhibit higher long-term tuning stability but not higher tuning precision

(A–C) Relationship between long-term tuning stability, tuning precision, and tuning peer dependence at the single-cell level.

(A) Tuning-curve correlations between sessions imaged 2 days apart increase as a function of the spatial information (mean ± SEM) in CA1 (blue; multiple

regression t = 22.4, p < 10�100) and CA3 (red; multiple regression t = 19.1, p < 10�79).

(B) Spatial information does not change with the level of tuning peer dependence (mean ± SEM) in CA1 (blue; multiple regression t = 0.38, p = 0.70) or CA3 (red;

multiple regression t = 1.82, p = 0.07). Inset: tuning-curve correlation between sessions imaged 5 min apart does not change with the level of tuning peer

dependence (mean ± SEM) in CA1 (blue; multiple regression t = �0.07, p = 0.94) or CA3 (red; multiple regression t = �1.70, p = 0.09).

(C) Tuning-curve correlations between sessions imaged 2 days apart increase as a function of the level of tuning peer dependence (mean ± SEM) in CA1 (blue;

multiple regression t = 12.0, p < 10�32) and CA3 (red; multiple regression t = 8.8, p < 10�17).

(A–C) A linear multiple regression model was separately fitted to the data of each hippocampal subfield between the tuning-curve correlation, spatial information,

tuning peer dependence, average estimated firing rate, and mouse identity of each cell.

(D–I) Comparison of the precision and stability of spatial tuning between place cells that were highly correlated with their peers (peer-dependent cells) and place

cells that were not (peer-independent cells).

(D) Spatial information over the days of the experiment (mean ± SEM) did not differ between the peer-dependent (solid) and peer-independent (dashed) cells in

CA1 (blue; Friedman’s test, c2
(1) = 0.13, p = 0.72) or CA3 (red; Friedman’s test, c2

(1) = 0.39, p = 0.53).

(E) PV correlation between two sessions imaged 5 min apart over the days of the experiment (mean ± SEM) was not different between the peer-dependent cells

(solid) and the peer-independent cells (dashed) in CA1 (blue; Friedman’s test, c2
(1) = 0.08, p = 0.77) or CA3 (red; Friedman’s test, c2

(1) = 1.51, p = 0.22).

(legend continued on next page)
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pairs in CA1 (Figure S4J). We also found that noise correlations

between pairs of place cells decreased as a function of the differ-

ence in their preferred position (Figure S4K) or as a function of

the distance between them in the brain tissue (Figure S4L). Over-

all, our results uncover an emergent collective assembly organi-

zation of hippocampal CA3 place cells that goes beyond the

tuning properties of individual neurons.

Place cells with stronger tuning peer dependence
exhibit higher long-term tuning stability but not higher
tuning precision
Finally, we sought to study the contribution of the organization

