
 

Identification of bacteria-derived HLA-bound peptides in
melanoma

Document Version:
Accepted author manuscript (peer-reviewed)

Citation for published version:
Kalaora, S, Nagler, A, Nejman, D, Alon, M, Barbolin, C, Barnea, E, Ketelaars, SLC, Cheng, K, Vervier, K,
Shental, N, Bussi, Y, Rotkopf, R, Levy, R, Benedek, G, Trabish, S, Dadosh, T, Levin-Zaidman, S, Geller,
LT, Wang, K, Greenberg, P, Yagel, G, Peri, A, Fuks, G, Bhardwaj, N, Reuben, A, Hermida, L, Johnson, SB,
Galloway-Peña, JR, Shropshire, WC, Bernatchez, C, Haymaker, C, Arora, R, Roitman, L, Eilam, R,
Weinberger, A, Lotan-Pompan, M, Lotem, M, Levin, Y, Lawley, TD, Adams, DJ, Levesque, MP, Besser, MJ,
Schachter, J, Golani, O, Segal, E, Ruppin, E, Kvistborg, P, Peterson, SN, Wargo, JA, Straussman, R &
Samuels, Y 2021, 'Identification of bacteria-derived HLA-bound peptides in melanoma', Nature (London),
vol. 592, no. 7852, pp. 138-143. https://doi.org/10.1038/s41586-021-03368-8
Total number of authors:
51

Digital Object Identifier (DOI):
10.1038/s41586-021-03368-8

Published In:
Nature (London)

General rights
@ 2020 This manuscript version is made available under the above license via The Weizmann Institute of
Science Open Access Collection is retained by the author(s) and / or other copyright owners and it is a condition
of accessing these publications that users recognize and abide by the legal requirements associated with these
rights.

How does open access to this work benefit you?
Let us know @ library@weizmann.ac.il

Take down policy
The Weizmann Institute of Science has made every reasonable effort to ensure that Weizmann Institute of
Science content complies with copyright restrictions. If you believe that the public display of this file breaches
copyright please contact library@weizmann.ac.il providing details, and we will remove access to the work
immediately and investigate your claim.

https://doi.org/10.1038/s41586-021-03368-8
https://doi.org/10.1038/s41586-021-03368-8


Nature | www.nature.com | 1

Article

Identification of bacteria-derived 
HLA-bound peptides in melanoma

Shelly Kalaora1,27, Adi Nagler1,27, Deborah Nejman1, Michal Alon1, Chaya Barbolin1, 
Eilon Barnea2, Steven L. C. Ketelaars3, Kuoyuan Cheng4, Kevin Vervier5, Noam Shental6, 
Yuval Bussi1,7, Ron Rotkopf8, Ronen Levy1, Gil Benedek9, Sophie Trabish1, Tali Dadosh10, 
Smadar Levin-Zaidman10, Leore T. Geller1, Kun Wang4, Polina Greenberg1, Gal Yagel1, 
Aviyah Peri1, Garold Fuks11, Neerupma Bhardwaj12, Alexandre Reuben13, Leandro Hermida4, 
Sarah B. Johnson13,14, Jessica R. Galloway-Peña15, William C. Shropshire16, Chantale Bernatchez17, 
Cara Haymaker17, Reetakshi Arora13,14, Lior Roitman1, Raya Eilam18, Adina Weinberger1,7, 
Maya Lotan-Pompan1,7, Michal Lotem19, Arie Admon2, Yishai Levin20, Trevor D. Lawley5, 
David J. Adams5, Mitchell P. Levesque21, Michal J. Besser22,23, Jacob Schachter22,24, 
Ofra Golani8, Eran Segal1,7, Naama Geva-Zatorsky12,25, Eytan Ruppin4, Pia Kvistborg3, 
Scott N. Peterson26, Jennifer A. Wargo13,14, Ravid Straussman1 & Yardena Samuels1 ✉

A variety of species of bacteria are known to colonize human tumours1–11, proliferate 
within them and modulate immune function, which ultimately affects the survival of 
patients with cancer and their responses to treatment12–14. However, it is not known 
whether antigens derived from intracellular bacteria are presented by the human 
leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour 
cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. 
Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide 
repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II 
molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived 
from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, 
that were derived from 41 species of bacteria. We identified recurrent bacterial 
peptides in tumours from different patients, as well as in different tumours from the 
same patient. Our study reveals that peptides derived from intracellular bacteria can 
be presented by tumour cells and elicit immune reactivity, and thus provides insight 
into a mechanism by which bacteria influence activation of the immune system and 
responses to therapy.

