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SUMMARY	8 

Recent	studies	have	shown	that	neuronal	representations	gradually	change	over	time	9 
despite	 no	 changes	 in	 the	 stimulus,	 environment	 or	 behavior.	 However,	 such	10 
representational	 drift	 has	 been	 assumed	 to	 be	 a	 property	 of	 high-level	 brain	11 
structures,	whereas	earlier	circuits,	such	as	sensory	cortices,	have	been	assumed	to	12 
stably	 encode	 information	 over	 time.	 Here,	 we	 analyzed	 large-scale	 optical	 and	13 
electrophysiological	 recordings	 from	six	visual	 cortical	areas	 in	behaving	mice	 that	14 
were	repeatedly	presented	with	the	same	natural	movies.	Contrary	to	the	prevailing	15 
notion,	 we	 found	 representational	 drift	 over	 timescales	 spanning	 minutes	 to	 days	16 
across	 multiple	 visual	 areas,	 cortical	 layers	 and	 cell	 types.	 Notably,	 neural-code	17 
stability	 did	 not	 reflect	 the	 hierarchy	 of	 information	 flow	 across	 areas.	 Although	18 
individual	neurons	 showed	 time-dependent	 changes	 in	 their	 coding	properties,	 the	19 
structure	of	the	relationships	between	population	activity	patterns	remained	stable	20 
and	 stereotypic.	 Such	 population-level	 organization	 may	 underlie	 stable	 visual	21 
perception	despite	continuous	changes	in	neuronal	responses.	22 

 23 

INTRODUCTION	24 

One	of	the	great	marvels	of	the	brain	is	that	it	achieves	persistent	functionality	throughout	25 
adult	life	despite	an	extensive	continuous	turnover	of	its	bio-molecular	and	cellular	building	26 
blocks1–5.	 Recent	 advances	 in	 electrophysiology	 and	 optical	 imaging	 techniques	 enable	 to	27 
study	in	behaving	animals	the	persistence	over	time	of	neuronal	coding	properties,	such	as	28 
the	tuning	of	neurons	to	specific	stimuli6–15.	Some	of	these	studies	have	exposed	a	substantial	29 
degree	 of	 variability	 in	 neuronal	 responses	 to	 the	 same	 stimuli	 over	 timescales	 spanning	30 
minutes	to	weeks,	prompting	neuroscientists	to	question	the	naïve	assumption	that	stable	31 
neuronal	codes	are	essential	for	stable	brain	functionality4,6,8,12,14,16–30.	32 

One	example	is	the	neuronal	representations	of	space	in	the	hippocampus	and	related	brain	33 
areas,	which	gradually	change	over	timescales	of	hours	to	days	despite	no	apparent	changes	34 
in	the	environment	or	behavior6,26–28,31.	The	finding	of	this	so	called	‘representational	drift’32	35 
was	surprising,	because	classical	models	of	memory	consider	the	stability	of	the	engram	as	36 
the	basis	for	the	persistence	of	memory33,34.	Notably,	representational	drift	differs	from	mere	37 
variability	 in	 neuronal	 responses.	 In	 representational	 drift,	 the	 similarity	 between	 two	38 
representations	of	the	same	stimulus	gradually	decays	with	elapsed	time,	whereas	variability	39 
in	neuronal	responsiveness	does	not	 lead	 to	such	gradual	decay	 in	the	similarity	between	40 
representations21,32.	41 

The	specific	mechanisms	that	underlie	representational	drift	remain	elusive,	but	it	has	been	42 
suggested	that	drift	may	be	an	inevitable	outcome	of	the	network	dynamics	 in	deep	brain	43 
circuits	that	consist	of	multiple	input	and	output	loops32.	Consistent	with	this	logic,	and	given	44 
the	need	to	support	stable	perception	and	motor	outputs,	it	is	plausible	that	brain	circuits	45 
situated	closer	to	the	sensory	input	or	to	the	motor	output	will	display	more	stable	neuronal	46 
representations	than	those	of	higher-order	cortical	areas35.	While	a	direct	examination	of	this	47 
hypothesis	is	still	lacking,	several	recent	studies	of	sensory	cortices	have	found	variability	in	48 
neuronal	responsiveness	over	days9,11,16,36–39.	For	instance,	in	the	primary	visual	cortex	(V1),	49 
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Rose	et	al.	(2016)	revealed	session-to-session	variability	of	neuronal	visual	tuning	properties	50 
(e.g.,	 ocular	 dominance),	 and	 Montijn	 et	 al.	 (2016)	 reported	 that	 neuronal	 responses	 to	51 
synthetic	 stimuli	 (drifting	 gratings)	 are	 variable	 across	 trials	 within	 the	 same	 day	 while	52 
showing	modest	gradual	changes	over	days.	53 

These	studies	provide	clear	indications	that	representations	of	visual	stimuli	in	L2/3	neurons	54 
of	V1	are	variable	over	time.	However,	 it	remains	unclear	 if	and	to	what	extent	 the	visual	55 
cortex	exhibits	representational	drift	that	is	similar	to	that	observed	in	deep	circuits6,26,	 in	56 
terms	of	the	degree	to	which	different	aspects	of	cells’	coding	properties,	such	as	tuning	and	57 
activity	 rate,	 change	 over	 time.	 It	 is	 also	 unknown	 how	 the	 stability	 of	 neuronal	 coding	58 
properties	differs	across	different	cell-types	and	cortical	layers	within	a	given	area.	59 

Recently,	 the	 Allen	 Brain	 Institute	 published	 two	 large-scale,	 standardized	 physiological	60 
surveys	of	neuronal	coding	in	the	visual	cortex	(Allen	Brain	Observatory)40,41.	These	datasets	61 
consist	of	optical	and	electrophysiological	recordings	of	tens	of	thousands	of	neurons	from	62 
six	different	visual	cortical	areas	in	hundreds	of	awake	behaving	mice	that	were	repeatedly	63 
presented	with	the	same	set	of	visual	stimuli.	Thus,	they	offer	a	unique	opportunity	to	study	64 
coding	stability	across	different	areas	of	the	visual	cortex	and	over	different	timescales,	from	65 
minutes	 to	days.	The	 fact	 that	 the	 same	experiments	were	 conducted	using	 two	different	66 
recording	 techniques	 (Neuropixels	 probes42	 and	 Ca2+	 imaging)	 can	 help	 control	 for	 the	67 
limitations	and	biases	associated	with	each	technique.	Furthermore,	a	specific	set	of	stimuli	68 
–	natural	scene	movies	–	were	used	in	these	experiments	and	on	different	days.	This	allows	69 
studying	the	stability	of	visual	representations	of	complex	stimuli	that	are	more	ethologically	70 
relevant	than	the	synthetic	stimuli	traditionally	used	for	longitudinal	studies43–45.	71 

Using	these	datasets,	we	found	that	representational	drift	does	occur	across	different	visual	72 
areas,	over	timescales	spanning	minutes	to	days,	and	is	characterized	by	both	changes	in	the	73 
cells’	 activity	 rates	 and	 their	 tuning.	 We	 demonstrate	 that	 despite	 clear	 time-dependent	74 
changes	in	neuronal	responsiveness	to	visual	stimuli,	the	structure	of	relationships	between	75 
neuronal	population	activity	patterns	remains	stable,	permitting	the	conservation	of	visual	76 
information	over	time.	 	77 
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RESULTS	78 

We	analyzed	datasets	 from	experiments	 that	 used	 two	 recording	 techniques:	 two-photon	79 
Ca2+	 imaging40	 and	 electrophysiology	 via	 Neuropixels	 probes41.	 The	 Ca2+	 imaging	 dataset	80 
comprises	neuronal	activity	 from	nearly	60,000	neurons	collected	 from	six	visual	 cortical	81 
areas,	across	different	layers,	from	hundreds	of	adult	mice	that	were	presented	with	the	same	82 
set	of	visual	stimuli	(Figure	1A-D).	Each	mouse	was	imaged	from	a	single	cortical	area	while	83 
performing	three	imaging	sessions,	separated	by	days.	During	each	session,	mice	viewed	a	84 
battery	 of	 natural	 and	 artificial	 stimuli	 (Figure	 1C).	 The	 Neuropixels	 dataset	 comprises	85 
neuronal	activity	from	nearly	100,000	single	units	collected	from	six	visual	areas,	thalamic	86 
nuclei,	and	the	hippocampus,	from	58	adult	mice	(Figure	1E-H).	Each	mouse	was	implanted	87 
with	multiple	Neuropixels	probes	in	different	brain	areas	and	underwent	a	single	recording	88 
session	while	viewing	a	battery	of	natural	and	artificial	stimuli	(Figure	1G).		89 

We	focused	our	analysis	on	data	recorded	during	the	presentations	of	two	natural	movies	90 
because	 they	 were	 presented	 twice	 within	 the	 same	 recording	 session	 or	 in	 all	 imaging	91 
sessions	across	days.	This	enabled	us	to	study	the	stability	of	neuronal	representations	on	92 
three	 different	 time	 scales:	 (1)	 Between	 movie	 repetitions	 within	 a	 single	 block	 across	93 
seconds-minutes;	 (2)	 Between	 different	 blocks	within	 the	 same	 recording	 session	 across	94 
minutes-hours;	and	(3)	Between	sessions	recorded	on	different	days.	In	datasets	from	both	95 
recording	techniques,	we	could	readily	identify	neurons	that	displayed	reliable	and	distinct	96 
tuning	curves	that	were	stable	across	different	movie	repeats,	blocks,	and	days	(Figure	1D,	97 
H).	98 

Representational	drift	occurs	across	visual	cortical	areas	over	timescales	of	seconds-99 
minutes	100 

To	study	 the	stability	of	visual	 representations	over	 timescales	of	seconds	 to	minutes,	we	101 
analyzed	data	recorded	using	Neuropixels	probes	during	the	presentations	of	‘Natural	Movie	102 
1’.	We	divided	each	movie	repeat	into	equal	time	bins	and	constructed	a	population	vector	103 
(PV)	of	neuronal	activity	for	each	time	bin	(Figure	S1A	and	Methods).	We	then	calculated	the	104 
correlation	across	the	PVs	of	all	time	bins	of	all	movie	repeats	(Figure	2A).	We	found	higher	105 
PV	correlations	between	 the	same	time	bins	across	movie	repeats	 than	between	different	106 
time	bins,	 indicating	distinct	 and	 stable	 representation	of	 the	movie	 sequence	 (Figure	2A	107 
inset).	The	average	PV	correlation	values	between	the	same	time	bins	on	two	different	movie	108 
repeats	capture	the	stability	of	the	ensemble	representation	between	these	repeats	(Figure	109 
2B).	Calculating	the	mean	PV	correlation	as	a	function	of	the	interval	between	movie	repeats	110 
showed	a	significant	gradual	decline,	 indicating	representational	drift	 in	all	 studied	visual	111 
areas	(Figure	2C-E).	We	found	similar	drift	using	a	decoder	that	was	trained	to	infer	the	time	112 
bin	associated	with	a	given	activity	pattern	across	movie	repeats	(Figure	S1K,	top	panel).	113 

Changes	in	neuronal	tuning	and	activity	rates	underlie	drift	in	visual	representations	114 

What	 cellular	 properties	 could	 underlie	 the	 observed	 representational	 drift?	 Time-115 
dependent	decline	in	PV	correlations	may	stem	from	changes	in	cellular	excitability	(Figure	116 
2F)	or	from	changes	in	the	tuning	of	individual	neurons	to	the	presented	stimuli	(Figure	2G).	117 
To	test	the	contribution	of	each	of	these	factors	to	the	observed	changes	in	PV	correlations	118 
over	time,	we	used	two	complementary	measures:	(1)	‘Ensemble	rate	correlation’:	For	each	119 
movie	repeat,	we	constructed	a	single	vector	constituting	the	overall	activity	rates	of	each	cell	120 
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in	 the	 recorded	 population.	We	 then	 calculated	 the	 correlations	 across	 all	 pairs	 of	 these	121 
vectors,	which	captured	the	changes	in	the	cells’	activity	rates,	irrespective	of	their	tuning	to	122 
different	time	points	along	the	movie	(Figure	S1B).	(2)	‘Tuning	curve	correlation’:	For	each	123 
neuron,	at	each	movie	 repeat,	we	constructed	a	vector	 representing	 its	 responsiveness	 to	124 
each	time	bin	in	the	presented	movie	(i.e.,	its	tuning	curve)	and	then	correlated	the	tuning	125 
curves	 for	 the	 same	neurons	 across	different	movie	 repeats	 (Figure	 S1C).	These	 analyses	126 
revealed	a	significant	decline	in	the	ensemble	rate	correlation	and	a	modest,	yet	significant,	127 
decline	in	the	tuning	curve	correlation	values	as	a	function	of	elapsed	time	in	all	studied	visual	128 
areas	(Figure	2H,I).	Notably,	the	changes	in	the	cells’	activity	rates	were	largely	independent	129 
of	changes	in	their	tuning	(Figure	S1D-J).	Overall,	changes	in	both	the	cells’	activity	rates	and	130 
tuning	contributed	to	drift	in	visual	representations	over	seconds-minutes.	131 

Representational	drift	cannot	be	explained	by	changes	in	arousal	state,	visual	adaption	132 
or	recording	instability	133 

Could	the	observed	representational	drift	merely	reflect	changes	in	behavioral	state	or	global	134 
fluctuation	in	neuronal	activity	levels?	Indeed,	we	found	a	mild	drop	in	running	speed,	pupil	135 
area,	and	global	neuronal	activity	rates	after	the	first	few	movie	repeats,	potentially	reflecting	136 
changes	in	arousal46–55	or	visual	adaptation56,57	(Figure	S2A-D).	Repeating	our	analyses	while	137 
removing	the	first	several	movie	repeats	or	excluding	cells	that	showed	a	significant	decrease	138 
in	 their	 activity	 rates	 throughout	 the	block,	 revealed	a	 significant	 gradual	decline	 in	both	139 
ensemble	rate	correlation	and	tuning	curve	correlation	values	as	a	function	of	time	(Figure	140 
S2E-H).	 Furthermore,	 the	 distribution	 of	 the	 differences	 in	 activity	 rates	 of	 the	 same	141 
individual	neurons	between	the	beginning	and	end	of	each	block	was	centered	around	zero	142 
(Figure	S2I).	Together,	these	analyses	suggest	that	representational	drift	is	not	driven	by	a	143 
systematic	decline	in	firing	rates,	changes	in	the	behavioral	state	or	visual	adaptation.	144 

To	minimize	the	contribution	of	recording	instability	to	our	observations,	we	restricted	our	145 
analysis	to	cells	whose	tuning	curves	were	highly	correlated	across	different	blocks,	which	146 
increased	the	likelihood	of	tracking	the	same	cells	within	a	given	block.	Here	too,	we	found	147 
gradual	changes	in	visual	representations	in	all	studied	cortical	areas	(Figure	S2J-O).	Notably,	148 
we	 obtained	 similar	 results	 in	 the	 Ca2+	 imaging	 dataset,	 further	 substantiating	 that	 the	149 
observed	drift	is	not	due	to	recording	instability	(Figure	S1K,L).		150 

Representational	drift	is	continuous	over	timescales	of	tens	of	minutes	to	hours	151 

To	determine	the	degree	to	which	visual	representations	change	over	timescales	of	tens	of	152 
minutes,	we	analyzed	the	stability	within	and	across	blocks	of	movie	presentations.	We	found	153 
higher	correlations	within	a	given	block	compared	to	between	blocks	in	all	measurements,	154 
brain	 areas	 and	 datasets	 (Figure	 3A-D	 and	 Figure	 S3A-D).	 Furthermore,	 the	 decline	 in	155 
ensemble	rate	correlations	was	gradual	across	blocks	of	different	natural	movies	(Figure	S3E-156 
J).	Thus,	visual	representations	change	over	the	course	of	tens	of	minutes. 157 