of CA3 into place cell assemblies to the precision and stability

of the hippocampal spatial code. To this end, we estimated for

each cell the statistical dependence between its tuning and the

tuning of its peers (tuning peer dependence). Specifically, for

each cell, we found the median of its within-direction pairwise

tuning correlations and then calculated into which percentile

it falls within the distribution of its across-directions tuning cor-

relations. The average percentile was greater than expected

from a null hypothesis (50%) in CA1 and CA3 (51.1% ± 0.5%,

t test, t(3) = 5.12, p < 0.05, and 52.5% ± 1.3%, t test, t(4) =

4.31, p < 0.05 for CA1 and CA3, respectively), further confirm-

ing the existence of a significant assembly organization. Then,

we performed a multivariate regression analysis at the single-

cell level between tuning stability, tuning precession, and tuning

peer dependence (Figures 5A–5C). Because tuning precision

and stability may also depend on the activity levels of the

cells45 (Figures S5A–S5C), the multivariate regression analysis

also accounted for the average firing rate of each cell. The tun-

ing-curve correlations across days for individual place cells

were highly correlated with their spatial information content

(Figure 5A), suggesting that tuning precision and long-term sta-

bility are linked. Surprisingly, while spatial information and

within-day tuning-curve correlation did not change with the

level of tuning peer dependence (Figure 5B), the tuning-curve

correlation across days significantly increased as a function

of the tuning peer dependence of individual place cells in

both hippocampal subfields (Figure 5C). These differences be-

tween tuning precision and long-term stability with respect to

their link to tuning peer dependence demonstrate a dissocia-

tion between these two seemingly related aspects of the

hippocampal spatial code. Next, we divided the population of

place cells into those that are highly correlated with their peers

(peer-dependent cells; STAR Methods) and those that are not

(peer-independent cells). We did not find differences in the

spatial information (Figures 5D and 5G) or in the place field

size (Figure S5D) between the peer-dependent and peer-inde-

pendent cells in CA1 or CA3. Peer-dependent cells in CA3, but

not in CA1, exhibited slightly more place fields per cell than the

peer-independent cells (Figure S5E). Additionally, we did not

find differences in short-term stability between the peer-depen-

dent and peer-independent cells, as quantified by the PV cor-

relations across the two consecutive sessions imaged 5 min

apart (Figures 5E and 5H). Importantly, the peer-dependent

cells in both hippocampal subfields displayed significantly

higher long-term stability than the peer-independent cells, as

quantified by the PV correlations across sessions from different

days (Figures 5F and 5I). The ensemble rate correlations

across days were also higher in the peer-dependent cells

than in the peer-independent cells (Figure S5F), demonstrating

that the higher long-term stability of these cells was also due to

the higher conservation of their overall estimated firing rates

and not only due to the higher spatial tuning stability. The noise

correlations between pairs of cells with the same preferred po-

sition were higher for the peer-dependent cells than for the

peer-independent cells in CA1 and CA3 (Figure S5G), suggest-

ing that the temporal co-firing of cells may underlie the assem-

bly organization of the spatial tuning curves. We did not find a

difference in the average estimated firing rates between these

two groups of cells that might underlie the differences we found

in the long-term stability or pairwise noise correlations (Fig-

ure S5H). However, we did find that, in CA1, but not in CA3,

the divergence of the distribution of preferred positions from

a uniform distribution was higher for the peer-dependent cells

compared with the peer-independent cells (Figure S5I). This

result indicates that the higher long-term stability of peer-

dependent cells in CA3 was not due to a tendency of these

cells to represent specific landmarks, while in CA1, the

increased stability of these cells may be mediated by an

over-representation of landmarks. Taken together, our results

suggest that the organization of CA3 into correlated place

cell assemblies contributes to the long-term stability, but

not to the tuning precision or short-term stability, of the

hippocampal spatial code.

DISCUSSION

We established a preparation for chronic Ca2+ imaging in hippo-

campal CA3 of freely behaving mice and followed the activity of

hundreds of simultaneously recorded neurons over days and

weeks. This imaging preparation allowed us to compare the

spatial coding properties of the recorded population between

CA3 and CA1, revealing several differences between these two

hippocampal subfields at the level of the tuning of individual neu-

rons and at the level of the emergent collective coding behavior.

(F) PV correlation between pairs of sessions as a function of elapsed time between them (mean ±SEM) was significantly higher for the peer-dependent cells (solid)

than for the peer-independent cells (dashed) in CA1 (blue; Friedman’s test, c2
(1) = 6.51, p < 0.05) and CA3 (red; Friedman’s test, c2

(1) = 17.72, p < 10�4).

(G) Average spatial information across all imaging days (mean ± SEM) did not differ between the peer-dependent and peer-independent cells in CA1 (matched

pairs t test, t(3) = �0.33, p = 0.76) or CA3 (matched pairs t test, t(4) = �0.26, p = 0.81).

(H) PV correlation (mean ± SEM) between sessions imaged 5 min apart did not differ between the peer-dependent and peer-independent cells in CA1 (matched

pairs t test, t(3) = �0.32, p = 0.77) or CA3 (matched pairs t test, t(4) = �2.36, p = 0.08).

(I) PV correlation (mean ±SEM) between sessions imaged 2 days apart was significantly higher for the peer-dependent cells than for the peer-independent cells in

CA1 (matched pairs t test, t(3) = 7.06, p < 0.01) and CA3 (matched pairs t test, t(4) = 5.27, p < 0.01).

(E, F, H, and I) Subsets of peer-independent cells were randomly chosen to match the peer-dependent cells’ population size.