To investigate the influence of intratumoral bacteria on the immune 
response, we developed an experimental pipeline that comprises a 
16S rRNA gene-sequencing platform5 coupled to HLA peptidomics 
and applied it to samples from melanoma tumours.

Species of bacteria identified in melanoma
Our sequencing of the 16S rRNA gene of 17 melanoma samples derived 
from 9 patients with melanoma (Supplementary Table 1) led to the 
identification of 41 distinct species of bacteria (Supplementary Table 2). 
Inspection of a microbial phylogenetic tree revealed high similarity 
in the composition of bacteria found in different metastases from the 
same patient (Fig. 1, Extended Data Fig. 1), but also among samples 
from different patients. This finding points to the existence of species 
of bacteria that are common to melanoma. To validate the presence of 
bacteria in our tumour cohort, we performed 16S fluorescence in situ 
hybridization staining (Extended Data Fig. 2).

We complemented this with taxonomic profiling of a whole-genome 
sequencing dataset of melanoma that comprised 108 paired tumour 

and blood samples15, focusing on DNA sequences that do not map to 
the human genome. Although the proportion of bacterial reads in the 
tumour and blood samples were the same (paired two-tailed Wilcoxon 
test, P = 0.52), the microbiota richness—measured as the number of 
species in a sample—was higher in tumour samples (paired two-tailed 
Wilcoxon test, P = 0.0045) (Extended Data Fig. 3a). Moreover, the bacte-
rial composition was more conserved in tumour samples than in blood 
samples (Bray–Curtis distance, two-tailed Wilcoxon test, P = 2.8 × 10−8) 
(Extended Data Fig. 3b), and seven genera of bacteria exhibited greater 
abundance in the tumour samples (Extended Data Fig. 3c, d). Eight 
species of bacteria from the Acinetobacter, Actinomyces, Corynebac-
terium, Enterobacter and Streptococcus genera were also found in our 
cohort, supporting the microbial composition that we identified in 
melanoma tumours.

Presentation of bacterial peptides
We performed an HLA peptidome analysis of the HLA-I and HLA-II 
repertoires of the same tumours that were sequenced by 16S rRNA 
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profiling. The raw data from each HLA peptidome were searched 
(using MaxQuant software) against the proteomes of the species of 
bacteria that we identified in the corresponding tumour, together 
with the human proteome. We filtered the peptides by the quality of 
their identification and their ability to match the HLA alleles of the 
patient (Extended Data Fig. 4, Supplementary Information). This anal-
ysis revealed 248 unique HLA-I-associated peptides and 35 unique 
HLA-II-associated peptides (Supplementary Tables 3–5). The clustering 
of HLA-I peptides of 8–13 amino acids in length that were identified from 
each patient showed a reduced amino acid complexity of the peptides 
(as expected for HLA-I peptides), and matched the motifs of the HLA 
alleles of the patient (Supplementary Fig. 1). The length distribution 
of the identified peptides was consistent with the expected length of 
HLA-I and HLA-II peptides (Extended Data Fig. 5, Supplementary Fig. 2). 
The tandem mass spectra of all of the identified peptides is shown in 
Supplementary Fig. 3. We validated 48 of the identified peptides by 
comparing their tandem mass spectra to that of synthetic peptides 
(Supplementary Fig. 3).

In total, we obtained between 0 and 16 HLA-I and HLA-II peptides 
from each metastasis, and between 0 and 45 different HLA-I and HLA-II 
peptides from each species of bacteria (Fig. 2a). We identified 11 recur-
rent HLA-I-associated peptides that were derived from the bacteria 
Fusobacterium nucleatum, Staphylococcus aureus and Staphylococcus 
capitis. Five of the peptides appeared in different metastases from the 
same patient, and six appeared in different patients (Fig. 2b, Supple-
mentary Table 7). As expected, recurrent peptides shared by patients 
were predicted to bind to HLA alleles shared by these patients or to 
contain the same HLA binding motif.

The percentage of bacterial peptides per sample that matched the 
HLA-C*03:04, HLA-C*03:03 and HLA-A*02:01 alleles was higher in most 
samples compared to the percentage of human peptides that matched 
the same alleles (Fig. 2c, Supplementary Fig. 4). The percentage of bac-
terial peptides was higher in HLA-C*03:04 and HLA-C*03:03 even when 
considering the RNA expression of the HLA molecules (Supplementary 
Fig. 5). When compared to the repertoire of the human-derived HLA pep-
tidome, bacteria-derived peptides were significantly more hydrophobic 

(unpaired two-sample Wilcoxon test, P = 3.71 × 10−46) (Supplementary 
Figs. 5, 6, Supplementary Table 8), a property that might make these pep-
tides preferable for antigen presentation16 and recognition by T cells17. 
Importantly, we found that bacterial proteomes contained a significantly 
higher fraction of hydrophobic amino acids compared to the human 
proteome (Extended Data Fig. 6) and that the HLA-C*03:04,  HLA-C*03:03 
and HLA-A*02:01 alleles bind to more hydrophobic peptides (Extended 
Data Fig. 7), which provides an explanation for the higher frequency of 
bacterial peptides that are presented by these alleles.