Could	the	stability	of	visual	representations	be	affected	by	the	complexity	of	the	stimulus?	158 
While	here	we	found	drift	 in	the	representations	of	natural	movies,	previous	studies	have	159 
demonstrated	that	tuning	to	moving	grating	are	relatively	stable16,37.	Therefore,	we	repeated	160 
our	analyses	on	visual	representations	of	drifting	gratings	(Figure	S4A-C),	and	found	higher	161 
ensemble	rate	correlation	values	between	two	temporally	proximal	blocks	relative	to	those	162 
of	two	temporally	distal	blocks	in	all	brain	areas	and	datasets	(Figure	S4D,F).	In	contrast,	in	163 
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most	 visual	 areas	we	 found	no	 such	 significant	 difference	 in	 the	 tuning	 curve	 correlation	164 
values	as	a	function	of	time	(Figure	S4E,G).	Thus,	representations	of	drifting	gratings	change	165 
over	the	course	of	 tens	of	minutes,	but	 these	changes	are	characterized	by	changes	 in	the	166 
cells’	activity	rates	rather	than	in	their	tuning.	167 

Representational	drift	persists	over	timescales	of	days	and	weeks	168 

The	Ca2+	imaging	dataset	contains	three	imaging	sessions	per	mouse,	spanning	multiple	days	169 
(Figure	3E),	which	allows	assessing	the	long-term	stability	of	neuronal	representations58.	We	170 
first	took	a	conservative	approach	and	restricted	our	analysis	to	cells	that	were	active	in	both	171 
compared	 time	 points	 (either	 within	 a	 session	 or	 across	 sessions).	 Similarly	 to	 our	172 
observations	 within	 a	 given	 day,	 we	 found	 a	 gradual	 decrease	 in	 correlations	 in	 all	173 
measurements	and	brain	areas	(Figure	3F-I	and	Figure	S5A),	consistent	with	previous	results	174 
in	V137.	Repeating	our	analyses	with	the	cells	found	active	in	at	least	one	of	the	time	points	175 
we	compared	revealed	an	even	more	pronounced	decline	in	the	difference	between	sessions	176 
(Figure	S5B).	Time-dependent	decline	in	ensemble	rate	correlations	was	also	evident	during	177 
blocks	 of	 spontaneous	 activity	 (i.e.,	 without	 visual	 stimulation),	 implying	 that	 gradual	178 
changes	 in	 excitability	 drive	 drift	 in	 cell	 activity	 rates	 (Figure	 S5C).	While	 ensemble	 rate	179 
correlations	between	pairs	of	sessions	significantly	decreased	as	a	function	of	the	number	180 
days	between	sessions	in	all	visual	areas,	the	tuning	curve	correlations	showed	only	a	modest	181 
trend	(Figure	3J,K).	Overall,	 these	results	suggest	 that	representational	drift	 is	continuous	182 
over	days.		183 

Notably,	the	distribution	of	the	mean	activity	rates,	number	of	active	cells,	running	speed	and	184 
pupil	area	were	similar	across	sessions	(Figure	S5D-G),	suggesting	that	 the	observed	drift	185 
cannot	be	explained	by	gross	changes	in	the	population	response	or	animal	arousal	across	186 
sessions.	There	was	also	no	consistent	time-dependent	decay	in	the	performance	of	a	within-187 
day	decoder,	within-day	PV	correlation	values	or	PV	correlation	values	between	different	188 
pairs	of	subsequent	sessions,	indicating	that	representational	drift	over	days	is	not	a	result	189 
of	 a	 gradual	 deterioration	 in	 neuronal	 activity	 or	 tuning	 (Figure	 S5H-J).	 Importantly,	 our	190 
results	were	robust	to	the	specific	choice	of	Ca2+	event	detection	method	(Figure	S5K,L)	or	191 
cell	registration	algorithm58	(Figure	S6A-J).	192 

Representational	drift	occurs	throughout	different	cortical	layers	and	cell	types	193 

Our	analysis	thus	far	has	focused	on	excitatory	cells	in	different	visual	areas,	irrespective	of	194 
cortical	layers. Repeating	our	analysis	while	grouping	the	data	based	on	the	depth	of	each	195 
field	of	view	revealed	a	significant	gradual	decrease	in	the	PV	correlation	values	in	all	cortical	196 
layers	 (Figure	4A-C).	We	did	not	 find	significant	differences	 in	 the	rate	of	 the	drift	across	197 
cortical	layers	(Figure	4C),	which	is	surprising	given	the	differences	in	their	connectivity	and	198 
computational	roles.		199 

Next,	we	replicated	our	analyses	using	the	data	from	SST,	VIP	and	Pvalb	inhibitory	Cre	lines.	200 
In	 all	 inhibitory	 Cre	 lines,	 we	 could	 identify	 neurons	 that	 displayed	 reliable	 and	 distinct	201 
tuning	 curves	 across	 different	movies	 repeats	 occurring	 on	 different	 days	 (Figure	 4D-F).	202 
Similarly	 to	 our	 analyses	 of	 data	 from	 excitatory	 Cre	 lines,	 we	 found	 significant	203 
representational	drift	 in	interneurons	of	different	visual	areas,	across	timescales	spanning	204 
seconds	 to	days	 (Figure	4G-I).	Thus,	 representational	drift	 is	not	 intrinsically	 related	 to	a	205 
specific	subset	of	cells	or	cortical	layers.			206 
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Neural-code	stability	does	not	follow	the	hierarchy	of	information	flow	across	areas	207 

To	what	extent	does	the	hierarchy	of	information	flow	across	visual	areas	affect	the	stability	208 
of	visual	representations?	To	address	this	issue,	we	compared	the	stability	between	pairs	of	209 
thalamic	(dorsal	LGN	and	LP)	and	cortical	areas	(V1	and	LM).	Brain	areas	within	these	pairs	210 
are	anatomically	adjacent	and	show	similar	degree	of	tuning	reliability	to	natural	movies,	but	211 
are	distinct	with	respect	to	their	level	in	the	hierarchical	structure	of	the	visual	system41,59.	212 
We	 found	 that	 V1	 was	 consistently	 less	 stable	 than	 the	 downstream	 area	 LM	 across	 all	213 
measured	timescales	(Figure	5A-H).	Likewise,	LGN	showed	faster	drift	than	the	downstream	214 
LP	(Figure	5A,B).	Thus,	our	results	do	not	support	the	hypothesis	that	lower	visual	areas	are	215 
more	stable	than	higher	areas.			216 

The	internal	structure	of	neuronal	activity	differs	across	visual	brain	areas	217 

How	could	the	visual	system	generate	consistent	perception	despite	representational	drift?	218 
Recent	 studies	 in	 the	 hippocampus	 have	 shown	 that	 the	 structure	 of	 the	 relationships	219 
between	neuronal	population	activity	patterns	remains	stable	over	days60,	and	may	confer	220 
perceptual	 constancy	 in	 the	 face	 of	 changing	 coding	 properties	 of	 individual	 neurons32.	221 
Consistent	with	 this	notion,	applying	dimensionality	reduction	on	 the	PVs	of	all	 time	bins	222 
from	all	movie	repeats	uncovered	a	highly-organized	internal	structure	of	population	activity	223 
patterns	(Figure	6A).		224 

If	the	internal	structure	of	neuronal	activity	reflects	the	computational	processes	undertaken	225 
by	 the	 network,	 then	 it	 should	 differ	 across	 brain	 areas	 according	 to	 their	 distinct	226 
computational	roles60.	Thus,	we	next	asked	to	determine	 the	degree	 to	which	 the	 internal	227 
structure	of	neuronal	population	activity	is	distinct	for	each	visual	area,	stereotypic	across	228 
individuals,	and	stable	over	time.	We	calculated	for	each	area	the	PV	for	each	time	bin	within	229 
a	movie	repeat	and	then	calculated	the	correlations	across	all	the	PVs.	This	yielded	a	matrix	230 
(time	by	time;	Figure	6B)	that	represented	the	structure	of	similarities	between	the	neuronal	231 
population	activity	patterns	at	different	time	points	of	the	presented	movie	(i.e.	the	internal	232 
structure	 of	 neuronal	 population	 activity).	 Applying	 dimensionality	 reduction	 to	 the	233 
similarity	matrices	from	all	movie	repeats	and	from	all	visual	areas	revealed	highly	separated	234 
clusters	that	corresponded	to	the	different	visual	areas	(Figure	6C).	Therefore,	the	neuronal	235 
population	activity	of	each	visual	area	forms	a	distinct	internal	structure.		236 

We	next	explored	the	extent	to	which	such	an	organization	genuinely	stems	from	the	intrinsic	237 
functional	properties	of	each	brain	area61–64	and	to	what	extent	it	is	susceptible	to	biases	in	238 
the	 analysis	 (e.g.,	 due	 to	 incidental	 differences	 in	 the	 coding	 properties	 of	 the	 sampled	239 
neurons).	We	divided	the	dataset	into	two	equal	groups	of	mice,	and	then	pooled	together	the	240 
data	from	each	group	to	create	two	independent	‘pseudo-mice’,	taking	the	same	number	of	241 
cells	for	each	visual	area	in	both	pseudo-mice	(see	Methods).	Hence,	the	resultant	pseudo-242 
mice	have	an	equal	number	of	randomly-sampled	neurons	for	all	visual	areas,	with	an	order	243 
of	 magnitude	 more	 neurons	 per	 visual	 area	 compared	 to	 individual	 mice.	 Applying	244 
dimensionality	 reduction	 to	 the	 data	 from	 two	 example	 pseudo-mice,	 revealed	 well-245 
separated	clusters	(Figure	6D)	that	correspond	to	the	different	visual	areas,	similarly	to	what	246 
we	found	in	individual	mice	(Figure	6C).	Notably,	the	clusters	of	the	same	brain	area	across	247 
two	pseudo-mice	resided	relatively	close	to	each	other	in	the	reduced	space,	suggesting	that	248 
the	internal	structures	are	not	only	distinct	between	visual	areas	but	also	stereotypic	across	249 
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mice.	 The	 differences	 across	 visual	 areas	 and	 similarities	 between	 different	 pseudo-mice	250 
were	also	apparent	when	we	constructed	pseudo-mice	using	datasets	from	the	two	recording	251 
techniques	(Figure	6E),	or	when	comparing	 the	 low-dimensional	 latent	structures	(Figure	252 
6F).	 253 

To	quantitatively	assess	how	stereotypical	the	representations	are	in	different	visual	areas,	254 
we	trained	a	decoder	to	classify	the	identity	of	the	recorded	visual	area	across	pseudo-mice	255 
based	solely	on	the	internal	structure	of	neuronal	activity.	This	procedure	revealed	excellent	256 
classifications	for	all	brain	areas,	which	were	higher	than	shuffled	data	and	chance	(Figure	257 
6G).	As	expected,	the	decoder’s	performance	increased	with	the	number	of	cells	included	in	258 
the	 analysis	 (Figure	 6H	 and	 Figure	 S7A-C),	 and	was	 not	 different	 from	 chance	when	 the	259 
activity	of	individual	cells	was	temporally	shuffled	(Figure	S7D).	Further,	neuronal	responses	260 
to	‘Shuffled	natural	movie	1’	organized	into	less	distinct	internal	structures	compared	to	the	261 
responses	 to	 ‘Natural	 movie	 1’	 (Figure	 S7E-F),	 suggesting	 that	 the	 internal	 structure	 of	262 
neuronal	activity	is	affected	by	the	spatiotemporal	coherence	of	the	presented	visual	stimuli.	263 
Moreover,	we	found	good	classifications	 in	all	visual	areas,	even	when	using	the	neuronal	264 
activity	in	response	to	‘Full-field	drifting	gratings’	(Figure	S7G),	indicating	that	the	differences	265 
between	 the	 internal	 structures	across	visual	areas	are	due	 to	area-specific	differences	 in	266 
visual	field	representation.	Thus,	the	internal	structure	genuinely	reflects	coding	properties	267 
that	are	unique	to	each	visual	area,	and	is	not	a	trivial	reflection	of	the	structure	of	similarities	268 
between	different	frames	in	the	movie. 269 

The	internal	structure	of	neuronal	activity	is	maintained	over	time	despite	drift	in	the	270 
coding	of	the	neurons	supporting	it		271 

Finally,	we	examined	whether	the	internal	structure	of	neuronal	activity	is	more	stable	over	272 
time	than	the	activity	rates	and	tuning	of	individual	neurons	(Figure	7A).	We	calculated	for	273 
each	brain	area	the	change	in	the	correlations	between	the	internal	structures,	and	compared	274 
it	to	the	change	in	the	PV	correlation	over	days	(Figure	7B).	While	the	PV	correlations	decayed	275 
with	time,	the	correlations	between	the	internal	structures	remained	stable	(Figure	7C	and	276 
Figure	S7H,I).	The	structure	of	the	tuning	curves’	pairwise	similarities	(‘signal	correlations’)	277 
also	drifted	with	time,	consistent	with	our	finding	that	individual	cells	gradually	change	their	278 
tuning	across	days	(Figure	S7J,K).	Notably,	the	stability	over	time	of	the	internal	structure	279 
also	depended	on	the	size	of	the	neuronal	population,	as	including	more	cells	in	the	analysis	280 
resulted	in	a	more	stable	structure.	Conversely,	the	change	in	PV	correlation	or	the	structure	281 
of	pairwise	similarities	did	not	depend	on	the	number	of	cells,	consistent	with	measurements	282 
that	treat	cells	independently	(Figure	7D	and	Figure	S7L).	Overall,	our	results	suggest	that	283 
the	 internal	 structure	 of	 neuronal	 population	 activity	 of	 each	 visual	 area	 is	 distinct,	284 
stereotypic,	and	stable	across	time	despite	drift	in	the	activity	rates	and	tuning	of	individual	285 
neurons.		286 

DISCUSSION	287 

We	found	representational	drift	over	timescales	of	minutes	to	days	across	the	visual	system.	288 
Surprisingly,	our	analysis	does	not	support	the	hypothesis	that	primary	(or	lower)	sensory	289 
areas	display	more	stable	coding	than	downstream	(higher)	areas35.	If	anything,	our	analysis	290 
shows	that	the	coding	stability	of	some	cortical	(V1	and	LM)	and	subcortical	(LGN	and	LP)	291 
areas	exhibit	an	opposite	 trend	with	respect	 to	 their	hierarchy.	We	 further	show	that	 the	292 
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structure	of	 the	 relationship	between	neuronal	population	activity	patterns	 is	 stereotypic	293 
across	mice	and	stable	over	time,	pointing	to	a	possible	network	mechanism	that	can	reliably	294 
preserve	visual	information	despite	drift	in	the	coding	properties	of	individual	neurons.	295 

Our	work	joins	a	number	of	longitudinal	studies	that	quantified	coding	stability	in	the	visual	296 
cortex	and	adds	to	these	studies	in	several	aspects16,36–38.	While	most	previous	work	focused	297 
on	 excitatory	 L2/3	 neurons	 in	 V1	 and	 emphasized	 variability	 in	 neuronal	 responses	 to	298 
synthetic	 stimuli16,36,38,	 our	 analysis	 encompasses	 multiple	 different	 visual	 areas,	 cortical	299 
layers,	and	cell	types	and	focuses	on	changes	in	neuronal	representations	of	natural	movies.	300 
Consistent	with	our	results,	a	recent	study	in	V1	found	more	pronounced	changes	in	cells’	301 
tuning	to	natural	movies	relative	to	that	of	drifting	gratings65.	302 

In	 the	 experiments	 analyzed	 here,	 neuronal	 responses	 to	 the	 exact	 same	 stimuli	 were	303 
recorded	using	both	electrophysiology	and	Ca2+	 imaging,	which	allowed	us	 to	validate	 the	304 
results	 and	 control	 for	 biases	 specific	 for	 each	 technique.	 The	 majority	 of	 our	 analyses	305 
showed	highly	similar	results	across	the	two	datasets.	However,	small	differences	were	found	306 
in	few	of	the	analyses	(e.g.	Figure	3D	compared	to	Figure	S3C,	and	Figure	S4E	compared	to	307 
Figure	 S4G),	 which	 likely	 reflect	 the	 differences	 in	 sensitivity	 and	 resolution	 of	 the	 two	308 
technologies66–69.		309 

Our	findings	that	changes	in	activity	rates	and	tuning	are	largely	independent	(Figure	S1D-J)	310 
and	that	ensemble	rate	correlations	can	gradually	change	over	time	even	in	the	absence	of	a	311 
visual	stimulation	(Figure	S5J)	suggest	that	different	mechanisms	may	govern	distinct	aspect	312 
of	neuronal	 function,	such	as	excitability70–73	and	synaptic	connectivity74.	Additionally,	 the	313 
existence	of	drift	across	minutes	to	days	raises	the	possibility	that	different	mechanisms	drive	314 
drift	on	different	timescales.	315 

