Turbulent statistics and intermittency enhancement in coflowing superfluid He-4

L. Biferale, D. Khomenko, V. L'vov, A. Pomyalov, I. Procaccia, G. Sahoo

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)
15 Downloads (Pure)

Abstract

The large-scale turbulent statistics of mechanically driven superfluid He4 was shown experimentally to follow the classical counterpart. In this paper, we use direct numerical simulations to study the whole range of scales in a range of temperatures T [1.3,2.1] K. The numerics employ self-consistent and nonlinearly coupled normal and superfluid components. The main results are that (i) the velocity fluctuations of normal and super components are well correlated in the inertial range of scales, but decorrelate at small scales. (ii) The energy transfer by mutual friction between components is particulary efficient in the temperature range between 1.8 and 2 K, leading to enhancement of small-scale intermittency for these temperatures. (iii) At low T and close to Tλ, the scaling properties of the energy spectra and structure functions of the two components are approaching those of classical hydrodynamic turbulence.

Original languageEnglish
Article number024605
Number of pages16
JournalPhysical Review Fluids
Volume3
Issue number2
DOIs
Publication statusPublished - 21 Feb 2018

Fingerprint

Dive into the research topics of 'Turbulent statistics and intermittency enhancement in coflowing superfluid He-4'. Together they form a unique fingerprint.

Cite this