As we used bulk melanoma tumours for the HLA peptidomics assay, 
we were unable to determine whether the bacterial HLA peptides were 
derived from the melanoma cells or antigen-presenting cells. To address 
this, we digested two melanoma tumours to recover single cells, which 
we subsequently separated into two populations on the basis of their 
CD45 marker: immune cells (CD45+ cells) and nonimmune cells (CD45− 
cells, which are primarily melanoma cells) (tumours HG38 and 422 in 
Supplementary Fig. 7). As previously reported, the melanoma cells in 
our study not only expressed HLA-I but also HLA-II molecules18–24 (Sup-
plementary Fig. 8). We subjected the different populations isolated 
from tumour 422 to HLA peptidomics (Supplementary Table 9), which 
enabled us to identify both HLA-I and HLA-II peptides in the CD45− 
population (with some overlap between CD45− and CD45+ populations) 
(Fig. 3a). Although it has previously been shown that bacteria can enter 
antigen-presenting cells and be presented by HLA molecules25–28, we 
wanted to assess whether the bacteria that we identified in our cohort 
are also presented by antigen-presenting cells. To test this, we cocul-
tured antigen-presenting cells, the B cell line IHW01070 and THP1 cells 
that were differentiated into macrophages using phorbol-12-myristate-
13-acetate29,30 with F. nucleatum and performed HLA peptidomics (Sup-
plementary Fig. 8a–c, Supplementary Table 10). To ensure that the HLA 
peptides that we identify are indeed HLA ligands, we cocultured the 
HLA-I-null B cell line 721.221, with and without overexpression of the 
HLA-A*01:01 allele, with F. nucleatum and performed HLA peptidom-
ics (Supplementary Fig. 8d). As expected, we observed HLA-A*01:01 
bacterial peptides only in the cells that overexpressed the HLA-A*01:01 
allele; none of these peptides were identified in the 721.221 cells that 
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Fig. 1 | Identification of intratumoral bacteria in melanoma. Schematic 
phylogenetic tree of the bacterial composition of 17 melanoma metastases that 
originated from 9 patients. The analysis is based on rRNA 16S gene sequencing. 
The different colours and shades in the circles indicate the different 

classifications of bacteria at the genus (inner circle), order (middle circle) and 
class (outer circle) level. Each patient is colour-coded (as in the index), and 
different metastases from the same patient are depicted in different shades of 
the same colour.
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did not overexpress HLA-A*01:01. The HLA-II presentation did not differ 
between the two lines (Supplementary Table 11).

Entry of bacteria into melanoma cells
To thoroughly evaluate whether melanoma cells can present bacte-
rial HLA peptides, we first confirmed that the species of bacteria that 
we identified in our cohort of patients with melanoma are capable 
of entering melanoma cells. To this end, we cocultured low-passage 
cell lines derived from the same melanoma tumours with representa-
tive intracellular bacteria (bacteria for which we identified HLA pep-
tides), and assessed the entry of bacteria into the cells using several 
orthogonal methodologies. We performed a gentamicin protection 
assay31 on cocultures of 51AL and 55A3 melanoma cells with aerobically 
grown Staphylococcus caprae and anaerobically grown Actinomyces 
odontolyticus, and detected colony-forming units at both 4 and 8 h 
after infection (Extended Data Fig. 8a, b). As a control, we used Lacto-
bacillus animalis grown under aerobic conditions and Lactobacillus 
plantarum grown under anaerobic conditions as representative spe-
cies of bacteria. Both of these species are expected to possess weaker 
cell-invasion phenotypes and, using the gentamicin protection assay, 
we observed less invasion of these bacteria into 51AL and 55A3 cells 
compared to S. caprae and A. odontolyticus (Extended Data Fig. 8a, b, 
Supplementary Table 12).