To	generate	consistent	perception,	the	visual	system	must	cope	with	changes	in	the	coding	of	316 
visual	information75,76.	It	has	been	suggested	that	a	system	that	carries	a	high-dimensional	317 
distributed	 code	 may	 maintain	 its	 functionality	 under	 representational	 drift	 by	 either	318 
confining	 the	 drift	 to	 the	 null	 space	 of	 the	 code,	 or	 via	 a	 compensatory	 plasticity	 of	 the	319 
downstream	 reader29,32.	 In	 both	 cases,	 the	 similarities	 across	 representations	 of	 different	320 
stimuli	are	expected	to	be	somewhat	conserved	over	time,	even	under	a	significant	change	in	321 
the	 representations	 themselves.	 Here,	 we	 demonstrate	 that	 the	 relationships	 between	322 
representations	are	stable	over	 time,	consistent	with	recent	studies	showing	 that	a	stable	323 
structure	(manifold)	of	population	activity	resides	in	a	variable	or	drifting	high-dimensional	324 
neural	activity	space	and	may	underlie	a	stable	behavior60,77–80.		325 

Measuring	coding	stability	 is	 challenging	because	various	 factors	 could	affect	 longitudinal	326 
recordings	in	a	way	that	could	lead	to	the	appearance	of	drift,	even	if	the	neuronal	activity	327 
itself	 is	 stable.	 For	 these	 reasons,	we	 performed	 several	 control	 analyses	which	 together	328 
suggest	that	our	results	are	not	due	to	recording	instability	(Figure	S2J-O,	Figure	S3F,I	and	329 
Figure	S6).	Importantly,	we	found	that	drift	occurs	even	in	the	absence	of	an	overt	sign	of	330 
changes	 in	 the	 behavioral	 state,	 and	 has	 different	 properties	 from	 habituation	 or	331 
adaptation56,57.	 There	 are	 of	 course	 behavioral	 variables	 that	 were	 not	 recorded	 in	 the	332 
experiments	 we	 analyzed	 that	 could	 affect	 neuronal	 responses	 in	 the	 visual	 cortex46,81.	333 
However,	as	long	as	such	variables	do	not	gradually	change	with	time,	they	should	not	affect	334 
the	stability	of	the	visual	representations.		335 
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Overall,	 taken	 together	with	other	 findings	of	drift	 in	 the	hippocampus	and	other	 cortical	336 
areas82,	 our	 results	 imply	 that	 representational	 drift	 is	 an	 inherent	 property	 of	 neural	337 
networks,	and	that	population-level	organization	of	information	could	contribute	to	robust,	338 
time-invariant	representations	despite	drifting	or	variable	coding	at	the	level	of	individual	339 
neurons.	 	340 
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	354 

Figure	1.	Neurons	recorded	from	various	visual	cortical	areas	show	reliable	tuning	to	355 
natural	movies.	(A-D)	Ca2+	imaging	dataset.		(A)	Schematic	of	the	different	brain	areas	imaged	356 
using	two-photon	Ca2+	imaging.	V1	-	primary	visual	area,	LM	–	lateral-medial	visual	area,	AL	-	357 
anterolateral	visual	area,	PM	-	posteromedial	visual	area,	RL	-	rostrolateral	visual	area,	AM	-	358 
anteromedial	visual	area.	(B)	Distribution	of	cell	counts	per	mouse	across	brain	areas	for	the	359 
Ca2+	imaging	dataset.	(C)	Experimental	design.	Each	mouse	performed	three	sessions	in	a	360 
random	order,	separated	by	a	different	number	of	days.	Indicated	stimuli	(‘Natural	movie	1’	and	361 
‘Natural	movie	3’)	were	used	in	our	main	analyses	(see	Methods).	(D)	Responses	of	three	cells	362 
across	different	‘Natural	movie	1’	repeats	spanning	three	sessions.	(E-H)	Neuropixels	dataset.	363 
(E)	Schematic	(adapted	from	Siegle	et	al.	(2021))	of	the	different	brain	area	recordings	using	364 
Neuropixels	probes.	LGN	–	lateral	geniculate	nucleus.	LP	–	lateral	parietal	nucleus.	(F)	Cell	365 
counts	per	mouse	across	brain	areas	for	the	Neuropixels	dataset.		(G)	Experimental	design.	366 
Thirty-two	of	the	mice	performed	the	‘Brain	Observatory’	battery	and	26	performed	the	367 
‘Functional	Connectivity’	battery.	Indicated	stimuli	(‘Natural	movie	1’,	‘Natural	movie	3’,	and	368 
‘Shuffled	natural	movie	1’)	were	used	in	our	analyses.	(H)	Responses	of	three	cells	across	369 
different	‘Natural	movie	1’	repeats	spanning	two	blocks	within	the	same	session.	Box	plots	in	370 
panels	B	and	F	show	the	data	range	(whiskers),	25th	and	75th	percentiles	(box),	and	median	371 
(dark	line).	Outliers	are	marked	by	gray	dots.		 	372 
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	373 

Figure	2.	The	visual	cortex	exhibits	representational	drift	across	subsequent	374 
presentations	of	a	natural	stimulus	over	timescales	of	seconds-minutes.	375 
(A-I)	Analyses	using	data	from	the	Neuropixels	‘Functional	Connectivity’	group	during	the	376 
presentation	of	‘Natural	movie	1’.	(A)	PV	correlation	between	the	first	10	(out	of	30)	movie	377 
repeats	of	the	first	block,	recorded	from	area	PM	of	a	representative	mouse.	Inset:	average	PV	378 
correlation	over	all	pairs	across	different	movie	repeats.	(B)	Mean	PV	correlation	for	each	pair	of	379 
movie	repeats	from	the	same	mouse	shown	in	A.	For	visualization,	the	diagonal	was	set	to	the	380 
maximal	value.	(C)	Mean	PV	correlation	as	a	function	of	time.	Each	data	point	represents	the	381 
mean	PV	correlation	value	for	a	single	pair	of	movie	repeats	from	B.	(D)	Mean	PV	correlation	382 
between	movie	repeats	across	animals	and	brain	areas.	(E)	PV	correlation	as	a	function	of	time.	383 
(F)	Mean	activity	rates	for	three	units	from	area	PM	of	the	same	representative	mouse	across	384 
movie	repeats.	(G)	Responses	of	three	V1	cells	from	the	same	mouse	across	different	movie	385 
repeats,	spanning	two	blocks	within	the	same	session.	(H-I)	Ensemble	rate	(H)	and	tuning	curve	386 
(I)	correlation	across	animals	as	a	function	of	time.	All	visual	areas	showed	a	significant	387 
decrease	in	PV,	ensemble	rate	and	tuning	curve	correlations	as	a	function	of	time	(χ2(28)≥92.33,	388 
p<10-3,	Friedman’s	tests	with	Holm–Bonferroni	correction).	Data	in	E,	H	and	I	are	mean	±	SEM	389 
across	mice.	See	also	Figures	S1	and	S2.	 	390 
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	391 

Figure	3.	Visual	representations	gradually	change	over	timescales	of	minutes-days.	392 
(A-D)	Data	from	the	Neuropixels	‘Brain	Observatory’	group	during	the	presentation	of	‘Natural	393 
movie	3’.	(A)	PV	correlation	between	the	1st	(repeats	1-2)	and	2nd	(repeats	3-5)	halves	of	two	394 
different	blocks	of	‘Natural	movie	3’	in	a	single	visual	area.	The	presented	example	is	the	average	395 
matrix	across	mice	in	area	LM.	(B-D)	PV	(B),	ensemble	rate	(C)	and	tuning	curve	(D)	correlations	396 
between	the	two	halves	of	the	same	block	and	between	halves	of	different	blocks.	For	all	397 
measurements	and	areas	p≤0.002,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	398 
correction.	(E-K)	Ca2+	imaging	dataset	during	the	presentation	of	‘Natural	movie	1’.	(E)	PV	399 
correlation	between	three	different	sessions	from	a	representative	mouse	recorded	in	V1.	The	400 
age	of	the	mouse	(in	days)	is	indicated	in	parenthesis.	(F-H)	PV	(F),	ensemble	rate	(G)	and	401 
tuning	curve	(H)	correlations	between	the	two	halves	of	the	same	session	and	between	halves	of	402 
different	sessions.	For	all	measurements	and	areas	p<10-3,	two-tailed	Wilcoxon	signed-rank	test	403 
with	Holm–Bonferroni	correction.	(I)	The	difference	between	the	PV	correlation	of	two	404 
temporally	proximal	sessions	and	that	of	two	temporally	distal	sessions	(V1(Z=3.35,p=0.001),	405 
LM(Z=4.64,p<10-3),	AL(Z=2.85,p=0.006),	PM(Z=3.92,p<10-3),	RL(Z=1.38,p=0.083),	406 
AM(Z=1.99,p=0.046),	one-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction;	407 
*p<0.05,	**p<0.01,	***p<0.001).	(J-K)	Ensemble	rate	(J)	and	tuning	curve	(K)	correlation	as	a	408 
function	of	the	number	of	days	between	sessions.	Each	mouse	is	represented	by	2-3	data	points,	409 
corresponding	to	different	intervals	between	sessions,	with	a	regression	line	of	±	CI	of	95%	410 
(one-tailed	Pearson’s	correlation	with	Holm–Bonferroni	correction).	Data	in	B-D	and	F-I	are	411 
mean	±	SEM	across	mice.	See	also	Figures	S3-S6.	 	412 
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	413 

Figure	4.	Representational	drift	across	multiple	cortical	layers	and	cell	types.	414 
(A-C)	Data	from	the	Ca2+	imaging	dataset	during	the	presentation	of	‘Natural	movie	1’.	(A-B)	PV	415 
correlation	between	the	two	halves	of	the	same	session,	between	halves	of	two	temporally	416 
proximal	sessions	and	between	halves	of	two	temporally	distal	sessions	grouped	based	on	417 
cortical	layers	for	each	of	six	visual	areas	(A)	or	after	pooling	across	all	mice	and	visual	areas	418 
(B).	Colors	indicate	different	cortical	layers.	(C)	Normalized	difference	between	the	PV	419 
correlation	of	proximal	sessions	and	distal	sessions	for	all	layers.		The	difference	in	PV	420 
correlations	between	proximal	sessions	and	distal	sessions	was	significant	for	all	layers	421 
(p≤0.0062,	one-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	There	was	422 
no	significant	difference	in	the	PV	similarity	indices	between	the	different	layers	(two-tailed	423 
Mann-Whitney	rank	sum	tests	with	Holm–Bonferroni	correction).	(D-I)	Analyses	were	done	424 
using	both	the	excitatory	and	inhibitory	Cre	lines	from	the	Ca2+	imaging	dataset	during	the	425 
presentation	of	‘Natural	movie	1’.	(D-F)	Responses	of	three	SST	(D),	VIP	(panel	E),	and	Pvalb	(F)	426 
example	cells	from	area	V1	across	different	movie	repeats	spanning	three	sessions.	(G)	427 
Difference	in	PV	correlation	as	a	function	of	time	for	the	inhibitory	(colored)	and	excitatory	428 
(gray)	Cre	lines	imaged	from	areas	V1,	LM	and	PM;	All	areas	in	the	inhibitory	Cre	lines	showed	a	429 
significant	decrease	in	PV	correlations	as	function	of	time	(χ2(8)≥24.19,p≤0.002,	Friedman’s	tests	430 
with	Holm–Bonferroni	correction).	(H)	PV	correlation	between	the	two	halves	of	the	same	block	431 
and	between	halves	of	different	blocks	for	the	inhibitory	(colored)	and	excitatory	(gray)	Cre	432 
lines;	p≤0.005	for	all	areas	in	the	inhibitory	Cre	lines,	two-tailed	Wilcoxon	signed-rank	test	with	433 
Holm–Bonferroni	correction.	(I)	PV	correlation	between	the	two	halves	of	the	same	session,	434 
between	halves	of	two	temporally	proximal	sessions	and	between	halves	of	two	temporally	435 
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distal	sessions	for	the	inhibitory	(colored)	and	excitatory	(gray)	Cre	lines.	The	difference	in	PV	436 
correlations	between	proximal	sessions	and	distal	sessions	was	significant	for	all	areas	in	the	437 
inhibitory	Cre	lines	(p≤0.01,	one-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	438 
correction).	Data	in	A-C	and	G-I	are	mean	±	SEM	across	mice.	 	439 
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	440 

Figure	5.	Comparison	of	representational	drift	between	lower	and	higher	visual	areas.	441 
(A-B)	Data	from	the	Neuropixels	‘Functional	Connectivity’	group	during	the	presentation	of	442 
‘Natural	movie	1’.	Normalized	difference	in	ensemble	rate	(A)	and	tuning	curve	correlations	(B)	443 
as	a	function	of	time	for	dLGN,	LP,	V1	and	LM;	significant	differences	in	similarity	indices	444 
between	the	different	pairs	of	visual	areas	are	indicated	by	colored	asterisks	(purple	for	dLGN	445 
compared	to	LP,	and	blue	for	V1	compared	to	LM;	*p≤0.05,	two-tailed	Mann–Whitney	rank-sum	446 
tests).	(C-H)	Data	from	the	Ca2+	imaging	dataset	during	the	presentation	of	‘Natural	movie	1’	447 
(C,D,	G,	H)	or	‘Natural	movie	3’	(E,F).	(C-D)	Ensemble	rate	(C)	and	tuning	curve	(D)	similarity	448 
index	as	a	function	of	time	for	V1	and	LM.	The	difference	in	similarity	indices	between	V1	and	449 
LM;	*p≤0.05,	two-tailed	Mann–Whitney	rank-sum	tests.	(E-F)	Ensemble	rate	(E)	and	tuning	450 
curve	(F)	correlation	between	the	two	halves	of	the	same	block	and	between	halves	of	different	451 
blocks.	Inset:	distribution	of	normalized	difference	in	correlations	between	‘within	block’	and	452 
‘between	blocks’	for	V1	compared	to	LM;	two-tailed	Mann–Whitney	rank-sum	test	for	ensemble	453 
rate	(Z=1.63,p=0.101)	and	tuning	curve	(Z=2.6,p=0.009)	correlations.	(G-H)	Normalized	454 
difference	in	ensemble	rate	(G)	and	tuning	curve	(H)	correlations	between	the	two	halves	of	the	455 
same	session,	between	halves	of	two	temporally	proximal	sessions	and	between	halves	of	two	456 
temporally	distal	sessions.	The	difference	in	similarity	index	between	V1	and	LM;	*p≤0.05,	two-457 
tailed	Mann–Whitney	rank-sum	tests.	Data	are	mean	±	SEM	across	mice.	The	number	of	mice	is	458 
indicated	in	parentheses.		 	459 
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	460 

Figure	6.	The	internal	structure	of	neuronal	activity	of	each	visual	area	is	distinct	and	461 
stereotypic	across	mice.	(A)	Dimensionality	reduction	(tSNE)	of	population	activity	of	a	single	462 
mouse	recorded	from	area	V1	(left)	recovers	a	low-dimensional	structure	(right).	Each	point	463 
represents	a	single	time-point	of	population	activity	of	a	single	movie	repeat,	colored	according	464 
to	time	in	the	presented	movie.	(B)	Workflow	for	the	extraction	of	the	internal	structure	from	465 
the	neuronal	population	responses.	(C)	Dimensionality	reduction	applied	to	the	internal	466 
structures	of	different	visual	areas	from	a	single	representative	mouse	recorded	via	467 
Neuropixels.	Each	data	point	corresponds	to	an	internal	structure	of	a	single	‘Natural	movie	1’	468 
repeat.	Insets:	example	of	internal	structures	from	area	V1	(blue;	repeat	#49)	and	area	AL	469 
(yellow;	repeat	#37).	(D)	Example	of	a	dimensionality	reduction	on	the	internal	structures	of	470 
‘Natural	movie	1’	produced	from	two	Neuropixels	‘pseudo-mice’.		Each	data	point	corresponds	471 
to	an	internal	structure	of	a	single	movie	repeat.	(E)	Dimensionality	reduction	applied	to	the	472 
internal	structures	from	different	brain	areas	of	two	‘pseudo-mice’	created	using	data	from	all	473 
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the	mice	of	each	dataset	(Neuropixels	and	Ca2+	imaging).	Each	data	point	corresponds	to	an	474 
internal	structure	of	a	single	repeat	of	‘Natural	movie	1’.	Large	circles	indicate	the	centers	of	475 
mass	of	the	data	points	for	each	area,	with	a	line	connecting	between	Neuropixels	and	Ca2+	476 
imaging	datasets.	Inset:	a	correlation-distance	matrix	between	the	internal	structure	of	each	477 
area	across	recording	techniques.	(F)	Top:	Dimensionality	reduction	on	the	population	activity	478 
of	two	example	pseudo-mice	recorded	using	Neuropixels	probes	recovers	a	distinct	low-479 
dimensional	structure	for	each	visual	area.	Each	point	represents	a	single	time-point	of	480 
population	activity	of	a	single	‘Natural	movie	1’	repeat.	Bottom:	Structure	of	similarities	481 
between	trial	averaged	population	activity	of	each	visual	area	for	the	same	example	pseudo-482 
mice	shown	in	the	top	panels.	(G-H)	Percentage	of	successful	classifications	of	the	internal	483 
structures	to	their	corresponding	visual	areas	across	pairs	of	Neuropixels	pseudo-mice	(G;	data	484 
are	mean	across	1000	pairs	of	pseudo-mice),	and	as	a	function	of	the	number	of	cells	included	in	485 
the	analysis	(H;	data	are	mean	across	n=2000	iterations).	See	also	Figure	S7.	 	486 
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	487 