Data were averaged over 4 mice in CA1 and 5 mice in CA3. *p < 0.05, **p < 0.01, ***p < 0.001.
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In agreement with previous electrophysiological studies, we

found that CA3 neurons exhibit higher spatial tuning precision

than CA1 neurons.16 Moreover, we demonstrated that spatial

representations in CA3 are more stable than those in CA1 over

weeks, expanding previous work that compared the stability of

the spatial code between CA1 and CA3 over shorter timescales

of up to 2 days.17–20 Together, these results show that CA3 can

support precise and stable maintenance of spatial representa-

tions over long timescales.

The analysis of the activity of large populations of simulta-

neously recorded neurons allowed us to expose emergent collec-

tive coding properties in CA3 that are in line with the abundant

recurrent excitatory connectivity in this hippocampal subfield11,12

and with its hypothesized auto-associative capabilities.6–10

Specifically, pairs of CA3place cells that were tuned to similar po-

sitions in the environment displayed higher tuning-curve correla-

tions than the correlations between independent cells with

matching spatial tuning properties, a result that was significantly

less pronounced in CA1. In addition, the noise correlations be-

tween pairs of cells with the same preferred position were higher

in CA3 than in CA1. Earlier work demonstrated the pattern sepa-

ration and pattern completion capabilities of hippocampal

CA3,30,46–53 two opposing computational outcomes character-

istic of auto-associative networks. Our finding that CA3 place

cells are organized into functionally related assemblies instead

of operating as a set of cells that independently represent the

environment7 provides additional evidence of emergent collec-

tive computational capabilities in this hippocampal subfield.

Notably, we found that pairs of place cells in hippocampal CA1

display noise correlations greater than those expected by condi-

tionally independent cells, in line with previous findings of collec-

tive computational capabilities in CA1.54–61 Most previous

studies of collective hippocampal coding properties focused

only on CA1, the downstream target of CA3, which is easier to

experimentally access and record from. The emphasis on CA1

led to a conceptual gap between anatomically and theoretically

based predictions of finding collective coding properties in CA3

and neurophysiological experiments demonstrating collective

coding in CA1. The observed collective coding properties in

CA1 were typically interpreted as reflecting network dynamics

in CA3, but the difference in the degree of collective coding be-

tween the two hippocampal subfields was not directly tested.

Our demonstration of a stronger assembly organization in CA3

than in CA1 experimentally reconciles this long-standing con-

ceptual gap.

Our finding that CA3 exhibits a pronounced assembly organi-

zation in a novel environment is consistent with the observation

of preplays and the notion that the hippocampus can represent

new spatial experiences by selecting froma repertoire of precon-

figured network states.62–64 Notably, the assembly organization

was not conserved across the two different environments, sug-

gesting that collective coding in the hippocampus is flexible

and subjected to minimal interference between different mem-

ories. Studying hippocampal collective coding using techniques

with higher temporal resolution, such as dense electrophysi-

ology, could help further elucidate how the assembly organiza-

tion we observed is related to hippocampal replays or fast theta

sequences.65–69

Importantly, we found in CA1 and in CA3 that place cells with

stronger tuning peer dependence had considerably more stable

spatial tuning over long time periods, maintaining their spatial

preference and their average firing rate. Yet, tuning peer depen-

dence did not seem to underlie higher tuning precision or short-

term stability. These results are surprising because tuning preci-

sion and long-term tuning stability were highly correlated across

cells and were both higher in CA3 than in CA1. Furthermore,

theoretical models of auto-associative networks predict that

more precise tuning curves should correspond to higher stability

of the stored set of states.7,8,14,15 Thus, we uncovered a non-triv-

ial dissociation between long-term tuning stability and tuning

precision, implying that distinct neuronal mechanisms control

these two seemingly related aspects of the hippocampal spatial

code. In addition, short-term stability was dissociated from long-

term stability, possibly because of the more dominant effect of

variability in neuronal responses when comparing temporally

adjacent recordings. Together, our results suggest that a collec-

tive assembly organization of hippocampal CA3 place cells

contributes to the stable storage of information and its retrieval

from long-termmemory. Future studies that successfully perturb

the recurrent synaptic connectivity within CA3 without directly

affecting its inputs or outputs could potentially establish a causal

link between the recurrent connectivity and the observed collec-

tive assembly organization and long-term stability in this hippo-

campal subfield.