We further verified the presence of bacteria within melanoma 
cells by performing immunofluorescence staining of 51AL and 55A3 
GFP-expressing cells that were cocultured with S.  caprae, using 
anti-lipoteichoic acid (Extended Data Fig. 9). Alternatively, we used 

copper-free click chemistry to label anaerobically grown F. nucleatum 
and A. odontolyticus with DIBO–Alexa Fluor 48832, and cocultured 
these bacteria with 51AL and 55A3 cells stained with anti-HLA-I (Fig. 3b, 
Extended Data Fig. 10). The images presented in Extended Data Figs. 9, 
10 are derived from the centre of z-stack images of the cells cocultured 
with the bacteria (Supplementary Video 1–8). We also constructed 3D 
representations of the z-stack images (Supplementary Videos 10–18). We 
detected all three species of bacteria in both of the melanoma cell lines. 
We performed correlative light and electron microscopy (CLEM) analysis 
of cells cocultured with F. nucleatum, A. odontolyticus and S. caprae and 
stained with anti-lipoteichoic acid, which confirmed that the bacteria 
indeed entered the melanoma cells (Fig. 3c, Extended Data Fig. 11).

Bacterial presentation is specific
We assessed whether we could use the bacteria that were identified in 
tumours to identify the bacteria-derived HLA-bound peptides of the 
corresponding patient in cocultures of 51AL cells with F. nucleatum, and 
55A3 cells with S. caprae. Subjecting these cocultures to HLA peptidom-
ics revealed 105 HLA-I and 130 HLA-II peptides in cells cocultured with 
bacteria (Supplementary Table 13). Knockout of the β-microglobulin 
(B2M) or class II major histocompatibility complex transactivator 
(CIITA) genes in the cells using genome editing reduced the expres-
sion of HLA-I and HLA-II, respectively (Supplementary Fig. 8e), and led 
to a decrease in the number of HLA-I- and HLA-II-associated peptides 
after coculture with bacteria compared to a scrambled non-targeting 
single-guide RNA control (Fig. 3d). Furthermore, coculturing the cells 
with L. plantarum or L. animalis—which are less cell-invasive than 
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F. nucleatum and S. caprae (Extended Data Fig. 8a, b)—yielded fewer 
HLA-I- and HLA-II-bound peptides (Fig. 3d). To control for nonspecific 
contamination in the HLA immune purification process, we performed 
HLA peptidomics on bacterial pellets using the same amount as was 
used for the cocultures, and observed none or few peptides—none 
of which were identified in the coculture samples (Supplementary 
Table 14). Both the HLA-knockout and less-invasive-bacteria controls 
suggest that the bacterial peptides that we identified are HLA ligands, 
as their presence was strongly reduced in both control experiments.

Tumour-isolated bacterial presentation
To further validate the results of our cultured cell studies, we isolated 
bacteria from melanoma tumours and checked whether the specific 
isolated strains can invade melanoma cells. Our gentamicin protection 
assay and immunofluorescence staining of the isolated bacteria from 
tumours (S. capitis from tumour 58A and Staphylococcus succinus from 
tumour 261MS) revealed that both of these bacteria invade melanoma 
cells (Extended Data Figs. 8c, d, 9, Supplementary Videos 1–18). We 
cocultured S. capitis from tumour 58A with a melanoma-derived cell 
line produced from this tumour and performed HLA peptidomics on 
the cells, which led to the identification of 13 HLA-I and 11 HLA-II bacte-
rial peptides (Supplementary Table 15).

For our HLA peptidomics analyses, we used published proteomes 
(from UniProt33) of the species of bacteria that we identified using 16S 
rRNA sequencing. We performed whole-genome sequencing of the 
bacteria isolated from the tumours and of the commercial bacteria 
used for the cocultures. We then constructed a proteome database 
from the whole-genome sequencing data and analysed the HLA pep-
tidomics data in a similar manner to that from the UniProt database. 
The bacterial peptides identified in each of the experiments are shown 
in the peptide tables provided in Supplementary Tables 9–11, 13–15. 

The overlap in the identified peptides between the two analyses was 
high in most experiments, which suggests that the use of published 
proteomes—even if they are not of the specific strain that was identi-
fied in the tumour—can give a sufficiently close peptide identification 
(Supplementary Table 16). This emphasizes that—although there is a 
clear advantage in using a database derived from the specific strain 
of bacteria isolated from the tumour to increase specificity—using a 
combination of 16S rRNA sequencing and the UniProt database avoids 
the need to isolate and sequence the bacteria from the tumour (which 
may be very difficult for many bacteria), thus increasing the number of 
bacterial HLA-bound peptides that it is possible to identify. A schematic 
overview of bacteria sequencing stages that we applied before the HLA-I 
and HLA-II peptidomics workflow is presented in Supplementary Fig. 9.