Figure	7.	The	internal	structure	of	neuronal	activity	is	stable	over	time.	(A-D)	Data	from	488 
the	Ca2+	imaging	dataset	during	the	presentation	of	‘Natural	movie	1’.	(A)	A	similar	low-489 
dimensional	structure	to	the	one	shown	in	Figure	6A	is	seen	in	a	different	example	mouse	490 
recorded	from	area	V1.	(B)	While	the	internal	structure	in	‘pseudo-area	AL’	is	maintained	across	491 
imaging	sessions	(top	panels),	the	individual	neurons	whose	activity	patterns	underlie	the	same	492 
internal	structure	drift	across	sessions	(bottom	panels).	(C)	Normalized	correlation	between	the	493 
internal	structures	(colored	lines)	or	the	PVs	(gray	lines)	between	the	two	halves	of	the	same	494 
session,	between	halves	of	two	temporally	proximal	sessions	and	between	halves	of	two	495 
temporally	distal	sessions.	Data	are	mean	±	SD	across	1000	different	pseudo-mice	realizations.	496 
(D)	Same	as	in	panel	C	only	colored	according	to	the	number	of	neurons	included	in	the	analysis.	497 
Data	are	mean	across	1000	different	pseudo-mice	realizations	.	Correlations	in	panels	C	and	D	498 
were	normalized	to	the	value	of	the	‘within	session’	correlation.	See	also	Figure	S7.	 	499 
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STAR	★	METHODS	500 

RESOURCE	AVAILABILITY	501 

Lead	contact	502 
Further	information	and	requests	for	resources	should	be	directed	to	the	Lead	Contact,	503 
Yaniv	Ziv	(yaniv.ziv@weizmann.ac.il).	504 

Materials	availability		505 
This	study	did	not	generate	new	unique	reagents.	506 

Data	and	code	availability	507 

• This	paper	analyzes	existing,	publicly	available	data	which	is	available	via	the	508 
AllenSDK	at:	https://allensdk.readthedocs.io	509 

• Processed	data		and	code	supporting	the	current	study	is	deposited	in	a	GitHub	510 
repository	and	will	be	publicly	available	as	of	the	date	of	publication	at:	511 
https://github.com/zivlab/visual_drift.	512 

• Any	additional	information	required	to	reanalyze	the	data	reported	in	this	paper	is	513 
available	from	the	lead	contact	upon	request.	514 
	515 

EXPERIMENTAL	MODEL	AND	SUBJECT	DETAILS	516 

We	analyzed	data	from	the	publicly	available	Allen	Brain	Observatory:	two-photon	Ca2+	517 
imaging40	and	electrophysiology	(Neuropixels)	datasets41.	We	used	the	default	functions	in	518 
Allen	software	development	kit	(AllenSDK)	package	to	download	the	raw	Neurodata	519 
Without	Borders	(NWB)	files	containing	the	neuronal	and	behavioral	data	from	the	relevant	520 
experiments.	Their	full	data	collection	methodology	can	be	found	in	the	white	paper	521 
(https://observatory.brain-map.org/visualcoding).	Briefly,	in	the	Ca2+	imaging	dataset,	216	522 
transgenic	mice	expressing	GCaMP6f	in	laminar-specific	subsets	of	cortical	pyramidal	523 
neurons	underwent	intrinsic	signal	imaging	to	map	their	visual	cortical	regions	before	524 
cranial	windows	were	implanted	above	the	desired	visual	region.	Mice	were	habituated	to	525 
head	fixation	before	the	three	imaging	sessions,	in	which	they	were	shown	a	battery	of	526 
natural	scenes,	natural	movies,	locally	sparse	noise,	or	gratings.	In	the	Neuropixels	dataset,	527 
30	C57BL/6J	wild-type	mice	and	28	mice	from	three	transgenic	lines	(N	=	8	Pvalb-IRES-Cre	528 
x	Ai32,	N	=	12	Sst-IRES-Cre	x	Ai32,	and	N	=	8	Vip-IRES-Cre	x	Ai32)	were	implanted	with	up	529 
to	six	Neuropixels	silicone	probes	each.	The	dataset	contains	simultaneous	recordings	from	530 
up	to	8	cortico-thalamic	visual	areas	(as	well	as	nearby	regions,	such	as	CA1).	During	each	531 
recording	session,	mice	passively	viewed	a	battery	of	natural	and	artificial	stimuli,	532 
depending	on	their	experimental	group.	533 

METHOD	DETAILS	534 

Data	analysis	and	data	exclusion.	535 
Analysis	was	carried	out	using	the	AllenSDK	package	default	functions	(for	data	curation)	536 
and	custom-written	MATLAB	scripts	(for	data	analysis).	In	the	Ca2+	imaging	dataset,	we	537 
used	all	available	excitatory	and	inhibitory	Cre	lines,	including	all	layers	and	brain	areas.	All	538 
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Ca2+	imaging	dataset	analyses	were	performed	using	the	excitatory	Cre	lines	unless	stated	539 
otherwise.	The	dataset	is	structured	into	‘experiment	containers’	that	group	recordings	540 
from	three	different	imaging	sessions	of	the	same	field	of	view	(FOV).	We	considered	each	541 
such	container	as	an	individual	mouse.	We	included	only	mice	that	passed	a	fixed	criterion	542 
of	at	least	20	recorded	cells	in	the	compared	time-points.	Specifically,	in	the	within-block	543 
and	between-days	analyses,	we	included	only	mice	with	at	least	20	recorded	cells	in	each	of	544 
the	three	imaging	sessions,	and	in	the	between-blocks	analysis,	mice	with	at	least	20	545 
recorded	cells	within	the	same	session	(‘Session	A’).		In	the	analyses	comparing	different	546 
cortical	layers,	we	employed	the	same	inclusion	criteria	described	above	while	grouping	the	547 
mice	based	on	the	imaging	depth	of	their	FOV	regardless	of	the	identity	of	the	recorded	548 
visual	area	(Layer	2/3:	150-250μm;	Layer	4:	265-350μm;	Layer	5:	365-500μm;	Layer	6:	549 
550-700μm).	In	the	analyses	comparing	between	inhibitory	and	excitatory	Cre	lines	(Figure	550 
4G-I),	due	to	the	relatively	low	number	of	cells	in	an	average	FOV	of	the	inhibitory	Cre	lines	551 
mice,	we	included	in	the	analyses	all	the	mice	from	the	inhibitory	Cre	lines	while	552 
maintaining	the	same	inclusion	criteria	described	above	for	the	excitatory	Cre	lines.	For	the	553 
analysis	of	the	Neuropixels	dataset,	we	used	the	AllenSDK	package	default	functions	to	filter	554 
out	units	that	were	likely	to	be	highly	contaminated	or	missing	many	of	spikes	and	to	555 
retrieve	the	relevant	unit’s	identity	according	to	its	corresponding	manually	labeled	brain	556 
areas. This	resulted	in	excluding	units	with	ISI	violations	larger	than	0.5,	an	amplitude	557 
cutoff	larger	than	0.1	and	a	presence	ratio	smaller	than	0.9	(Siegle	et	al.,	2021).	We	then	558 
included	in	all	analyses	only	data	from	areas	with	at	least	15	recorded	units.		559 

Detection	of	Ca2+	events.	560 
Neuropil-corrected	fluorescence	change	(ΔF(t)/F0)	traces	for	each	cell	were	extracted	using	561 
automated,	structural	region	of	interest	(ROI)-based	methods.	The	full	procedure	appears	in	562 
de	Vries	et	al.	(2020).	We	performed	no	further	preprocessing	on	the	ΔF(t)/F0	traces	after	563 
downloading	them	with	the	AllenSDK.	We	identified	Ca2+	events	by	searching	each	trace	for	564 
local	maxima	that	had	a	peak	amplitude	higher	than	four	times	the	trace	absolute	median	565 
while	including	only	the	frames	that	showed	an	increase	in	Ca2+	transients	relative	to	their	566 
previous	frame.	All	the	ΔF(t)/F0	values	in	the	frames	that	passed	the	assigned	filters	were	set	567 
to	the	value	of	1,	and	the	rest	to	a	value	of	0.	It	should	be	noted	that	significant	568 
representational	drift	across	days	was	also	evident	when	using	the	ΔF(t)/F0	traces	(Figure	569 
S5K,L).	570 

Registration	of	cells	across	sessions.	571 
We	used	each	cell’s	match	labels	across	sessions	as	provided	by	Allen	Brain	Institute	in	each	572 
experiment’s	NWB	file.	Briefly,	an	algorithm	that	combines	the	degree	of	spatial	overlapping	573 
and	closeness	between	the	ROIs	of	different	cells	was	used	to	create	a	unified	label	for	each	574 
cell	across	all	three	sessions.	The	full	registration	procedure	appears	in	de	Vries	et	al.,	575 
(2020).	To	verify	that	observed	drift	did	not	stem	from	errors	in	the	specific	cell	576 
registration	algorithm	used	to	create	the	cell’s	match	labels	across	sessions,	we	used	an	577 
additional,	independent	probabilistic	cell	registration	algorithm58.	This	method	models	the	578 
distribution	of	centroid	distances	for	neighboring	cells	from	different	recording	sessions	579 
(candidates	for	being	the	same	cell)	as	a	weighted	sum	of	the	distributions	of	two	580 
subpopulations:	same	cells	and	different	cells	(Figure	S6).	Then,	based	on	the	model	that	581 
best	fits	the	data,	the	method	estimates	the	probability	of	each	candidate	in	the	dataset	to	582 
be	the	same	cell	(Psame).	This	allows	estimating	the	overall	rates	of	false-positive	errors	583 
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(different	cells	falsely	registered	as	the	same	cell)	and	false-negative	errors	(the	same	cell	584 
falsely	registered	as	different	cells),	providing	a	Psame	registration	threshold	that	is	585 
optimized	to	the	dataset	of	each	mouse.	The	threshold	used	for	registration	controls	the	586 
tradeoff	between	false-positive	and	false-negative	errors.	Therefore,	we	chose	a	registration	587 
threshold	of	Psame=0.5,	which	constitutes	an	appropriate	balance	between	false-positive	588 
and	false-negative	registration	errors58.	In	cases	with	multiple	candidates	that	cross	the	589 
registration	threshold,	only	the	pair	with	the	highest	Psame	was	registered	as	the	same	cell,	590 
thus	avoiding	some	of	the	false	positive	errors,	the	result	of	which	was	lower	percentages	of	591 
false-positive	errors	than	those	estimated	by	the	probabilistic	model.	592 

Visual	stimuli.	593 
Natural	movies.	For	our	main	analyses,	we	used	data	during	the	presentation	of	‘Natural	594 
movie	1’	(30-second	clip)	and	‘Natural	movie	3’	(120-second	clip)	stimuli	from	the	Allen	595 
Brain	Observatory	paradigm.	In	the	Ca2+	imaging	dataset,	‘Natural	movie	1’	was	presented	596 
across	all	three	imaging	sessions	(ten	repeats	per	session).	‘Natural	movie	3’	was	presented	597 
only	in	one	of	the	sessions	(session	A),	with	ten	repeats	spanning	two	blocks	(five	repeats	in	598 
each	block).	In	the	Neuropixels	dataset,	‘Natural	movie	1’	was	presented	with	either	60	599 
repeats	spanning	two	blocks	(30	repeats	in	each	block)	for	the	‘Functional	Connectivity’	600 
group,	or	with	20	repeats	spanning	two	blocks	(10	repeats	in	each	block)	for	the	‘Brain	601 
Observatory’	group.	‘Natural	movie	3’	was	presented	with	ten	repeats	spanning	two	blocks	602 
(five	repeats	in	each	block)	only	for	the	‘Brain	Observatory’	group.	603 

Temporally	 shuffled	natural	movie.	 In	addition	 to	 ‘Natural	movie	1’,	mice	 from	 'Functional	604 
Connectivity'	 group	 in	 the	 Neuropixels	 dataset	 were	 also	 presented	 with	 a	 temporarily	605 
shuffled	version	of	the	‘Natural	movie	1’	stimulus	(termed	‘Shuffled	natural	movie	1’).	The	606 
random	shuffle	of	frames	was	performed	only	once	resulting	in	the	same	sequence	of	frames	607 
presented	across	all	mice	and	movie	repeats	(total	of	20	movie	repeats	spanning	two	blocks).	608 
The	relevant	analyses	are	presented	in	Figure	S3H-J	and	Figure	S7E-F.	609 

Full-field	drifting	gratings.	In	addition	to	natural	movies,	all	mice	in	the	calcium	imaging	610 
dataset	and	mice	from	the	‘Brain	Observatory'	group	in	the	Neuropixels	dataset	were	also	611 
presented	with	full-field	drifting	gratings.	The	drifting	gratings	were	presented	for	2	612 
seconds,	followed	by	a	1-second	inter-stimulus	interval	(grey	screen),	with	a	spatial	613 
frequency	of	0.04	cycles/deg,	80%	contrast,	8	directions	(0°,	45°,	90°,	135°,	180°,	225°,	614 
270°,	315°)	and	5	temporal	frequencies	(1,	2,	4,	8,	and	15	Hz).	Each	combination	of	direction	615 
and	temporal	frequency	(total	of	40	combinations)	was	presented	15	times,	resulting	in	a	616 
total	of	600	drifting	grating,	divided	and	presented	randomly	for	each	mouse	across	three	617 
different	blocks.	We	restricted	our	analysis	only	to	the	neuronal	activity	during	the	2-618 
second	time	window	of	gratings	presentation.	The	relevant	analyses	are	presented	in	Figure	619 
S4	and	Figure	S7G.	620 

