Atomically precise engineering of spin–orbit polarons in a kagome magnetic Weyl semimetal

Hui Chen, Yuqing Xing, Hengxin Tan, Li Huang, Qi Zheng, Zihao Huang, Xianghe Han, Bin Hu, Yuhan Ye, Yan Li, Yao Xiao, Hechang Lei, Xianggang Qiu, Enke Liu, Haitao Yang, Ziqiang Wang, Binghai Yan, Hong-Jun Gao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Downloads (Pure)

Abstract

Atomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin–orbit polarons in a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling microscope. We achieve the step-by-step repair of the selected vacancies, leading to the formation of artificial sulfur vacancies with elaborate geometry. We find that that the bound states localized around these vacancies undergo a symmetry dependent energy shift towards Fermi level with increasing vacancy size. As the vacancy size increases, the localized magnetic moments of spin–orbit polarons become tunable and eventually become itinerantly negative due to spin–orbit coupling in the kagome flat band. These findings provide a platform for engineering atomic quantum states in topological quantum materials at the atomic scale.
Original languageEnglish
Article number2301
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - 14 Mar 2024

Bibliographical note

We thank Chendong Zhang and Claudia Felser for useful discussions. We thank Senhao Lv for assistance with the magnetization measurements. The work is supported by grants from the National Natural Science Foundation of China (61888102 (H.-J.G.) and 52022105(H.C.)), the National Key Research and Development Projects of China (2022YFA1204100 (H.Y. and H.C.), 2019YFA0308500 (H.-J.G. and L.H.), and 2018YFA0305800 (L.H.)), and the Chinese Academy of Sciences (YSBR-003 (H.C., L.H.)). Z. W. is supported by the US DOE, Basic Energy Sciences Grant No. DE-FG02-99ER45747and by Research Corporation for Science Advancement Cottrell SEED Award No. 27856. B.Y. was supported by financial support by the European Research Council (ERC Consolidator Grant “NonlinearTopo”, No. 815869) and ISF -Singapore-Israel Research Grant (No. 3520/20).

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Atomically precise engineering of spin–orbit polarons in a kagome magnetic Weyl semimetal'. Together they form a unique fingerprint.

Cite this