Recurrently presented bacterial peptides
We were able to identify two HLA-I peptides in the HLA peptidome of 
the cocultured cell lines that were also identified in the corresponding 
tumour samples: GLDLGTLTY, which was identified in metastasis 27 of 
patient 51, and GVDLGTLTY, which was identified in metastasis 51BR of 
the same patient—these peptides were noted also in 51AL cells that were 
cocultured with F. nucleatum. We identified the peptide ETTLVVTEY both 
in tumour 27 and in 721.221 cells that were cocultured with F. nucleatum. 
We found two additional peptides, one in the 51AL cell line (peptide IASDV-
SAIL) and one in macrophages and 721.221 cells (peptide NSIKIIGDKTDLY) 
cocultured with F. nucleatum. This demonstrates that some bacterial pep-
tides can be presented by both melanoma cells and antigen-presenting 
cells, similar to what we observed in tumour 422 (in which we identified 
two peptides (EELSRQNL and LSNAKSLEL) that were present in both the 
CD45+ and CD45− cell fractions) (Supplementary Table 9).

In addition, we identified 39 bacterial protein groups from which we 
received multiple bacterial peptides (2–15 different peptides per gene) 
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Fig. 3 | Evidence of bacteria entry and presentation by melanoma cells.  
a, Tumour 422 was digested and CD45+ and CD45− populations were subjected 
to HLA peptidomics. The table lists the peptides identified in each sample.  
b, Immunofluorescence staining detecting bacteria in 51AL cells stained with 
an anti-HLA antibody (red) that were cocultured with F. nucleatum (green). Cell 
nuclei were stained with DAPI (blue). Left, representative merged image from 
the z-stack centre, presented at 63× magnification. Right, z-stack 3D image 
(bacteria, turquoise; melanoma cells, magenta; nucleus, blue). Scale bars, 
10 μm. c, We co-incubated 55A3 cells with F. nucleatum (green). Cell nuclei were 
stained with DAPI (blue). Ultramicrotome sections were analysed by CLEM. 
Left, the area of intracellular bacteria is marked by a black box. Scale bar, 5 μm. 
Right, zoomed-in view of the bacteria. Scale bar, 1 μm. d, Number of bacterial 

peptides identified by HLA peptidomics in the 51AL and 55A3 cell lines that 
were cocultured with F. nucleatum and S. caprae, respectively. B2M and CIITA 
were knocked out (KO) to reduce the levels of HLA-I and HLA-II, respectively. 
Compared with cells infected with scrambled control single-guide RNA (SC), 
the cells with B2M or CIITA knocked out show a lower number of identified 
bacterial peptides. Less-invasive species of bacteria (L. animalis and 
L. plantarum) were used as a control to show that the identified peptides are 
HLA ligands that resulted from intracellular bacteria. e, Different peptides 
were derived from the pyruvate–ferredoxin (flavodoxin) oxidoreductase 
protein from F. nucleatum. The protein sequence is described until the 900th 
amino acid rather than the end of the protein (1,188 amino acids in total), as no 
peptides were identified after this region of the protein.
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(Supplementary Table 17). The bacterial protein with the correspond-
ing highest number of different peptides was pyruvate–ferredoxin 
(flavodoxin) oxidoreductase from F. nucleatum (Fig. 3e). Twelve of these 
peptides were HLA-I peptides, and three were HLA-II peptides. Most of 
the peptides that we identified were from the 51AL cell line cocultured 
with F. nucleatum, although we also identified some in macrophages 
and the B cell line 721.221 overexpressing HLA-A*01:01. One peptide was 
found in both the 51AL melanoma cells and the 721.221 B cells, and two 
different pairs of peptides had an overlapping sequence. Other genes 
showed a higher number of overlapping peptides, which created pres-
entation ‘hot spots’. Among these genes was ATP synthase subunit-δ 
from S. caprae (from which 10 different HLA-II peptides were derived, 
protein group 9) (Supplementary Table 17).

Bacterial peptides are immunogenic
As recent studies have reported that tumour microbiota can affect 
responses to therapy by modulating the immune system12–14 and as 
we identified antigens derived from bacteria on tumour HLA-I and 
HLA-II molecules, we hypothesized that intratumoural bacteria may 
not only shape the immune tumour microenvironment but also affect 
T cell immune reactivity.To evaluate this hypothesis, we analysed the 
reactivity of tumour-infiltrating lymphocytes (TILs) isolated from 
the analysed tumours towards the HLA-I-bound bacterial antigens 
that we identified. Specifically, we assessed the reactivity of bacte-
rial peptides identified in the tumour that were derived from bacte-
ria (such as F. nucleatum and S. aureus) that are known to negatively 
affect the host and immune system response by mechanisms other 
than peptide presentation34–39, as well as the recurrently presented 
bacterial peptides (Supplementary Table 7), owing to their biologi-
cal relevance and potential prevalence in the population. We pulsed 