Population	vector	correlation.	621 
To	determine	the	level	of	similarity	between	visual	representations	of	the	same	stimulus	on	622 
different	presentations,	we	calculated	for	each	mouse	the	population	vector	correlation	623 
between	pairs	of	different	movie	repeats.	First,	we	divided	each	movie	repeat	into	30	equal	624 
time	bins	(each	bin	spanning	1	second	in	‘Natural	movie	1’	and	4	seconds	in	‘Natural	movie	625 
3’).	Then,	for	each	temporal	bin,	we	defined	the	population	vector	as	the	activity	rate	for	626 
each	cell/unit.	We	calculated	the	Pearson’s	correlation	between	the	population	vector	(PV	627 
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correlation)	in	one	repeat	with	that	of	all	temporal	bins	in	another	movie	repeat	and	628 
averaged	the	correlations	over	all	pairs	of	corresponding	time	bins.	For	the	between-blocks	629 
analysis	(Figure	3B	and	Figure	4H),	we	created	two	sets	of	PVs	for	each	of	the	two	blocks	630 
(each	block	consists	of	5	movie	repeats):	one	set	of	PVs	from	the	average	activity	of	the	first	631 
two	‘Natural	movie	3’	repeats	(repeats	1-2),	and	a	second	set	of	PVs	from	the	average	632 
activity	of	the	last	three	repeats	(repeats	3-5).	We	than	calculated	the	PV	correlation	across	633 
the	four	sets	of	vectors	of	both	blocks	(as	described	above)	and	measured	the	difference	634 
between	the	correlations	within	blocks	and	across	blocks.	The	mean	correlations	between	635 
the	two	sets	of	PVs	of	the	same	blocks	capture	the	‘within-block’	stability,	and	the	mean	636 
correlations	between	different	blocks,	the	‘between-blocks’	stability.	The	between-days	637 
analysis	was	done	similarly	to	the	between	blocks	analysis	with	minor	changes:		For	each	638 
‘Natural	movie	1’	session,	two	sets	of	PVs	were	calculated,	one	set	of	vectors	from	the	639 
average	activity	of	the	first	five	‘Natural	movie	1’	repeats	(repeats	1-5)	and	a	second	set	of	640 
vectors	from	the	average	activity	of	the	last	five	movie	repeats	(repeats	6-10).	We	then	641 
calculated	the	PV	correlation	between	each	pair	of	PVs	sets,	including	only	cells	that	were	642 
active	in	both	compared	time-points,	and	calculated	the	difference	in	PV	correlations	within	643 
sessions	and	across	session.	The	mean	correlations	between	the	two	sets	of	PVs	of	the	same	644 
session	capture	the	‘within-session’	stability,	and	that	between	different	sessions,	the	645 
‘between-sessions’	stability.	For	the	analysis	shown	in	Figure	3I,	Figure	4C	and	Figure	S5J,	646 
PV	correlations	were	calculated	after	averaging	the	activity	rates	over	all	movie	repeats	in	647 
each	session.	For	the	drifting	gratings	stimulus	(Figure	S4),	we	calculated	the	average	648 
activity	rate	of	each	cell	for	each	combination	of	direction	and	temporal	frequency,	resulting	649 
in	a	set	of	40	population	vectors	for	each	of	the	three	drifting	grating	blocks.	We	then	650 
calculated	the	Pearson’s	correlation	between	the	vectors	of	different	blocks	and	averaged	651 
the	correlation	values	across	all	corresponding	temporal	frequencies	for	each	orientation	652 
difference.		653 

Ensemble	rate	correlation.	654 
To	quantify	the	similarities	in	activity	patterns	between	different	presentations	of	the	same	655 
stimulus	(regardless	of	the	specific	tuning	of	each	neuron),	we	calculated	for	each	mouse	656 
the	ensemble	rate	correlation	between	pairs	of	different	movie	repeats.	First,	we	calculated	657 
the	overall	activity	rate	for	each	neuron	in	each	movie	repeat.	We	then	calculated	for	each	658 
pair	of	movie	repeats	the	ensemble	rate	correlation	as	the	Pearson’s	correlation	between	659 
their	vectors	of	activity	rates.	As	in	the	PV	correlation	analysis,	the	differences	in	ensemble	660 
rate	correlation	for	within	and	between	blocks	(or	sessions)	were	calculated	after	averaging	661 
the	activity	rates	of	individual	neurons	over	the	first	and	second	halves	of	movie	repeats	in	662 
each	block	(or	session).	For	the	analysis	shown	in	Figure	3J	and	Figure	S5A,	ensemble	rate	663 
correlations	were	calculated	after	averaging	the	activity	rate	over	all	movie	repeats	in	each	664 
session.	For	the	drifting	gratings	stimulus	(Figure	S4D,F),	we	calculated	the	overall	activity	665 
rate	for	each	neuron	across	all	combinations	of	directions	and	temporal	frequencies	666 
presented	within	the	same	block,	resulting	in	a	single	vector	for	each	of	the	three	blocks.		667 
We	then	calculated	for	each	pair	of	blocks	the	Pearson’s	correlation	between	their	vectors	668 
of	activity	rates	and	tested	whether	the	correlations	of	two	proximal	blocks	were	different	669 
than	the	correlation	of	two	distal	blocks.	670 

Tuning	curve	correlation.	671 
To	quantify	the	similarities	in	the	tuning	preference	of	individual	neurons	across	different	672 
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presentations	of	the	same	stimulus	(regardless	of	changes	in	activity	rates),	we	calculated	673 
for	each	neuron	the	tuning	curve	correlation	between	different	movie	repeats.	As	in	the	PV	674 
correlation	analysis,	we	first	divided	each	movie	repeat	into	30	equal	time	bins	(each	bin	675 
spanning	1	second	in	‘Natural	movie	1’	and	4	seconds	in	‘Natural	movie	3’).	Then,	for	each	676 
neuron,	we	defined	the	tuning	curve	as	the	mean	activity	rate	in	each	temporal	bin	within	677 
the	movie.	We	calculated	the	Pearson’s	correlation	between	the	tuning	curve	of	each	678 
individual	neuron	in	one	movie	repeat	and	that	of	the	same	neuron	in	another	movie	repeat	679 
and	used	the	median	value	across	all	neurons	to	capture	the	central	tendency	of	the	entire	680 
population.	As	in	the	PV	correlation	analysis,	the	differences	in	tuning	curve	correlation	for	681 
within	and	between	blocks	(or	sessions)	were	calculated	after	averaging	the	activity	rates	682 
for	the	first	and	second	halves	of	movie	repeats	in	each	block	(or	session).	For	the	analysis	683 
shown	in	Figure	3K	and	Figure	S5A,	tuning	curve	correlations	were	calculated	after	684 
averaging	the	activity	rate	of	each	individual	neuron	over	all	movie	repeats	in	each	session.	685 
Due	to	the	sparseness	of	neuronal	responses	in	the	Ca2+	imaging	dataset,	we	used	the	mean	686 
value	across	all	cells	(instead	of	the	median)	when	computing	the	tuning	curve	correlation	687 
between	individual	movie	repeats	(Figure	S1L	and	Figure	5D).	For	the	drifting	gratings	688 
stimulus	(Figure	S4D,F),	we	defined	for	each	neuron	the	tuning	curve	as	the	mean	activity	689 
rate	for	each	of	the	40	combinations	of	directions	and	temporal	frequencies	within	the	same	690 
block.	Then,	we	calculated	the	Pearson’s	correlation	between	the	tuning	curve	of	each	691 
individual	neuron	in	one	block	and	that	of	the	same	neuron	in	another	block	and	used	the	692 
median	value	across	all	neurons	to	capture	the	central	tendency	of	the	entire	population.	693 
Finally,	we	tested	whether	the	tuning	curve	correlations	for	two	proximal	blocks	were	694 
different	than	the	correlation	for	two	distal	blocks.	695 

Relationship	between	rate	and	tuning	stability	(Related	to	Figure	S1G-J).	696 
To	assess	how	changes	in	the	activity	rates	are	related	to	changes	in	the	cells’	tuning	curves,	697 
we	first	examined	the	linear	relationship	between	the	three	chosen	measurements	of	698 
stability	(PV	correlation,	ensemble	rate	correlation	and	tuning	curve	correlation)	in	terms	699 
of	explained	variance.	In	the	short-timescale	analysis	(between	movie	repeats	within	a	700 
block)	we	used	data	of	mice	from	the	Neuropxiels	‘Functional	Connectivity’	during	the	701 
presentation	of	‘Natural	movie	1’.	For	each	mouse,	we	calculated	the	PV	correlation,	702 
ensemble	rate	correlation	and	tuning	curve	correlation	between	pairs	of	movie	repeats	703 
within	the	same	block.	This	procedure	resulted	in	three	matrices,	each	is	symmetric	and	30-704 
by-30	in	size	(capturing	the	similarities	across	pairs	of	movie	repeats).	Next,	we	employed	a	705 
set	multiple	linear	regression	models	to	calculate	for	each	mouse	the	coefficient	of	706 
determination	(R2)	as	an	estimate	of	the	fraction	of	variation	in	the	dependent	variable	that	707 
can	be	explained	by	the	variation	in	the	independent	variables.	The	first	model	quantified	708 
the	fraction	of	variance	in	the	PV	correlation	values	(dependent	variable)	explained	by	both	709 
the	ensemble	rate	and	tuning	curve	correlation	values	(independent	variables)	of	the	same	710 
mouse.	The	second	and	third	models	quantified	the	fraction	of	variance	in	the	PV	711 
correlation	values	explained	by	the	values	of	either	the	ensemble	rate	(second	model)	or	712 
tuning	curve	correlations	(third	model).	The	fourth	model	quantified	the	fraction	of	713 
variance	in	the	ensemble	rate	correlations	values	explained	by	the	tuning	curve	correlations	714 
values.	Since	all	measurements	are	affected	by	the	interval	of	time	between	exposures,	we	715 
ran	each	model	using	only	the	correlation	values	with	the	same	interval	between	movie	716 
repeats	(intervals	of	1-20	repeats)	and	averaged	the	resultant	R2	values	across	all	intervals	717 
and	blocks.	Similar	results	are	obtained	when	no	such	procedure	is	employed	(data	not	718 
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shown).	For	the	long-timescale	analysis	(between	different	blocks	occurring	on	different	719 
days),	we	used	mice	from	the	calcium	imaging	dataset	during	the	presentation	of	‘Natural	720 
movie	1’.	For	each	mouse,	we	calculated	the	PV	correlation,	ensemble	rate	correlation	or	721 
tuning	curve	correlation	between	all	halves	of	all	three	recording	sessions,	resulting	in	three	722 
symmetric,	6-by-6	matrices	(for	the	three	measurements)	capturing	the	similarities	across	723 
pairs	of	session	halves.	Then,	for	each	mouse,	we	used	the	vectored	upper-half	of	the	724 
symmetric	matrices	and	applied	the	same	set	multiple	linear	regression	models	as	725 
described	above.	Here,	we	could	not	control	for	the	interval	of	time	between	comparisons	726 
due	to	the	small	number	of	comparisons	between	session	halves.	Therefore,	the	long-727 
timescale	analysis	might	overestimate	the	dependence	between	the	different	728 
measurements.		729 

To	 examine	 the	 linear	 relationship	 between	 different	 activity	measures	 and	 tuning	 curve	730 
stability	at	the	single-cell	level,	we	calculated	for	each	pair	of	movie	repeats	the	fraction	of	731 
variance	in	single	cells’	tuning	curve	correlations	explained	by	the	average	activity	rates	of	732 
the	same	cells.	We	then	averaged	the	R2	values	across	all	pairs	of	different	movie	repeats.	This	733 
procedure	was	repeated	using	either	the	absolute	difference	in	activity	rate	or	the	absolute	734 
difference	in	activity	rate	score	(absolute	difference	in	activity	rate	between	the	two	movie	735 
repeats,	divided	by	their	sum)	to	predict	the	single	cells’	tuning	curve	correlations.	For	the	736 
long-timescale	analysis,	(between	different	blocks	occurring	on	different	days)	we	calculated	737 
the	relationship	between	the	different	measurements	based	on	the	neuronal	activity	in	each	738 
session	half. 739 

Similarity	index	(Related	to	Figure	4C	and	Figure	5).	740 
Since	different	cortical	layers	and	brain	areas	exhibit	different	ranges	of	correlation	values,	741 
in	order	to	compare	levels	of	representational	drift,	we	normalized	the	magnitude	of	change	742 
in	correlations	for	each	of	the	compared	groups	prior	to	the	statistical	analysis.	To	this	end,	743 
we	calculated	the	‘Similarity	index’,	defined	as	the	difference	between	the	correlation	744 
coefficient	value	calculated	for	a	given	interval	(CCinterval)	and	correlation	coefficient	value	745 
calculated	for	the	smallest	interval	(CCreference)	divided	by	their	sum:	746 
	747 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 =
𝐶𝐶𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝐶𝐶reference
𝐶𝐶𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 𝐶𝐶reference	748 

Therefore,	no	change	in	correlation	value	relative	to	the	correlation	value	of	the	smallest	749 
interval	will	result	in	a	value	of	0	and	a	complete	decorrelation	will	result	in	a	value	of	-1.	750 
Negative	correlation	coefficient	values	were	rectified	to	zero	prior	the	normalization.	751 
Similar	results	were	obtained	when	we	repeated	the	analyses	reported	in	Figure	5	using	752 
either	Fisher	z-transformed	Pearson’s	correlation	coefficients	or	coefficient	of	753 
determination	(R2)	values	(instead	of	Pearson’s	r	correlations)	prior	to	the	normalization	754 
procedure	(data	not	shown).	755 

Time-lapse	decoding	analysis	(related	to	Figure	S1K	and	Figure	S5H).	756 
For	the	analysis	presented	in	Figure	S1K,	we	used	a	k-nearest	neighbors	classifier	with	K=1	757 
to	decode	the	time	bin	at	a	given	movie	repeat	of	‘Natural	movie	1’	based	on	the	population	758 
vectors	of	a	preceding	movie	repeat	using	the	Euclidean	distance	between	the	response	759 
vectors.	The	performance	of	the	decoder	was	defined	as	the	percentage	of	correct	760 
classifications	out	of	the	30	time-bins	for	each	pair	of	movie	repeats,	and	was	compared	to	761 
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that	of	the	same	decoder	after	shuffling	the	identities	of	the	labels	of	the	training	data.	For	762 
the	analysis	presented	in	Figure	S5H,	we	applied	the	same	decoder	but	used	the	average	763 
activity	in	the	first	half	of	the	session	(repeats	1-5)	as	training	data	and	the	average	activity	764 
in	the	second	half	of	the	same	session	(repeats	6-10)	as	test	data.	765 

Internal	structure	of	neuronal	population	activity.	766 
Similar	to	the	PV	correlation	analysis,	we	divided	the	movie	into	30	equal	time	bins	and	767 
calculated	the	average	activity	of	each	neuron	in	each	time	bin,	yielding	a	matrix	of	30	by	768 
the	number	of	recorded	neurons.	Then,	we	calculated	the	Pearson’s	correlation	across	all	769 
population	vectors,	resulting	in	a	symmetric,	30-by-30	matrix,	representing	the	structure	of	770 
similarities	across	the	population	activity	patterns	at	all	different	time	bins	of	the	presented	771 
movie.	We	defined	this	matrix	of	similarities	as	the	‘internal	structure	of	neuronal	772 
population	activity’	(or	‘internal	structure’).	Since	this	structure	no	longer	holds	the	773 
identities	of	individual	neurons,	it	is	possible	to	measure	the	resemblance	between	774 
structures	extracted	from	different	datasets	(e.g.,	movie	repeats,	natural	movies,	areas,	775 
mice,	etc.)	without	relying	on	the	ability	to	record	from	the	same	cells	or	requiring	equal	776 
numbers	of	cells	across	measurements.	Note	that	for	visualization	purpose,	in	Figure	6F,	777 
Figure	7A,	and	Figure	S7	the	population	activity	was	divided	into	90	equal	time	bins	and	778 
underwent	a	non-linear	dimensionality	reduction.	The	quantitative	analyses	shown	in	779 
Figure	6G,H,	Figure	7C,D	and	Figure	S7	were	performed	on	the	pairwise	distances	between	780 
the	original	(non-reduced)	vectors	of	internal	structures	as	described	in	the	Methods.	781 

Pseudo-mice	and	shuffled	pseudo-mice	(related	to	Figure	6-7	and	Figure	S7).	782 
To	reduce	the	effect	of	incidental	differences	in	the	coding	properties	of	the	sampled	783 
neurons	on	our	ability	to	capture	the	true	internal	structure	of	each	of	the	studied	areas,	we	784 
constructed	‘pseudo-mice’,	which	are	a	pooling	of	cells	recorded	from	different	mice	of	the	785 
same	dataset.	To	create	two	independent	pseudo-mice	(i.e.	pseudo-mice	that	have	no	786 
overlap	in	their	source	of	neuronal	activity),	we	first	randomly	split	the	complete	dataset	787 
(Neuropixels	or	Ca2+	imaging	datasets	depending	on	the	analysis)	into	two	equal	non-788 
overlapping	groups	of	mice.	Each	mouse	in	each	group	contained	the	neuronal	activity	789 
recorded	from	1-6	brain	areas.	Pooling	all	the	cells/units	from	each	brain	area	across	all	790 
mice	of	the	same	group	yielded	six	distinct	sets	of	neurons	(one	per	area)	for	each	of	the	791 
two	pseudo-mice	(12	pseudo-areas	in	total).	Since	there	is	variability	in	the	number	of	792 
recorded	areas	and	cells	across	mice,	the	pooling	procedure	resulted	in	a	different	number	793 
of	cells	in	each	pseudo-area.	To	ensure	that	differences	between	the	internal	structures	of	794 
different	areas	did	not	stem	from	the	size	of	the	recorded	neuronal	population,	we	795 
randomly	subsampled	an	equal	number	of	cells	from	the	entire	population	of	each	area.	The	796 
exact	number	of	subsampled	cells	was	determined	based	on	the	pseudo-area	with	the	797 
lowest	number	of	cells	among	both	pseudo-mice.	To	verify	the	uniqueness	of	the	internal	798 
structure	of	each	area,	the	analysis	was	compared	to	complementary	‘shuffled	pseudo-mice’	799 
that	were	created	by	the	random	redistribution	of	all	cells	across	areas	within	each	of	the	800 
pseudo-mice.		801 