Other possible sources of the differences between the collec-

tive coding properties in CA1 andCA3 could be differences in the

inputs they receive from other brain regions. Specifically, the

dentate gyrus, a part of the mammalian hippocampal formation,

strongly projects to CA3 through its extensive network of mossy

fibers.11,70 Combined with its prominent pattern separation ca-

pabilities,51 the dentate gyrus has been hypothesized to carry

well-separated activity patterns onto hippocampal CA3 neurons,

supporting the storage of new memories with minimal interfer-

ence from the traces of older memories already stored in the

recurrent connectivity in CA3.71–74

The spatial tuning precision and short-term stability in CA3

rapidly reached its mature stage after the first exposure to a

novel environment, consistent with the role of CA3 in one-trial

contextual learning.20,32,43,44 In contrast, the spatial tuning in

CA1 was less precise and stable in novel environments but

significantly refined over the course of familiarization,32,36 grad-

ually developing spatial tuning properties that are more similar to

those in CA3. Considering the extensive input CA1 receives from

CA3,12 our results suggest that CA1 may inherit its tuning

properties from CA3 throughout learning, possibly via synaptic

plasticity in the Schaffer collateral fibers.75–77 An alternative

mechanism that could underlie the refinement of the spatial

code in CA1 is the local reorganization of lateral inhibition; i.e.,

changes in synaptic strength between CA1 pyramidal cells and

interneurons.57,78–80

Overall, by imaging from large neuronal populations in the

recurrently connected hippocampal CA3, our study provides in-

sights into the neuronal mechanisms that may underlie the for-

mation and maintenance of long-term spatial memories. Our

findings help bridge the gap between theoretical models of

memory and experimental data by demonstrating how emergent
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collective computational capabilities could be implemented in

the hippocampal network and contribute to the long-term stabil-

ity of the neural code.

Limitations of the study
Here, we used the pairwise spatial tuning-curve correlations to

study hippocampal emergent assembly organization. While

other studies have shown that time-domain population tech-

niques may be powerful in extracting structure from hippocam-

pal recordings,54,55,58,59,81–83 it is important to make sure that

the results obtained from such techniques are not an expected

byproduct of simpler features of the data.84 Specifically,

because hippocampal place cells are tuned to position, time-

domain population analyses inherently capture the high temporal

correlations between place cells that encode the same positions

even if they do not exhibit co-activity that is greater than what

would be expected based on their individual tuning properties.

Solving this issue requires comparing the results against a null

hypothesis in which the simpler features (i.e., the tuning of the

cells) are maintained but higher-order interactions in the popula-

tion code are destroyed.84 We addressed this issue by using the

pairwise tuning correlations across directions as a null distribu-

tion for uncovering emergent assembly organization of hippo-

campal place cells. An additional support of an emergent orga-

nization that cannot be explained by the tuning of individual

cells is our analysis of the noise correlations, which suggested

that the temporal co-firing of cells may underlie their higher

spatial tuning-curve correlations.
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Unbiased information estimation (Sheintuch et al., 2022)35 https://github.com/zivlab/unbiased_information_

estimation

CellReg – cell registration method (Sheintuch et al., 2017)24 https://github.com/zivlab/CellReg

Other

Integrated miniature fluorescence microscope Inscopix inc. nVista 2.0

Gradient refractive index (GRIN) lens Inscopix inc. Cat # 1050-002176

Overhead camera for recording animal behavior The imaging source DFK 33G445
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All procedures were approved by theWeizmann Institute’s IACUC. A total of nine C57BL/6malemice, aged 5-7months at the start of

the imaging (8-12 weeks at the start of viral injections), were used in this study. Four mice were imaged in hippocampal CA1 and five

mice were imaged in hippocampal CA3. Mice were housed with a running wheel in a 12:12 h reverse light cycle.

METHOD DETAILS

Surgical procedures
We used established protocols for in-vivo microendoscopy, which allows chronic imaging without any apparent degradation of the

imaging quality.85 We first injected into the CA1 or CA3, under isoflurane anesthesia (1.5-2% volume), 450 nL of viral vector AAV2/5-

CaMKIIa-GCaMP6f (�2X1013 particles per ml, packed by University of North Carolina Vector Core)23 at stereotatic coordinates:

�1.9 mm anteroposterior, �1.4 mm mediolateral, �1.6 mm dorsoventral from bregma for CA1, and -1.8 mm anteroposterior,