synthetic peptides onto Epstein–Barr-virus-transformed B cells that 
expressed the tumour-matched HLA alleles. We then cocultured the 
loaded B cells with the autologous TILs, and analysed TIL reactivity 
by using flow cytometry to detect IFNγ-secreting TILs (Extended Data 
Fig. 12). We detected an increase in IFNγ-secreting TILs of twofold or 
more for eight different bacterial peptides, compared to control B cells 
that were not loaded with these peptides (Fig. 4, Extended Data Fig. 12, 
Supplementary Fig. 10). These included seven immunogenic peptides 
that were derived from patient 51 and one peptide that was derived from 
from patient 55. Of the reactive antigens, one peptide (VLTDTYLTL) 
was identified in two different metastases of patient 51, two peptides 
(ITELNSPVL and SLTDKISII in patients 51 and 92) were identified in 
two different patients, one peptide was also identified in the match-
ing in vitro coculture of cells from the same patient (GVDLGTLTY in 
patient 51), and one peptide was identified from two potential species 
of bacteria that were identified in the same metastasis (ALSDMSLAL was 
derived from Sphingomonas dokdonensis or Sphingomonas melonis; 
both of these species were observed in metastasis 55B3). We confirmed 
these results by flow cytometry analysis of the CD69 T cell reactivity 
marker (Fig. 4, Supplementary Fig. 11).

Discussion
In summary, here we demonstrate the presence of HLA peptidomic 
signatures derived from bacteria in tumours from patients with mela-
noma, and characterize the species of bacteria involved. We demon-
strate that bacterial HLA-I and HLA-II peptides can be presented by 
both antigen-presenting cells (as has previously been shown25–28) and 
by melanoma cells, by applying HLA peptidomics to a tumour sam-
ple that was separated into CD45− and CD45+ populations as well as to 
antigen-presenting cells and melanoma cell lines that were cocultured 
with bacteria. Among the peptides that we identified were ones shared 
by different metastases from the same patient or by metastases from 
different patients. Some of these recurrent antigens bind to HLA alleles 
that are highly prevalent in the melanoma cohort of The Cancer Genome 
Atlas (Supplementary Fig. 12). Moreover, a few of the identified pep-
tides that elicited an immune response from the autologous TILs of the 
patient are recurrent peptides. As the bacterial antigens are non-self, 
they could serve as targets for immunotherapy. The selection of the 
species of bacteria for immunotherapy should be carefully considered, 
and should favour species of bacteria that are known to negatively 
affect the response of the host and immune systems (rather than more 
‘protective’ bacteria40–42). When focusing on the presented bacterial 
proteins, we observed genes that have overlapping peptides, which 
create presentation hots pots that possibly indicate the existence of 
protein domains and may further assist investigations into selecting 
the targets for immunotherapy.

Despite its strengths, our study has several shortcomings. Specifi-
cally, the resolution needed for the identification of specific species 
of bacteria is limited, owing to the high similarity of the 16S sequences 
between some species of bacteria. We also acknowledge the limitations 
of identifying bacterial peptides using HLA peptidomics, as it relies on 
peptide intensity: this may sometimes be below the detection level, 
especially when the amount of sample material is limited. This also 
explains the higher number of identified bacterial peptides in cell lines, 
as the amount of cells used was higher in these experiments. Addi-
tional studies that assess intratumoral bacteria-derived peptides—in 
combination with clinical and therapeutic information on large-scale 
cohorts—are likely to shed further light on the clinical role of bacterial 
peptides and to provide a higher-resolution view of the fundamental 
trends outlined in this Article.

Our comprehensive analysis of the intratumour microbiota in mela-
noma and the HLA peptides derived from these bacteria demonstrates 
that the bacteria that colonize melanoma tumours can enter melanoma 
cells, and that their peptides can be presented by the HLA-I and HLA-II 
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molecules of melanoma tumours. As both classes of HLA molecule have 
previously been shown to have a central role in CD8+ and CD4+ T cell 
immunity43–49, they are expected ultimately to modulate immune func-
tion. Finally, as the gut and tumour microbiota can affect the survival 
of patients with cancer and their responses to therapy8,14,40–42,50, our 
findings are of particular relevance, as they suggest that a mechanism 
that involves antigen presentation may underlie these effects.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Similarity of bacterial composition between 
metastases. A Jaccard index was calculated to determine the similarity 
between the bacterial composition of the different metastases on the species 
level. Colour code indicates the Jaccard index. The highest similarity was 

observed between metastases from the same patient, but metastases of 
different patients also showed similarity. Black boxes indicate tumour samples 
taken from the same patient.