Between	‘pseudo-mice’	decoding	(related	to	Figure	6G,H	and	Figure	S7C,D,F,G).	802 
To	decode	the	identity	of	the	recorded	brain	areas	between	pseudo-mice	based	on	the	803 
similarities	across	their	internal	structures,	we	calculated	the	internal	structure	of	each	area	804 
in	each	of	the	two	pseudo-mice	based	on	the	averaged	activity	over	all	movie	repeats.	This	805 



 28 

yielded	12	symmetric,	30-by-30	matrices	(6	areas	x	2	pseudo-mice)	capturing	the	806 
similarities	across	activity	patterns	of	the	different	time-bins	in	the	movie.	We	then	807 
considered	all	720	possible	classifications	(6!	permutations)	of	brain	areas	across	pseudo-808 
mice.	Each	permutation	defined	a	one-to-one	mapping	between	the	six	internal	structures	809 
of	one	pseudo-mouse	to	the	six	internal	structures	of	the	other	pseudo-mouse.	We	then	810 
chose	the	permutation	that	maximized	the	similarities	between	internal	structures	across	811 
pseudo-mice	(Pearson’s	correlation,	sum	over	all	six	pairs	of	internal	structures): 812 

𝑂" = argmax
)*!,*",*#…*$-

)∑ 𝑐𝑜𝑟𝑟.𝑉./, 𝑉*%
011

.23 2, 813 

where	𝑂" 	is	the	inferred	brain	area	labels	for	six	internal	structure	vectors	in	pseudo-mouse	814 
B,	< 𝑎3, 𝑎4, 𝑎5…𝑎1 > 	is	a	possible	permutation	of	the	six	patterns’	internal	structure	815 
vectors	of	pseudo-mouse	B,	𝑉./	is	the	internal	structure	vector	of	the	𝑖67	visual	area	in	816 
pseudo-mouse	A,	and	𝑉*%

0	is	the	internal	structure	vector	of	the	𝑎.67	visual	area	in	pseudo-817 
mouse	B.	This	procedure	was	repeated	1000	times	to	obtain	representative	results	across	818 
different	realizations	of	pseudo-mice	(different	realizations	of	dividing	the	mice	population	819 
into	two	random	subsets)	and	was	compared	to	the	results	obtained	when	using	shuffled	820 
pseudo-mice.	For	the	analyses	presented	in	Figure	6G,	H	and	Figure	S7D,	we	included	all	821 
mice	from	both	‘Brain	Observatory’	and	‘Functional	Connectivity’	groups	of	the	Neuropixels	822 
dataset	in	response	to	‘Natural	movie	1’.	Since	the	two	groups	of	mice	were	presented	with	823 
a	different	number	of	‘Natural	movie	1’	repeats	(20	and	60,	respectively),	the	analyses	were	824 
performed	using	the	average	activity	across	the	first	20	movie	repeats.	For	the	analysis	825 
presented	in	Figure	S7C,	we	included	all	mice	from	the	calcium	imaging	dataset	in	response	826 
to	‘Natural	movie	1’	using	the	average	activity	across	all	30	movie	repeats.	For	the	analysis	827 
presented	in	Figure	S7F,	we	included	all	the	mice	from	the	‘Functional	Connectivity’	group	828 
of	the	Neuropixels	dataset	during	the	presentation	of	‘Shuffled	natural	movie	1’	(SNM1)	and	829 
‘Natural	movie	1’	(NM1).	Since	the	two	stimuli	were	presented	with	a	different	number	of	830 
movie	repeats	(10	repeats	per	block	for	SNM1	and	30	repeats	per	block	for	NM1),	the	831 
analysis	was	performed	using	the	average	activity	across	20	movie	repeats	(10	subsequent	832 
repeats	from	each	block).	Finally,	for	the	analysis	presented	in	Figure	S7G,	we	used	all	mice	833 
from	the	calcium	imaging	dataset	during	the	presentation	of	‘Natural	movie	3’	and	‘Drifting	834 
gratings’.	The	‘Drifting	gratings’	stimuli	consists	of	40	unique	combinations	of	direction	and	835 
temporal	frequencies,	resulting	in	an	internal	structure	matrix	in	the	size	of	40-by-40.	To	836 
control	for	the	effects	of	matrix	size	on	the	results,	we	divided	each	‘Natural	movie	3’	repeat	837 
into	40	equal	time	bins	(instead	of	30	bins	as	done	in	previous	analysis).	In	addition,	since	838 
‘Natural	movie	3’	was	presented	only	across	two	blocks	(10	minutes	each,	separated	by	839 
approximately	20	minutes)	and	the	‘Drifting	grating’	stimulus	was	presented	across	three	840 
blocks	(10	minutes	each,	separated	by	approximately	15	minutes),	we	performed	the	841 
analysis	using	the	average	activity	across	the	first	two	blocks	for	both	stimuli.	Note	that	842 
similar	results	were	obtained	when	using	all	three	blocks	of	‘Drifting	gratings’	or	without	843 
controlling	for	the	size	of	the	matrices	(data	not	shown).	844 

Internal	structures	across	recording	technologies	(related	to	Figure	6E).	In	this	analysis,	845 
we	used	all	the	Neuropixels	and	two-photon	Ca+2	imaging	‘Natural	movie	1’	data	to	create	846 
two	pseudo-mice,	one	for	each	recording	technique.	Since	different	mice	in	the	Neuropixels	847 
dataset	were	presented	with	a	different	number	of	movie	repeats,	20	repeats	in	the	‘Brain	848 
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Observatory’	group	and	60	repeats	in	the	‘Functional	Connectivity’	group,	we	used	only	the	849 
first	20	repeats	for	‘Functional	Connectivity’	group.	First,	we	calculated	for	each	brain	area	850 
of	each	pseudo-mouse	the	internal	structure	per	movie	repeat.	We	then	calculated	the	851 
median	internal	structures	over	all	movie	repeats	to	create	12	internal	structures	(6	areas	x	852 
2	pseudo-mice).	Finally,	we	normalized	(z-score)	the	internal	structures	within	each	853 
pseudo-mouse	and	calculated	the	Pearson’s	correlation	distance	matrix	across	areas	of	the	854 
two	pseudo-mice	(Neuropixels	pseudo-mouse	and	Ca2+	imaging	pseudo-mouse).	855 

Temporally	shuffled	internal	structure	(related	to	Figure	S7D).	To	verify	that	the	internal	856 
structures	contain	information	beyond	the	similarities	between	adjacent	time	bins,	we	857 
repeated	the	analysis	presented	in	Figure	6H	after	performing	a	different	random	cyclic	858 
temporal	shuffle	(prior	the	vectorization	procedure)	to	each	of	the	internal	structures	of	859 
each	pseudo-mouse.	This	procedure	was	repeated	1000	times	to	obtain	representative	860 
results	across	different	cyclic	shuffles	and	realizations	of	pseudo-mice.	861 

Internal	structure	stability	(related	to	Figure	7C-D	and	Figure	S7H,I).		862 
We	created	different	realizations	of	pseudo-mice	by	randomly	sampling	70%	of	the	total	863 
pool	of	cells	that	were	active	in	all	three	Ca2+	imaging	sessions	in	response	to	‘Natural	movie	864 
1’.	Then,	for	each	area,	we	calculated	the	population	vectors for	all	time	bins	and	internal	865 
structures	based	on	the	average	activity	rates	over	the	first	half	of	the	session	(repeats	1-5)	866 
or	the	second	half	of	the	session	(repeats	6-10).	Lastly,	we	calculated	for	each	of	the	two	867 
measurements	the	Pearson’s	correlations	between	the	two	halves	of	the	same	session,	868 
between	halves	of	two	temporally	proximal	sessions,	and	between	halves	of	two	temporally	869 
distal	sessions.		This	procedure	was	repeated	1000	times	to	obtain	representative	results	870 
across	different	realizations	of	pseudo-mice.	871 

Structure	of	pairwise	similarities	(related	to	Figure	S7J-L).	872 
Similar	to	the	PV	correlation	analysis,	we	divided	each	movie	repeat	into	30	equal	time	bins	873 
and	calculated	the	population	vector	for	each	time	bin,	yielding	a	matrix	of	30	by	the	874 
number	of	recorded	neurons	(30-by-n).	Then,	we	calculated	the	Pearson’s	correlation	875 
across	vectors	of	all	neurons,	resulting	in	a	symmetric	n-by-n	matrix.	This	matrix	876 
represented	the	structure	of	pairwise	similarities	between	individual	neurons	tuning	877 
curves.	We	defined	this	matrix	of	similarities	as	the	‘structure	of	pairwise	similarities’.	878 

t-distributed	stochastic	neighbor	embedding (tSNE;	related	to	Figure	6C-F,	Figure	7A	879 
and	Figure	S7A,E).	For	visualizing	the	relationships	between	internal	structures,	the	vectors	880 
of	pairwise	correlations	across	activity	patterns	were	embedded	in	three	dimensions	using	881 
tSNE83,84.	We	used	the	exact	tSNE	algorithm	with	similar	embedding	settings	for	all	882 
visualizations	(cosine	distance	metric,	using	10	PCA	components,	exaggeration	4	(default),	883 
and	learning	rate	500	(default)).	The	perplexity	(effective	number	of	local	neighbors	of	each	884 
point)	was	chosen	for	each	visualization	based	on	multiplication	of	the	minimal	number	of	885 
movie	repeats	used	in	the	analysis	(30,	60	and	20	for	Figure	6C-E,	respectively).	For	886 
visualizing	the	low-dimensional	manifold	of	neuronal	population	activity,	the	PVs	of	all	the	887 
movie	repeats	of	the	same	block	(or	session)	were	embedded	in	either	two	(Figure	6A,	888 
Figure	7A	and	Figure	S7A)	or	three	dimensions	(Figure	6F	and	Figure	S7E).	We	used	the	889 
exact	t-SNE	algorithm	with	similar	embedding	settings	for	all	visualizations	(cosine	distance	890 
metric,	using	20	PCA	components,	perplexity	200,	exaggeration	4	(default),	and	learning	891 
rate	500	(default)).	Note	that	embedding	in	the	reduced	space	is	used	for	visualization	892 
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purposes	only	and	all	quantifications	were	performed	based	on	the	pairwise	distances	893 
between	the	original	(non-reduced)	vectors	of	internal	structures	as	described	in	other	894 
sections	of	the	Methods.	895 

QUANTIFICATION	AND	STATISTICAL	ANALYSIS	896 

All	statistical	details,	including	the	specific	statistical	tests,	are	specified	in	the	897 
corresponding	figure	legends.	In	general,	two-tailed	non-parametric	Wilcoxon	rank	sum	898 
tests	(unpaired	data),	Wilcoxon	signed	rank	tests	(paired	data),	and	Friedman’s	tests	899 
(repeated	measures)	were	performed	and	corrected	for	multiple	comparisons	(using	Holm–900 
Bonferroni	method)	when	required.	A	one-sided	Pearson’s	correlation	coefficient	was	used	901 
to	estimate	the	effect	of	elapsed	time	on	ensemble	rate	and	tuning	curve	stability	(Figure	902 
3J,K).	In	all	tests,	significance	was	defined	at	α=0.05.	Aside	from	mice	with	a	low	number	of	903 
recorded	cells	(see	‘Data	analysis’	section	in	the	Methods),	no	neuronal	data	were	excluded	904 
from	the	analysis.	All	statistical	analyses	were	conducted	using	MATLAB	2017b	905 
(Mathworks).	 	906 
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	1129 

Figure	S1.	Changes	in	the	tuning	and	activity	rates	of	individual	neurons	differentially	1130 
contribute	to	drift	in	visual	representations.	Related	to	Figure	2.	(A-C)	Workflow	for	1131 
calculating	the	population	vector	correlation	(A),	ensemble	rate	correlation	(B),	and	tuning	1132 
curve	correlation	(C)	measurements	(see	Methods).	(D)	A	single	representative	unit	recorded	1133 
from	area	V1	using	Neuropixels	probes	showing	high	degree	of	tuning	curve	stability	across	1134 
different	movie	repeats	and	blocks	(inset)	of	Natural	movie	1.	Note	that	the	activity	rate	of	the	1135 
unit	can	fluctuate	both	within	and	across	blocks	irrespective	of	its	tuning	curve	stability.	(E)	1136 
Responses	of	three	V1	example	units	across	different	blocks	of	Natural	movie	1	separated	by	1137 
~70	minutes	within	the	same	recording	session.	Each	unit	exhibits	a	different	degree	of	tuning	1138 
curve	and	activity	rate	stability	across	the	two	blocks.	(F)	Distribution	of	tuning	curve	1139 
correlations	between	blocks	as	a	function	of	the	average	activity	rate	across	blocks	of	Natural	1140 
movie	1	for	all	V1	units	recorded	using	Neuropixels	probes.	Each	data	point	represents	a	single	1141 
unit.	We	found	only	a	weak	linear	relationship	between	the	average	activity	rate	of	each	unit	and	1142 
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its	tuning	curve	stability	across	blocks.	(G-H)	Quantifying	the	relationship	between	the	different	1143 
stability	measurements	(PV	correlation,	ensemble	rate	correlation	and	tuning	curve	correlation)	1144 
in	terms	of	explained	variance	for	both	short	(G)	and	long	timescales	(H).	For	the	short	1145 
timescale	analysis	(between	movie	repeats	within	a	block)	we	used	data	of	mice	from	the	1146 
Neuropxiels	Functional	Connectivity	group	during	the	presentation	of	Natural	movie	1	and	for	1147 
the	long	timescale	analysis	(between	different	blocks	occurring	of	different	days)	we	used	data	1148 
from	the	calcium	imaging	dataset	during	the	presentation	of	Natural	movie	1.	Using	a	multiple	1149 
linear	regression	model,	we	found	that	values	of	each	of	the	two	measurements	(ensemble	rate	1150 
correlation	and	tuning	curve	correlation)	contributed	differentially	to	the	variance	explained	in	1151 
the	PV	correlation	values.	Only	a	small	fraction	(<15%)	of	the	variance	in	the	values	of	the	1152 
ensemble	rate	correlation	measurement	can	be	explained	using	the	tuning	curve	correlation	1153 
values.	(I-J)	Quantifying	the	relationship	between	different	single	cell	activity	properties	1154 
(average	activity	rate,	absolute	activity	rate	difference	and	absolute	activity	modulation	index)	1155 
and	single	cell	tuning	curve	stability	in	terms	of	explained	variance	for	both	short	(I)	and	long	1156 
timescales	(J).	Only	a	small	fraction	(<	20%)	of	the	variance	in	the	values	of	the	tuning	curve	1157 
correlation	measurement	can	be	explained	by	the	measurements	used	to	assess	the	stability	of	1158 
single	cells’	excitability.	(K)	Percentage	of	correct	classifications	as	a	function	of	the	elapsed	time	1159 
between	the	train	and	test	movie	repeats	for	both	mice	from	the	Neuropixels	Functional	1160 
Connectivity	group	(top)	and	mice	from	the	calcium	imaging	dataset	(bottom)	during	the	1161 
presentation	of	Natural	movie	1.	The	difference	in	correct	classifications	between	the	minimal	1162 
and	maximal	interval	of	movie	repeats	was	significant	for	all	areas	(p	≤	0.011,	two-tailed	1163 
Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	(L)	Difference	in	PV	correlations	1164 
(left),	ensemble	rate	correlations	(middle)	and	tuning	curve	correlations	(right)	as	a	function	of	1165 
elapsed	time	for	all	six	visual	cortical	areas	of	both	Neuropixels	recorded	mice	(top)	and	Ca2+	1166 
imaged	mice	(bottom)	during	the	presentation	of	Natural	movie	1.	The	box	plots	in	panels	G-J	1167 
show	the	data	range	(whiskers),	25th	and	75th	percentiles	(box),	and	median	(dark	line).	1168 
Outliers	are	marked	by	gray	dots.	 	1169 
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	1170 