�2.1 mmmediolateral,�2.05mm dorsoventral from bregma for CA3. We found in previous work21,25 that this method yields a stable

expression of the GCaMP protein. Mice were then allowed to recover for at least two weeks. Then, we implanted in the CA1 mice a

glass guide tube directly above the hippocampus. We used a trephine drill to remove a circular part of the skull. The center of the

craniotomy (and accordingly the implanted guide tube) was�0.25mm lateral and 0.25mmposterior to the injection site.We removed

the dura and cortex above the CA1 by suction with a 29-gauge blunt needle while constantly washing the exposed tissue with sterile

phosphate-buffered saline (PBS). We then implanted the optical guide tubewith its window just dorsal to, but not within, the CA1 area

and sealed the space between the skull and the guide tube using 1.5% agarose in PBS. The exposed skull areas were then sealed

with Metabond (Parkell, Edgewood, NY) and dental acrylic. To optically access hippocampal CA3 without damaging CA1, we im-

planted amicroendoscope equipped with amicro-prism (1mm diameter, 4 mm length; see Figure 1A). The craniotomy was centered

anterolateral to the viral injection site (�1.1 mm anteroposterior, �2.15 mm mediolateral). Then, after removing the dura and cortex

above the hippocampus, we inserted themicroendoscope using a stereotax so that the posterolateral edge of the prismwas located

�1.7mm anteroposterior,�2.55mmmediolateral,�2.45mmdorsoventral from bregma and sealed the space between the skull and

themicroendoscopewith silicon sealant (Kwik-Sil, WPI). Similar to the surgery in CA1, the exposed areas of the skull were then sealed

withMetabond (Parkell, Edgewood, NY) and dental acrylic. Themicroendoscope was sealedwith silicon sealant (Kwik-Cast, WPI) for

protection until the attachment of a base plate. To perform time-lapse one-photon Ca2+ imaging in freely behaving mice using an

integrated miniature fluorescence microscope (nVistaHD, Inscopix), we followed a previously established protocol.21 At least three

weeks after guide-tube or micro-prism implantation, mice were imaged under isoflurane anesthesia using a two-photon microscope

(Ultima IV, Bruker, Germany). For CA1mice, we inserted amicroendoscope consisting of a single gradient refractive index lens (1mm

diameter, Inscopix) into the guide tube and examined Ca2+ indicator expression and tissue health. In both CA1 and CA3 mice, we

selected for further imaging only mice that exhibited homogeneous GCaMP6f expression and appeared to have healthy tissue.

Mice with clear signs of tissue compression or patches with missing cells were excluded from the study. We also assessed whether

there are signs of over-expression, such as nuclear filling of the indicator. Mice in which more than 5% of the cells displayed nuclear

expression of the indicator were also excluded from the study. The selected mice were water-restricted until the end of the exper-

iment, and underwent a daily health inspection86 while ensuring their body weight was above 80% of their initial weight. Water-re-

striction started a few days prior to attaching themicroscope’s base plate to avoid changes in the imaging focal plane that may occur

during the experiment due to changes in the mice’s weight. For the CA1mice, the microendoscope was then affixed within the guide

tube using an ultraviolet-curing adhesive (Norland, NOA81, Edmund Optics, Barrington, NJ). Finally, in both the CA1 and CA3 mice,

the microscope’s base plate was attached to the dental acrylic cap using a light-cured adhesive (Flow-It ALC, Pentron, Orange, CA).

Ca2+ imaging and experimental timeline
A few days after attaching the microscope’s base plate, mice were habituated to human handling by allowing them to walk on ex-

perimenters’ hands. We then began training the water-restricted mice to run back and forth on an elevated, short (56 cm long) linear

track with high walls (30 cm high) that was located in a square enclosure within the recording room. Before beginning the Ca2+ im-

aging, we pre-trained the mice for 3 days to run on the short linear track while carrying the head-mounted microscope. Then, we

began imaging in a novel straight linear track (environment A, 96 cm long) with low walls (4 cm high). Each imaging day consisted

of two 10-min sessions separated by 5 min, during which the mice were placed in a transparent bucket on top of the linear track.

Imaging was performed every other day, reaching a total of eight imaging days spanning two weeks. After eight imaging days in

the straight linear track, eight additional imaging days were performed every other day in an L-shaped linear track (Environment

B, 96 cm long). Three out of the nine mice explored the environments in the opposite order. The environments differed in their ge-

ometry and had distinct sets of visual and tactile cues, overhead lights, and odor cues. Before the beginning of each imaging session,

we wiped the tracks with differently scented paper towels (10% ethanol for environment A and 0.5% acetic acid for environment B).