Extended Data Fig. 2 | Visualization of bacterial 16S rRNA in tissue sections 
from melanoma tumours. a, 16S rRNA fluorescence in situ hybridization 
(FISH) staining of tissue sections from melanoma tumours using pan-bacteria 
EUB338 probe (red) and DAPI (blue). b, 16S rRNA FISH staining of tissue 
microarray sections of melanoma tumours (red) and DAPI (blue). Slice name 

indicates the position in the tissue microarray. Images are presented at 20× 
magnification. Scale bars, 100 μm. c, Representative control using 16S FISH 
nonspecific control probe. Asterisks mark the region that was selected for 
higher magnification. Figures are representative of at least three independent 
experiments.
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Extended Data Fig. 3 | Taxonomic analysis of 108 whole-genome-sequenced 
melanoma samples identify a bacterial composition similar to that found 
in our tumour cohort. a, Alpha diversity, measured as the number of observed 
species in a tumour (green) or blood (purple) sample. P values from paired 
two-tailed Wilcoxon test between tumour and blood taxonomic diversity.  
b, Microbiome similarity within and between groups. Bray–Curtis dissimilarity 
measured between each pair of samples, then stratified into four groups. 
P values from two-tailed Wilcoxon test. c, Comparison of the relative 
abundance between tumour samples and associated blood samples. P values 

from paired two-tailed Wilcoxon test between tumour and blood taxonomic 
abundance. ***P < 0.001, **P < 0.01, *P < 0.05. d, List of groups of bacteria that 
are more abundant in the tumour samples plotted in c. P values from paired 
two-tailed Wilcoxon test between tumour and blood taxonomic abundance. 
P values with asterisks survived multiple hypothesis correction 
(false-discovery rate of 5%). In the box plots, the centre lines represent the 
medians, the boxes represent the range between the 25th and 75th percentile, 
and the whiskers represent the range between the smallest and largest data 
point.
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according to the bacteria resulted in the identification of bacteria-derived 

peptides. Peptides were filtered according to their identification quality and 
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Bacterial proteomes contain a higher amount of 
hydrophobic amino acids compared to the human proteome. a, For each 
metastasis, the percentages of bacterial and human peptides that match each 
HLA-A, HLA-B and HLA-C allele of the patient is indicated. The allele with the 
best per cent rank binding prediction by NetMHCpan was assigned to each 
peptide. b, Kyte–Doolittle hydrophobicity index was calculated for bacterial 
and human peptides. The hydrophobicity of HLA-I bacterial peptides is higher 
than that of human-derived peptides (indicated P value is from an unpaired 
two-sample Wilcoxon test). c, The percentage of hydrophobic and 
nonhydrophobic amino acids was calculated for bacterial proteomes and the 
human proteome. Two groupings were used for selecting hydrophobic amino 

acids: L, I, V, F and M, or L, I, V, F, M, W, Y and A. The percentage of hydrophobic 
and nonhydrophobic amino acids from bacterial proteomes is plotted in the 
box plot. In the box plots, the centre lines represent the medians, the boxes 
represent the range between the 25th and 75th percentile, and the whiskers 
represent the range between the smallest and largest data point. The 
percentages representing the human proteome are marked by a red dashed 
line. d, Two-sided Student’s t-test comparing the percentage of hydrophobic 
and non-hydrophobic amino acids between bacterial proteomes and the 
human proteome. The P values and false-discovery rates are indicated in the 
table.
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Extended Data Fig. 7 | Hydrophobicity of bacterial and human peptides per 
allele. Kyte–Doolittle hydrophobicity index was calculated for bacterial and 
human peptides and plotted in a box plot for each HLA allele. In the box plots, 
the centre lines represent the medians, the boxes represent the range between 
the 25th and 75th percentile, and the whiskers represent the range between the 
smallest and largest data point. a, The hydrophobicity of the bacterial peptides 

that bind to the HLA-C*03:04, HLA-C*03:03 and—to a lesser extent—
HLA-A*02:01 was higher compared to the hydrophobicity of other alleles 
(marked in red). Additional alleles also show this trend, but they were derived 
from a lower number of tumour samples and therefore are not indicated.  
b, Bacterial peptides are marked in red and human peptides are marked in grey.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Gentamicin assay demonstrating the entry of 
bacteria into melanoma cells. a, b, Colony-forming units (CFU) of 
A. odontolyticus and S. caprae after coculture with 51AL and 55A3 melanoma 
cells. Less-invasive bacteria (L. animalis and L. plantarum) were used as a 
control, and show lower CFU. c, d, CFU of S. capitis (c) (isolated from tumour 58) 
after coculture with 58A melanoma cells, or S. succinus (d) (isolated from 
tumour Mel261) after coculture with 51AL or 55A3 cells. Cells were cultured 
with the indicated bacteria for 4 and 8 h. ‘Supernatant’ refers to the CFU of 
medium taken from samples incubated with gentamicin after coculture with 