Figure	S2.	Representational	drift	is	not	driven	by	changes	in	behavioral	state,	reduction	1171 
in	global	activity	rates	or	recording	instability.	Related	to	Figure	2.	(A-O)	Analyses	using	1172 
data	from	the	Neuropixels	dataset	during	the	presentation	of	Natural	movie	1.	(A)	Mean	running	1173 
speed	for	each	movie	repeat	across	animals.	(B)	Mean	pupil	area	for	each	movie	repeat	across	1174 
animals.		Insets	in	A	and	B	indicate	a	significant	difference	between	movie	repeats	(paired	t-test,	1175 
p<0.05,	two-tailed,	without	correction	for	multiple	comparisons).	(C)	Mean	activity	rates	for	1176 
each	movie	repeat	across	animals	for	each	brain	area.	(D)	Mean	PV	correlation	as	a	function	of	1177 
the	elapsed	time.	Each	data	point	represents	the	mean	PV	correlation	value	for	a	single	pair	of	1178 
movie	repeats	from	Figure	2B	and	is	colored	according	to	the	first	time	point	of	each	1179 
comparison.	Note	that	the	comparisons	containing	the	first	few	repeats	(dark	blue)	generally	1180 
have	lower	correlation	values	but	still	follow	the	trend	of	decorrelation	over	increasing	1181 
intervals.	The	low	similarity	between	the	first	movie	repeats	and	the	rest	of	the	movie	repeats	1182 
might	stem	from	the	differences	in	arousal	and	activity	rates	presented	in	A-C.	These	early	1183 
repeats	are	overrepresented	in	comparisons	of	longer	intervals	and	contribute	to	the	relative	1184 
increase	in	the	slope	found	in	these	longer	intervals.	(E)	Ensemble	rate	correlation	as	a	function	1185 
of	elapsed	time,	performed	on	a	subset	of	movie	repeats	(repeats	9-30;	colored	lines).	Ensemble	1186 
rate	correlations	of	this	subset	of	the	data	gradually	declined	with	the	interval	between	movie	1187 
repeats,	similarly	to	the	ensemble	rate	correlations	of	the	full	dataset	(gray	lines)	from	all	movie	1188 
repeats.	All	areas	showed	a	significant	decrease	in	ensemble	rate	correlations	as	function	of	1189 
elapsed	time	(χ2(20) ≥	142,	p	<	10-3,	Friedman’s	tests	with	Holm–Bonferroni	correction).	(F)	1190 
Tuning	curve	correlation	as	a	function	of	time,	performed	on	a	subset	of	movie	repeats	(repeats	1191 
9-30;	colored	lines).	Tuning	curve	correlations	of	this	subset	of	the	data	gradually	declined	with	1192 
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the	interval	between	movie	repeats,	similarly	to	the	tuning	curve	correlations	of	the	full	dataset	1193 
(gray	lines)	from	all	movie	repeats.	All	areas	showed	a	significant	decrease	in	tuning	curve	1194 
correlations	as	function	of	elapsed	time	(χ2(20) ≥	51.52,	p	<	10-3,	Friedman’s	tests	with	Holm–1195 
Bonferroni	correction).	(G)	Ensemble	rate	correlation	as	a	function	of	time,	performed	using	the	1196 
subset	of	non-adapted	units	(colored	lines).	Ensemble	rate	correlations	of	this	subset	of	the	data	1197 
gradually	declined	with	the	interval	between	movie	repeats,	similarly	to	the	ensemble	rate	1198 
correlations	when	using	all	units	(gray	lines).	All	areas	showed	a	significant	decrease	in	1199 
ensemble	rate	correlations	as	function	of	time	(χ2(28) ≥	217.57,	p	<	10-3,	Friedman’s	tests	with	1200 
Holm–Bonferroni	correction).	(H)	Tuning	curve	correlation	as	a	function	of	time,	performed	1201 
using	the	subset	of	non-adapted	units	(colored	lines).	Tuning	curve	correlations	of	this	subset	of	1202 
the	data	gradually	declined	with	the	interval	between	movie	repeats,	similarly	to	the	tuning	1203 
curve	correlations	when	using	all	units	(gray	lines).	All	areas	showed	a	significant	decrease	in	1204 
tuning	curve	correlations	as	function	of	time	(χ2(28) ≥	86.04,	p	<	10-3,	Friedman’s	tests	with	1205 
Holm–Bonferroni	correction).	(I)	Distribution	of	normalized	activity	rate	difference	for	each	of	1206 
the	six	visual	areas.	For	each	unit,	the	mean	activity	rates	(spikes/sec)	of	repeats	1-5	was	1207 
subtracted	from	the	mean	activity	of	repeats	26-30,	and	divided	by	their	sum.	This	procedure	1208 
was	done	separately	for	each	of	the	two	Natural	movie	1	blocks	resulting	in	two	points	in	the	1209 
graph	for	each	unit.		(J)	Responses	of	four	V1	example	cells	from	the	same	representative	mouse	1210 
across	different	repeats	of	Natural	movie	1,	spanning	two	blocks	within	the	same	recording	1211 
session.	Each	unit	exhibits	a	different	degree	of	tuning	curve	stability	across	the	two	blocks	1212 
(indicated	by	the	Pearson’s	correlation	values	in	the	bottom	panels).	(K)	Tuning	curve	1213 
correlation	between	blocks	for	all	the	units	of	the	same	representative	mouse	shown	in	J.	(L)	1214 
Distribution	of	the	tuning	curve	correlation	values	of	the	main	diagonal	in	K.	Units	that	show	1215 
high	tuning	curve	correlation	across	blocks	are	unlikely	to	represent	cells	whose	identity	is	1216 
unstable	within	blocks.		A	sliding	threshold	was	used	to	include	different	subsets	of	units	with	1217 
high	tuning	stability	between	blocks.		(M)	Fraction	of	units	included	in	the	analysis	as	a	function	1218 
of	their	tuning	curve	correlation	between	blocks.	(N)	Repeating	the	within-block	stability	1219 
analysis	(shown	in	Figure	2H)	while	subsampling	units	based	on	their	tuning	curve	correlation	1220 
between	blocks.	(O)	Repeating	the	within-block	stability	analysis	(shown	in	Figure	2I)	while	1221 
subsampling	units	based	on	their	tuning	curve	correlation	between	blocks.	In	all	relevant	panels,	1222 
data	are	mean	±	SEM	across	mice	from	the	Neuropixels	‘Functional	Connectivity’	group.		 	1223 
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	1224 

Figure	S3.		Visual	representations	change	over	timescales	of	tens	of	minutes.	Related	to	1225 
Figure	3.	(A-D)	Analyses	using	data	from	the	calcium	imaging	dataset	during	the	presentation	of	1226 
Natural	movie	3.	(A)	PV	correlation	between	the	1st	(repeats	1-2)	and	2nd	(repeats	3-5)	halves	of	1227 
two	different	blocks	of	Natural	movie	3	in	a	single	visual	area.	The	presented	example	is	the	1228 
average	correlation	matrix	across	all	mice	recorded	in	area	AM	using	two-photon	Ca2+	imaging.	1229 
(B)	Ensemble	rate	correlation	between	the	two	halves	of	the	same	block	(‘within	block’)	and	1230 
between	halves	of	different	blocks	(‘between	blocks’)	of	Natural	movie	3	using	the	Ca2+	imaging	1231 
dataset	(p	<	10-3	for	all	areas,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	1232 
correction).	(C)	Tuning	curve	correlation	between	the	two	halves	of	the	same	block	(‘within	1233 
block’)	and	between	halves	of	different	blocks	(‘between	blocks’)	of	Natural	movie	3	using	the	1234 
Ca2+	imaging	dataset	(p	≤	0.03	for	all	areas,	except	areas	AL	and	RL	in	which	p	>	0.05,	two-tailed	1235 
Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	(D)	The	difference	in	ensemble	1236 
rate	and	tuning	curve	correlations	within	a	block	and	between	blocks	of	the	Natural	movie	3;	1237 
Two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction;	*	p<0.05,	**	p<0.01,	***	1238 
p<0.001.	(E-G)	Analyses	were	done	using	the	mice	from	the	Neuropixels	Brain	Observatory	1239 
group	during	the	presentation	of	Natural	movie	1	and	Natural	movie	3.	(E)	Ensemble	rate	1240 
correlations	between	halves	of	Natural	movie	1	and	Natural	movie	3	blocks	within	the	same	1241 
session	(NM1,	Natural	movie	1;	NM3,	Natural	movie	3).	The	presented	example	is	the	average	1242 
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correlation	matrix	across	all	mice	from	the	Brain	Observatory	group,	recorded	with	Neuropixels	1243 
probes	in	area	V1.	(F)	Tuning	curve	correlations	between	blocks	of	Natural	movie	1	and	Natural	1244 
movie	3	for	all	V1	units	across	mice.	Each	data	point	represents	a	single	unit.	The	units	included	1245 
in	the	analysis	are	those	with	tuning	curve	correlation	r≥0.6	for	both	movies.	(G)	Ensemble	rate	1246 
correlations	between	blocks	of	the	same	and	different	natural	movies	decay	with	elapsed	time.	1247 
Note	that	ensemble	rate	correlations	continuously	decline	with	time,	both	between	blocks	of	the	1248 
same	movie	(dark	gray)	and	between	blocks	of	different	movies	(light	gray).	(H-J)	Analyses	1249 
using	data	from	the	Neuropixels	Functional	Connectivity	group	during	the	presentation	of	1250 
Natural	movie	1	and	Shuffled	natural	movie	1.	(H)	Ensemble	rate	correlations	between	halves	of	1251 
Natural	movie	1	and	Shuffled	natural	movie	1	blocks	within	the	same	session	(NM1,	Natural	1252 
movie	1;	SNM1,	Shuffled	natural	movie	1).	The	presented	example	is	the	average	correlation	1253 
matrix	across	all	mice	from	the	Functional	Connectivity	group	recorded	with	Neuropixels	1254 
probes	in	area	V1.	(I)	The	V1	units	included	in	this	analysis	showed	tuning	curve	correlation	1255 
r≥0.5	across	the	two	blocks	of	Natural	movie	1.	(J)	Similarly	to	the	results	presented	in	panel	G,	1256 
the	ensemble	rate	correlations	across	different	blocks	of	Natural	movie	1	and	different	blocks	of	1257 
Shuffled	natural	movie	1	declined	with	time.	Data	in	panels	B-D,	G	and	J	are	mean	±	SEM	across	1258 
mice.	 	1259 
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	1260 

Figure	S4.	Characterizing	the	stability	of	visual	representations	of	a	synthetic	stimulus.	1261 
Related	to	Figure	3.	(A)	Responses	of	three	V1	example	units	from	the	same	representative	1262 
mouse	recorded	across	three	different	blocks	of	drifting	gratings.	Each	unit	exhibits	a	different	1263 
degree	of	tuning	curve	and	activity	rate	stability	across	the	three	blocks	separated	by	~15	1264 
minutes.	(B-E)	Analyses	using	data	from	the	calcium	imaging	dataset	during	the	presentation	of	1265 
drifting	gratings.	(B)	PV	correlation	between	the	three	blocks	of	drifting	gratings	in	a	single	1266 
visual	area	(see	Methods).	The	presented	example	is	the	average	correlation	matrix	across	all	1267 
mice	recorded	in	area	V1	using	two-photon	Ca2+	imaging.	Inset:	the	average	PV	correlation	over	1268 
all	pairs	of	matching	directions	across	different	blocks,	reveals	selectivity	to	temporal	frequency	1269 
in	addition	to	direction.	(C)	Mean	PV	correlation	as	a	function	of	orientation	difference	across	1270 
blocks	for	all	six	visual	areas	using	two-photon	Ca2+	imaging.	All	visual	areas	exhibit	higher	PV	1271 
correlation	values	between	matching	orientations	relative	to	opposite	(±180°)	orientations,	1272 
orthogonal	(±90°)	orientations,	and	shuffled	data.	(D)	Ensemble	rate	correlation	between	1273 
proximal	blocks	(separated	by	15	minutes)	and	between	distal	blocks	(separated	by	30	minutes)	1274 
of	drifting	gratings	using	the	Ca2+	imaging	dataset.	The	difference	in	ensemble	rate	correlations	1275 
of	two	proximal	blocks	and	that	of	two	distal	blocks	was	significant	in	all	six	visual	areas	(p<10-3	1276 
for	all	areas,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	(E)	1277 
Tuning	curve	correlation	between	proximal	blocks	and	between	distal	blocks	of	drifting	gratings	1278 
using	the	Ca2+	imaging	dataset.	There	was	no	significant	difference	in	tuning	correlations	of	two	1279 
proximal	blocks	and	that	of	two	distal	blocks	in	all	visual	areas	except	of	area	V1	(V1	(Z = 3.37,	1280 
p = 0.004),	LM	(Z = 0.85,	p = 0.78),	AL	(Z = 2.14,	p = 0.157),	PM	(Z = 1.49,	p = 0.543),	RL	(Z = -1.2,	1281 
p=0.679),	AM	(Z = -0.13,	p=0.893),	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	1282 
correction).	(F-G)	Analyses	using	data	from	the	Neuropixels	Brain	Observatory	group	during	the	1283 
presentation	of	drifting	gratings.	(F)	Ensemble	rate	correlation	between	proximal	blocks	and	1284 
between	distal	blocks	of	drifting	gratings	using	the	Neuropixels	dataset.	The	difference	in	1285 
ensemble	rate	correlations	of	two	proximal	blocks	and	that	of	two	distal	blocks	was	significant	1286 
in	all	six	visual	areas	(p<10-3	for	all	areas,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–1287 
Bonferroni	correction).	(G)	Tuning	curve	correlation	between	proximal	blocks	and	between	1288 
distal	blocks	of	drifting	gratings	using	the	Neuropixels	dataset.	There	was	no	significant	1289 
difference	in	tuning	correlations	of	two	proximal	blocks	and	that	of	two	distal	blocks	in	all	visual	1290 
areas	(V1	(Z = 2.54,	p = 0.065),	LM	(Z = 1.85,	p = 0.098),	AL	(Z = 2.49,	p = 0.065),	PM	(Z = 2.05,	1291 
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p = 0.12),	RL	(Z = 2.29,	p=0.086),	AM	(Z = 1.96,	p=0.12),	two-tailed	Wilcoxon	signed-rank	test	1292 
with	Holm–Bonferroni	correction).	Data	in	panels	C-G	are	mean	±	SEM	across	mice.	 	1293 
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	1294 