We trained the mice to run back and forth along the track by giving them a measured amount of water sweetened with 4% sucrose.

The water reward was dispensed at both ends of the tracks using a custom-made computer-controlled device. To record mouse

behavior, we used an overhead camera (DFK 33G445, The Imaging Source, Germany), which we synchronized with the integrated
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microscope. Ca2+ imaging was performed 11-18 weeks after viral injection at 10 Hz (N = 1mouse) or 20 Hz (N = 8mice), with a spatial

downsampling of a factor of four in each dimension (pixel size of 2.3 3 2.3 mm).

Immunohistochemistry
To verify the location of imaging for mice implanted with a micro-prism anterior to CA3, we used PCP4 for the labeling of CA2

neurons87 (Figure S1A). Mice were transcardially perfused with 4% (wt/vol) paraformaldehyde (PFA) in PBS. The brains were then

post-fixed by the same solution for at least 24 h. To stain for PCP4, freely floating sections were incubated with 3% (vol/vol) goat

serum in 0.3% (vol/vol) Triton X-100 in PBS for 1 h at room temperature. Sections were then incubated with the primary antibody

(rabbit antibody to PCP4, 1:200, HPA005792, Sigma-Aldrich) in 3% goat serum in 0.3% PBS overnight at 4�C. After rinsing three

times with PBS, sections were incubated with secondary antibodies (donkey-anti-rabbit conjugated to Cy3, 1:200, 711-165-152,

Jackson ImmunoResearch) in PBS with 3% goat serum for 2 h at room temperature. Sections were then mounted on glass slides

and covered with mounting medium containing DAPI (F6057, Sigma-Aldrich). Mice in which CA2 was closely aligned with the central

part of the micro-prism’s location and not with its periphery were excluded from the study.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mouse position tracking
We analyzed mouse behavior videos using a custom MATLAB (Mathworks) routine that detects the mouse’s center of mass in each

frame. We then used the estimated position to calculate its velocity and applied a smoothing filter (rectangular window of 250 msec)

to the calculated velocity.

Processing Ca2+ imaging data
We pre-processed the Ca2+ imaging data using commercial software (Mosaic, version 1.1.1b, Inscopix) and custom MATLAB rou-

tines.21,25 To correct for lateral displacements of the brain, we used a rigid-body registration. This procedure was performed on a

high-contrast sub-region of the movies in which the blood vessels were most prominent. To enhance the appearance of the blood

vessels that were used as stationary fiducial markers for image registration, we divided each pixel by the corresponding value from a

smoothed image. The smoothed image was obtained by applying a Gaussian filter with a radius of 100 mm to the movies. Ca2+ dy-

namics were then extracted from the registeredmovies using CNMF-e,29 an extension of the constrained non-negative matrix factor-

ization method,88 for one-photonmicroendoscopic data. This method detects cells in Ca2+ imaging data bymodeling the videos as a

superposition of all neurons’ spatiotemporal activity, plus time-varying background and additive noise. The noise components can

compensate for spatial and temporal non-uniform illumination in the Ca2+ imaging data. The activity of each neuron is expressed as

the outer product of a spatial vector, which represents its spatial footprint, and a temporal vector, which represents its Ca2+ trace. In

addition, by deconvolving the Ca2+ trace using an autoregressive model, the method estimates the underlying spiking activity.

We used the estimated underlying spike trains as a proxy for the firing rates of the cells. For each mouse, the same parameters

(3 % gsig %4; gsiz = 8; 0.7 % min_corr %0.85; 8 % min_pnr %18) were maintained across all imaging days. CNMF-e allowed

the detection of hundreds of neurons per imaging day, and yielded the estimated spike train for each neuron.

Tracking the same neurons across days
To identify the same neurons acrossmultiple imaging days, we used a probabilistic method for cell registration,24 which estimates the

probability of correct registration for each cell in the dataset and the overall rates of registration errors. First, the different days are

aligned to one another bymaximizing the cross-correlation of the cells’ centroid locations between each day and a reference day (day

1). Then, the distribution of Pearson correlations between the spatial footprints (spatial correlation) of pairs of neighboring cells

(maximal distance = 14 mm) across days is computed. Next, the distribution of spatial correlation is modeled as a weighted sum

of two subpopulations, one corresponding to the same cells and the other to different cells. This allows the estimation of the overall

rates of false-positive errors (different cells falsely registered as the same cells) and false-negative errors (the same cells falsely regis-

tered as different cells) as a function of the registration threshold (Psame = 0.5 was used for all mice), allowing a registration that is

optimized to the dataset of each mouse. Here, we used the average across the false positive and false negative rates as a measure

of registration accuracy. Finally, the obtained Psame were used as an input for a clustering algorithm that registered the cells across all

imaging days.