the bacteria (grey). ‘No gentamicin’ refers to samples not treated with 
gentamicin after the coculture (red). ‘With gentamicin’ refers to samples 
treated with gentamicin for 1 h after the coculture (blue). Bars represent the 
average of s.e. between biological replicates (n = 3). P values from Student’s  
t-test between the supernatant sample and the without gentamicin or with 
gentamicin samples; P values between S. caprae or A. odontolyticus with 
gentamicin to L. animalis or L. plantarum with gentamicin control samples are 
from a one‐way analysis of variance followed by Tukey’s test, and are presented 
in Supplementary Table 4.
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Extended Data Fig. 9 | Immunofluorescence staining of melanoma cells 
cocultured with aerobically grown bacteria, demonstrating the ability of 
the bacteria to enter the cells. a, Melanoma cells expressing GFP (green)  
were cocultured with the aerobically grown bacteria S. caprae, S. capitis or 
S. succinus stained with antibacterial antibody lipoteichoic acid (LTA) (red); cell 
nuclei were stained with DAPI (blue). White arrows indicate the location of 

bacteria that entered the melanoma cells. b, A representative image of 51AL 
cells expressing GFP (green) cocultured with S. caprae and stained without a 
primary LTA antibody (red), to exclude nonspecific staining. Images are 
presented at 63× magnification. Scale bars, 10 μm. Figures are representative 
of at least three independent experiments.



Extended Data Fig. 10 | Immunofluorescence staining of melanoma cells 
cocultured with anaerobically grown bacteria, demonstrating the ability 
of the bacteria to enter the cells. a, Melanoma cells stained an anti-HLA 
antibody (red) were cocultured with anaerobically grown bacteria F. nucleatum 
or A. odontolyticus. These bacteria were labelled with click chemistry (green). 
Cell nuclei were stained with DAPI (blue). White arrows indicate the location of 

bacteria that entered the melanoma cells. b, A representative image of 51AL 
cells stained with the anti-HLA antibody (red) cocultured with F. nucleatum that 
were not grown with D-GalNAz and labelled with Alexa Fluor F488 (green), to 
exclude nonspecific staining. Images are presented at 63× magnification. Scale 
bars, 10 μm. Figures are representative of at least three independent 
experiments.
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Extended Data Fig. 11 | CLEM images showing entry of bacteria into 
melanoma cells. Fusobacterium nucleatum was grown with D-GalNAz and then 
labelled with DIBO–Alexa Fluor 488. Actinomyces odontolyticus and S. caprae 
were incubated with an anti-LTA antibody, and then with an anti-mouse 
secondary antibody labelled with Alexa Fluor 488. The 51AL and 55A3 cell lines 
were coincubated with the bacteria for 8 h. Ultra-thin sections were analysed by 
fluorescence microscopy to identify the bacteria (green and blue labelling are 
for bacteria and nucleus, respectively), followed by transmission electron 

microscopy (TEM) of the same cells for high-resolution morphology. Left and 
middle panels show CLEM and TEM images, respectively. Scale bars, 5 μm. The 
right panel shows high-magnification TEM image of the area in the black box in 
the corresponding middle panel. Scale bars, 1 μm. Bacteria that entered the 
melanoma cell are indicated with a white arrow. N, nucleus; M, mitochondrion; 
ER, endoplasmic reticulum. Figures are representative of at least three 
independent experiments.
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Extended Data Fig. 12 | TIL reactivity towards bacteria-derived antigens. 
Flow cytometry analysis of IFNγ-secreting TILs after coculture of 51AL and 
55A3 TILs with B cells loaded with the indicated bacterial peptide. Each peptide 
was loaded on a different B cell that exhibited the HLA alleles to which the 
peptide was predicted to bind. TILs were stained with anti-IFNγ and anti-CD45 

bifunctional antibody, which binds secreted IFNγ. The value indicates the ratio 
of IFNγ-secreting cells with the peptides to those with the DMSO control. Grey 
dots indicate the results of n = 3 biological replicates, and blue dots represent 
the average of replicates. Bars represent s.e. between replicates.
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