Figure	S5.	Stability	of	visual	representations	over	days.	Related	to	Figure	3.	(A-L)	Analyses	1295 
using	data	from	the	calcium	imaging	dataset	during	the	presentation	of	Natural	movie	1.	(A)	The	1296 
difference	between	the	similarity	in	the	representation	of	two	temporally	proximal	sessions	and	1297 
that	of	two	distal	sessions	for	both	ensemble	rate	and	tuning	curve	correlations;	V1	(ZRate = 3.31,	1298 
p = 0.002;	ZTuning = 2.09,	p = 0.053),	LM	(ZRate = 4.27,	p <	10-4;	ZTuning = 4.39,	p <	10-4),		AL	(ZRate = 1299 
2.57,	p = 0.014;	ZTuning = 1.77,	p = 0.075),	PM(Zrate = 3.34,	p = 0.002;	Ztuning = 2.65,	p = 0.0159),	RL	1300 
(Zrate = 1.53,	p = 0.068;	Ztuning = 3.03,	p = 0.005),	AM	(Zrate = 1.83,	p = 0.068;	Ztuning = 0.87,	p = 0.19),		1301 
one-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction;	*p	<	0.5,	**	p	<	0.01;	1302 
***p	<	0.001.	(B)	Repeating	the	analysis	presented	in	Figure	3I	for	cells	active	in	both	compared	1303 
time	points	(‘active	both’),	and	for	cells	that	were	active	in	at	least	one	of	the	compared	time	1304 
points	(‘active	≥	1’);	one-tailed	Wilcoxon	signed-rank	test	for	the	difference	between	the	1305 
correlation	values	between	halves	of	two	temporally	proximal	sessions	(‘proximal	sessions’)	1306 
and	between	halves	of	two	temporally	distal	sessions	(‘distal	sessions’);	*p	<	0.5,	**	p	<	0.01;	1307 
***p	<	0.001.	(C)	Ensemble	rate	correlation	between	the	two	halves	of	the	same	session	(‘within	1308 
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session’),	between	halves	of	two	temporally	proximal	sessions	(‘proximal	sessions’)	and	1309 
between	halves	of	two	temporally	distal	sessions	(‘distal	sessions’)	during	blocks	of	1310 
spontaneous	activity	(colored	lines)	and	Natural	movie	1	(gray	lines);	The	difference	in	1311 
ensemble	rate	correlations	between	proximal	sessions	and	distal	sessions	was	significant	for	all	1312 
areas	during	blocks	of	spontaneous	activity	(V1	(Z = 3.41,	p=0.001),	LM	(Z = 2.58,	p= 0.014),	AL	1313 
(Z = 1.76,	p = 0.046),	PM	(Z = 3.15,	p=0.004),	RL	(Z = 2.85,	p=0.008),	AM	(Z = 1.99,	p=0.046),	one-1314 
tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	(D)	Distribution	of	the	1315 
mean	activity	rates	across	mice	across	sessions.	(E)	Distribution	of	the	number	of	active	cells	(at	1316 
least	one	calcium	event)	for	each	session.	(F)	Distribution	of	the	average	running	speed	for	each	1317 
session.	(G)	Distribution	of	the	average	pupil	area	for	each	session.	(H)	Distribution	of	the	1318 
within-day	decoder	performance	for	each	session.	Dashed	lined	indicate	chance	level.		(I)	1319 
Distribution	of	the	within-day	PV	correlation	values	(correlation	between	the	first	half	and	1320 
second	half	of	trials)	for	each	session.	(J)	Distribution	of	the	differences	in	the	PV	correlation	1321 
values	between	pairs	of	subsequent	sessions	(i.e.,	the	similarity	between	sessions	1	and	2	1322 
compared	to	that	of	sessions	2	and	3).	V1	(Z = -0.46,	p = 0.64),	LM	(Z = 0.11,	p = 0.90),	AL	1323 
(Z = 1.21,	p = 0.22),	PM	(Z = -0.57,	p = 0.56),	RL	(Z = -0.65,	p=0.51),	AM	(Z = 1.45,	p=0.14),	one-1324 
tailed	Wilcoxon	signed-rank	without	correction	for	multiple	comparisons.		(K)	PV	correlation	1325 
between	the	two	halves	of	the	same	session	(‘within	session’),	between	halves	of	two	temporally	1326 
proximal	sessions	(‘proximal	sessions’)	and	between	halves	of	two	temporally	distal	sessions	1327 
(‘distal	sessions’)	using	either	Ca2+	events	detection	(colored	lines,	see	Methods)	or	using	1328 
neuropil-corrected	fluorescence	change	(ΔF(t)/F0)	traces	(gray	lines);	The	difference	in	PV	1329 
correlations	between	proximal	sessions	and	distal	sessions	was	significant	for	most	areas	when	1330 
using	the	neuropil-corrected	fluorescence	change	(ΔF(t)/F0)	traces	(V1	(Z = 3.78,	p<10-3),	LM	1331 
(Z = 5.06,	p<10-3),	AL	(Z = 1.69,	p = 0.045),	PM	(Z = 4.41,	p<10-3),	RL	(Z = 0.64,	p=0.258),	AM	1332 
(Z = 2.17,	p=0.014),	one-tailed	Wilcoxon	signed-rank	test).	(L)	Pearson’s	correlation	between	the	1333 
PV	correlation	values	calculated	using	Ca2+	events	detection	and	the	PV	correlation	values	using	1334 
the	neuropil-corrected	fluorescence	change	(ΔF(t)/F0)	traces.	Data	in	panels	A-C	and	K	are	mean	1335 
±	SEM	across	mice.	The	box	plots	in	panels	D-J	show	the	data	range	(whiskers),	25th	and	75th	1336 
percentiles	(box),	and	median	(dark	line).	Each	data	point	represents	an	individual	mouse.	1337 
Outliers	are	marked	by	gray	dots.		In	panels	D-J	the	difference	between	imaging	sessions	was	1338 
assessed	by	performing	two-tailed	Wilcoxon	signed-rank	tests	without	correction	for	multiple	1339 
comparisons;	*	p<0.05,	**	p<0.01.	 	1340 
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	1341 

Figure	S6.	Verification	of	cell	registration	across	sessions.	Related	to	Figure	3.	(A-J)	1342 
Analyses	were	done	using	mice	from	in	the	calcium	imaging	dataset	recorded	in	area	LM.	(A)	1343 
The	projection	of	all	detected	cells	of	a	single	representative	mouse	recorded	in	LM	using	two-1344 
photon	Ca2+	imaging	across	three	different	recording	sessions	(session	1	(left),	session	2	1345 
(middle),	session	3	(right)).	(B)	Red-Green-Blue	overlay	of	the	three	sessions	shown	in	panel	A	1346 
after	they	were	aligned.	Inset:	magnification	of	a	selected	region	in	the	field	of	view.	Note	the	1347 
clear	separation	between	individual	cells	and	the	uniform	color	within	cells,	indicate	consistent	1348 
position	and	shape	across	sessions	which	underlie	their	reliable	registration.	(C)	Responses	of	1349 
three	V1	example	cells	shown	in	panel	B	across	different	repeats	of	‘Natural	movie	1’	spanning	1350 
three	recording	sessions	occurring	on	different	days.	Each	neurons	exhibits	a	different	degree	of	1351 
tuning	curve	and	activity	rate	stability.	Note	that	these	neurons	are	well	isolated	from	the	rest	of	1352 
the	population	of	cells	in	the	field	of	view	suggesting	that	the	observed	dynamics	are	not	due	to	1353 
inability	to	detect	and	register	them	across	days.	(D)	Distribution	of	centroid	distances	between	1354 
pairs	of	nearest	neighbor	cells	(blue)	and	other	neighboring	cells	(gray)	from	different	sessions	1355 
for	the	same	representative	mouse	shown	in	panel	A.	Note	that,	while	some	of	the	neighboring	1356 
cell	pairs	have	intermediate	centroid	distances	values,	the	vast	majority	of	cell	pairs	exhibits	1357 
either	very	low	centroid	distances	(suggesting	they	are	the	same	cells)	or	very	high	centroid	1358 
distances	(suggesting	they	are	different	cells).	Black-dashed	line	shows	the	value	of	the	centroid	1359 
distance	at	the	intersection	between	the	models	of	same	cells	and	different	cells	(where	the	1360 
probability	to	be	the	same	cell	Psame	=	0.5),	providing	a	registration	threshold	that	is	optimized	1361 
to	the	specific	dataset.	(E)	Estimated	percentage	of	false-positive	and	false-negative	registration	1362 
errors	per	mouse	(registration	threshold	of	Psame	=	0.5,	N=65	mice	imaged	from	area	LM).	(F)	1363 
Total	number	of	cells	registered	using	the	Allen	Brain	Observatory	(ABO)	default	registration	1364 
and	the	Sheintuch	et	al.,	(2017)	registration	with	different	registration	thresholds	(Psame	values	1365 
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of	0.05,0.5	and	0.95;	N=65	imaged	from	area	LM).	(G)	The	fraction	of	active	cells	in	both	1366 
compared	sessions	using	the	Sheintuch	et	al.,	(2017)	registration	(with	threshold	of	Psame	=	1367 
0.5)	relative	to	those	obtained	using	ABO	default	registration.	(H)	PV	correlation	between	pairs	1368 
of	sessions	using	the	Sheintuch	et	al.,	(2017)	registration	(with	threshold	of	Psame	=	0.5)	1369 
relative	to	those	obtained	using	the	ABO	default	registration.	(I)	PV	correlation	between	the	two	1370 
halves	of	the	same	session	(‘within	session’),	between	halves	of	two	temporally	proximal	1371 
sessions	(‘proximal	sessions’)	and	between	halves	of	two	temporally	distal	sessions	(‘distal	1372 
sessions’)	using	both	the	ABO	default	registration	and	the	Sheintuch	et	al.,	(2017)	registration	1373 
with	different	Psame	thresholds.	PV	correlations	decreased	between	sessions	using	all	1374 
registration	methods	and	thresholds.	Data	shown	are	mean	±	SEM	across	mice	(N=65).	(J)	1375 
Pearson’s	correlation	between	the	imaged	spatial	footprints	of	a	given	single	cell	with	its	own	1376 
spatial	footprint	on	a	subsequent	session	(blue),	and	between	the	spatial	footprint	of	a	given	1377 
single	cell	and	the	most	similar	single	cell	to	it	on	a	subsequent	session	(gray).	Data	shown	are	1378 
mean	±	SEM	across	pair	of	cells.	In	panel	A,	the	age	of	the	mouse	(in	days)	is	indicated	in	1379 
parenthesis.	The	box	plots	in	panels	E	and	F	show	the	data	range	(whiskers),	25th	and	75th	1380 
percentiles	(box),	and	median	(dark	line).	Outliers	are	marked	by	gray	dots.		In	panels	G	and	H,	1381 
each	mouse	is	represented	by	three	data	points,	corresponding	to	the	three	different	1382 
comparisons	between	pairs	of	sessions,	with	a	regression	line	(blue)	±	CI	of	95%	(two-tailed	1383 
Pearson’s	correlation).	 	1384 
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Figure	S7.	The	unique	coding	properties	of	each	visual	area	underlie	a	stereotypic	and	1386 
stable	internal	structure	of	neuronal	population	activity.	Related	to	Figures	6	and	7.	(A)	1387 
Non-linear	dimensionality	reduction	(t-distributed	stochastic	neighbor	embedding;	tSNE)	1388 
applied	on	the	population	activity	of	a	single	example	pseudo-mouse	recorded	in	area	V1	with	1389 
either	Neuropixels	probes	(left)	or	Ca2+	imaging	(right)	recovers	a	low-dimensional	structure.	1390 
The	geometry	of	the	recovered	structure	depends	on	the	number	of	cells	included	in	the	1391 
analysis.	Each	point	represents	a	single	time-point	of	population	activity	during	the	presentation	1392 
of	a	single	Natural	movie	1	repeat,	and	is	colored	according	to	time	in	the	presented	movie.	(B)	1393 
Linear	dimensionality	reduction	(principal	component	analysis;	PCA)	applied	on	the	population	1394 
activity	of	a	single	example	pseudo-mouse	recorded	in	area	V1	with	either	Neuropixels	probes	1395 
(left)	or	Ca2+	imaging	(right).		(C)	Percentage	of	successful	classifications	of	the	internal	1396 
structures	of	Natural	movie	1	to	their	corresponding	visual	areas	across	pairs	of	Ca2+	imaging	1397 
pseudo-mice	as	a	function	of	the	number	of	cells	included	in	the	analysis	(data	are	mean	across	1398 
n=2000	iterations).	(D)	Percentage	of	successful	classifications	of	the	internal	structures	to	their	1399 
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corresponding	visual	areas	across	pairs	of	Neuropixels	pseudo-mice	after	performing	a	cyclic	1400 
temporal	shuffle	on	the	internal	structures	of	each	pseudo-mouse.	The	performance	of	the	1401 
decoder	did	not	exceed	chance	level	for	any	number	of	cells	included	in	the	analysis	(data	are	1402 
mean	across	n=2000	iterations).	(E)	Top:	Dimensionality	reduction	(tSNE)	on	the	population	1403 
activity	of	a	single	pseudo-mouse	recorded	using	Neuropixels	probes	during	the	presentation	of	1404 
Natural	movie	1	recovers	a	distinct	low-dimensional	structure	for	each	visual	area.	Each	point	1405 
represents	a	single	time-point	of	population	activity	of	a	single	Natural	movie	1	repeat,	and	is	1406 
colored	according	to	time	in	the	presented	movie.	Bottom:	Running	the	same	algorithm	with	the	1407 
same	parameters	on	the	neuronal	activity	of	the	same	pseudo-mouse	shown	in	the	top	panels	in	1408 
response	to	the	Shuffled	natural	movie	1,	failed	to	recover	distinct	low-dimensional	structure	1409 
for	the	different	visual	areas.	(F)	Percentage	of	successful	classifications	of	the	internal	1410 
structures	of	Natural	movie	1	(NM1)	and	those	of	Shuffled	natural	movie	1	(SNM1)	to	their	1411 
corresponding	visual	areas	across	pairs	of	Neuropixels	pseudo-mice	(data	are	mean	across	1412 
n=1000	different	realizations	of	pseudo-mice).	While	the	decoder	performed	above	chance	in	1413 
most	visual	areas	in	both	presented	stimuli,	its	performance	was	better	when	using	the	internal	1414 
structure	of	Natural	movie	1	compared	to	that	of	Shuffled	natural	movie	1.	(G)	Percentage	of	1415 
successful	classifications	of	the	internal	structures	of	Natural	movie	3	(NM3)	and	those	of	1416 
Drifting	grating	(DG)	to	their	corresponding	visual	areas	across	pairs	of	Ca+2	imaging	pseudo-1417 
mice	(data	are	mean	across	n=1000	different	realizations	of	pseudo-mice).	While	the	decoder	1418 
performed	above	chance	in	most	visual	areas	in	both	presented	stimuli,	its	performance	was	1419 
better	when	using	the	internal	structure	of	Natural	movie	3	compared	to	that	of	Drifting	grating.	1420 
(H)	The	same	analysis	as	in	Figure	7C	but	without	normalizing	the	correlation	values.	Data	are	1421 
mean	±	SD	across	N=1000	different	realizations	of	Ca+2	imaging	pseudo-mice.	(I)	The	same	1422 
analysis	as	in	H	but	after	shuffling	the	identities	of	recorded	cells	in	each	time	point	before	1423 
calculating	the	correlation	between	the	internal	structures	(colored	lines)	or	the	PVs	(gray	1424 
lines).	Data	are	mean	±	SD	across	N=1000	different	realizations	of	pseudo-mice	of	Ca+2	imaging	1425 
pseudo-mice.	(J)	Workflow	for	the	extraction	of	the	structure	of	pairwise	similarities	(top)	from	1426 
the	population	neuronal	responses.	Starting	with	a	matrix	(n	x	t)	containing	the	mean	neuronal	1427 
activity	in	each	temporal	bin	for	each	dataset	(e.g.,	movie	repeat,	session,	mouse,	stimuli	etc.).	1428 
Correlating	each	neuron	with	the	rest	of	the	neurons	within	a	given	dataset	produces	equally	1429 
sized	(n	x	n)	matrices	across	datasets.	Vectorizing	the	upper	half	of	these	matrices	produces	1430 
vectors	representing	the	structure	of	pairwise	similarities	(vector	size	=	(n2-n)/2)).	To	extract	1431 
the	internal	structure	of	the	population	activity	(bottom),	a	similar	procedure	was	performed,	1432 
but	with	correlating	each	temporal	bin	with	the	rest	of	the	temporal	bins	within	a	given	dataset.	1433 
(K)	Normalized	correlation	between	the	internal	structures	(colored	lines)	or	the	structure	of	1434 
pairwise	similarities	(gray	lines)	between	the	two	halves	of	the	same	session	(‘within	session’),	1435 
between	halves	of	two	temporally	proximal	sessions	(‘proximal	sessions)	and	between	halves	of	1436 
two	temporally	distal	sessions	(‘distal	sessions’).	Data	are	mean	±	SD	across	N=1000	different	1437 
realizations	of	Ca+2	imaging	pseudo-mice.	(L)	Normalized	correlation	between	the	internal	1438 
structures	(colored	lines)	or	the	structure	of	pairwise	similarities	(gray	lines)	between	the	two	1439 
halves	of	the	same	session	(‘within	session’),	between	halves	of	two	temporally	proximal	1440 
sessions	(‘proximal	sessions)	and	between	halves	of	two	temporally	distal	sessions	(‘distal	1441 
sessions’),	colored	according	to	the	number	of	neurons	included	in	the	analysis.	Data	are	mean	1442 
across	N=1000	different	realizations	of	Ca+2	imaging	pseudo-mice	recorded	from	area	LM.	1443 
Correlations	in	panels	K	and	L	were	normalized	to	the	value	of	the	‘within	session’	correlation.	1444 
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