Analysis of neuronal spatial tuning
For tuning-curve analysis, we focused on periods when the mouse ran >1 cm/s, while separately considering tuning curves for left

and right running directions. We divided each track into 24 bins (4 cm each) and excluded the last 2 bins at both ends of the tracks

where water rewards are consumed and the mice are generally stationary.21 We then computed the time spent in each bin in

each running direction, and the number of spikes per bin. Finally, we computed the tuning curve for each neuron by dividing the spike

number in each bin by the time spent in that bin. The preferred position of each place cell was defined as the bin with the highest

value.
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Estimating spatial information and identifying place cells
For each cell with R10 active time bins in a given day, we first applied the naive estimation of spatial information content (in bit per

spike):89

spatial information =
X

i

pi

�
ri
�
r
�
log2

�
ri
�
r
�
;

where ri is the estimated firing rate of the neuron in the ith bin, pi is the probability of the mouse being in the ith bin (time spent in ith bin/

total session time), r is the overall mean estimated firing rate, with i running over all the bins. We then performed 1,000 distinct cyclic

shuffles, and calculated the spatial information for each shuffle.90 This yielded the p value of the measured information relative to the

shuffles. Cells with p < 0.05 were considered significant place cells and used for further analysis. To correct for the upward bias in the

naive estimation of spatial information from limited sample sizes,34 we used two recently developed methods that are specifically

tailored for the temporally sparse neuronal activity extracted from Ca2+ imaging data.35 The first method assumes a fixed ratio be-

tween the bias in the shuffle information (i.e., the deviation of the shuffle from zero) and the bias in naive estimation. Based on this

assumption, a scaled version of the shuffle information is subtracted from the naive estimation for each cell. The second method is

based on fitting a curve to the naive estimation as a function of the sample size and extrapolating the fitted curve to infinite sample

sizes. We also verified that both methods yielded similar estimated information. The results presented in the figures are according to

the scaled shuffle reduction method.

Number of place fields and field size
To estimate the number of place fields and the field size for each place cell, we binarized the tuning curves, setting all values that are >

30% of the maximal value to 1 and the rest to 0. Then, we counted the number of separate place fields in the binarized tuning curves

(done for each running direction separately). The size of the place field was defined as the size of the field surrounding the maximal

value of the tuning curve, i.e., the most dominant field.

Population vector correlation
To determine the level of similarity between representations of the environment on different sessions, we calculated the mean pop-

ulation vector (PV) correlation (Pearson correlation) between them.91 For each spatial bin (excluding the last 2 bins at each end of the

tracks, and separating between right and left running directions), we defined the PV as themean estimated spike rate for each neuron

given that bin’s occupancy. We computed the correlation between the PV in one session with that of thematching position in another

session, and averaged the correlations over all positions. For each pairwise comparison, we used only cells that passed the place cell

significance test in at least one of the two sessions. Since in some cases the hippocampus can switch between multiple orthogonal

maps (global remapping) across sessions in the same environment,92 we separated between the different maps observed in each

environment and considered only within-mapPV correlations. Each session that had at least one session from another daywithwhich

it had a PV correlation > 0.1 was identified to belong to that specific map, resulting in an unambiguous separation of the different

sessions into the different maps. Overall, we found 4/64 occurrences in CA1 and 3/80 occurrences in CA3 of a switch to a map other

than the one displayed in most of the days. We also used PV correlations to quantify the similarity of the spatial code across the two

running directions. Since previous work found that place fields are displaced across the two directions in a linear track,40 we defined

the between-directions PV correlations as the one obtained for the displacement value that maximizes the correlation.

Tuning-curve correlation
For each place cell, we determined the level of similarity between the representations of the environment on different sessions by

calculating the tuning curve correlation (Pearson correlation) between the two sessions (done for each running direction separately).

Cells that were significantly spatially tuned in at least one of the two sessions were considered to be place cells. As done for the PV

correlations, we separated between the different maps observed in each environment and considered only within-map tuning

correlations.

Ensemble rate correlation
To quantify the similarities in activity patterns between sessions, without accounting for place tuning, we measured the overall esti-

mated spike rate for each neuron in each session (irrespective of mouse position). We then calculated the ensemble rate correlation

(Pearson correlation) between the vectors (for all neurons) of estimated spike rates. As done for the PV correlations, we separated

between the different maps observed in each environment and considered only within-map ensemble rate correlations.

Organization into assemblies of correlated place cells
To analyze the structure of pairwise correlations in the neuronal population, wemeasured the tuning-curve correlations (Pearson cor-

relation) between all pairs of place cells in a given session. To test whether or not the spatial tuning curves of hippocampal place cells

were organized into assemblies of correlated cells, we focused on pairs of cells with the same preferred positions and calculated the

distribution of their tuning-curve correlations. Then, for each mouse, we compared this distribution against the distribution obtained
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in the same mouse for pairs of cells with the same preferred position across the opposite running directions in the linear track. This

procedure controlled for the differences in tuning precision and average estimated firing rates between individual mice and between

the two hippocampal subfields. As an additional validation, we compared the within-mouse distribution of tuning correlations against

the distribution obtained across cells with the same preferred position that were imaged from different mice in the same hippocampal

subfield. This validation also controlled for possible non-idiosyncratic overrepresentations of specific locations within the environ-

ment. We also compared the distributions of pairwise tuning-curve correlations for cells with different preferred positions.

Tuning peer-dependence
We quantified for each place cell the dependence of its tuning on the tuning of other place cells. To calculate the tuning peer-depen-

dence of a given cell, we found the median of its within-direction pairwise tuning correlations and then calculated in what percentile it

falls within the distribution of its across-directions tuning correlations. To test the relationship between tuning stability, precision, and

peer-dependence, we separately fitted to the data of each hippocampal subfield a linear multiple regression model between the tun-

ing-curve correlation, spatial information, tuning peer-dependence, average estimated firing rate, and mouse identity of each cell.

Next, we divided the population into the cells with a median pairwise tuning correlation > 95 percentile of the across-directions dis-

tribution (peer-dependent cells) and the cells with lower percentiles (peer-independent cells). Finally, we compared the different

properties of the neural code across these groups of cells. Since the PV correlation is a measure that is sensitive to population

size, a subset of peer-independent cells was randomly chosen for each pair of sessions to match the peer-dependent cells’ popu-

lation size.

Distribution of preferred positions
To test for differences in the distributions of preferred positions between peer-dependent and peer-independent cells, we compared

the degree to which these distributions diverged from a uniform distribution. This analysis was performed using the Kullback–Leibler

divergence (DKL):

DKL = �
X

i

pdata
i log2

�
puniform
i

�
pdata
i

�
;

where pdata
i is the fraction of cells with a preferred position in the ith bin, and pi

uniform is the fraction based on a uniform distribution, i.e.,

1 over the number of spatial bins. The distributions of preferred positions and DKL were estimated separately for each environment

and running direction and the obtained values were averaged across environments and directions for each mouse.

Pairwise noise correlations
Noise correlations were calculated by first measuring the temporal correlations (Pearson correlation) between the estimated spike

trains of pairs of neurons for a given mouse position. Then, for each pair of cells, we calculated the weighted average of these cor-

relations over all positions along the track, where theweights were the probability of themouse to be in a given position. This yielded a

single value representing the average noise correlation for each pair of cells. Finally, we calculated the noise correlations as a function

of the difference between the preferred positions of pairs of place cells and as a function of the distance between the locations of the

cells in the brain tissue.

Statistical analysis
For unrelated samples from two different groups, we performed aMann-Whitney U-test. For matched-pairs related samples, we per-

formed a two-sided matched-pairs t test. For repeated measurements from one group, we performed one-way repeated-measures

ANOVA. For repeatedmeasurements from unrelated samples from two different groups, we performed two-way repeated-measures

ANOVA. For repeated measurements of matched-pairs related samples, we used Friedman’s test, a non-parametric test similar to

repeated-measures ANOVA. The relationship between tuning stability, tuning precision, and tuning peer-dependence was tested

using a linear multiple regression analysis.
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